Self-Organizing Map Quantization Error Approach for Detecting Temporal Variations in Image Sets

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Wandeto, John Mwangi
dc.date.accessioned 2019-02-05T13:35:46Z
dc.date.available 2019-02-05T13:35:46Z
dc.date.issued 2018-09
dc.identifier.uri http://41.89.227.156:8080/xmlui/handle/123456789/818
dc.description.abstract A new approach for image processing, dubbed SOM-QE, that exploits the quantization error (QE) from self-organizing maps (SOM) is proposed in this thesis. SOM produce low-dimensional discrete representations of high-dimensional input data. QE is determined from the results of the unsupervised learning process of SOM and the input data. SOM-QE from a time-series of images can be used as an indicator of changes in the time series. To set-up SOM, a map size, the neighbourhood distance, the learning rate and the number of iterations in the learning process are determined. The combination of these parameters that gives the lowest value of QE, is taken to be the optimal parameter set and it is used to transform the dataset. This has been the use of QE. The novelty in SOM-QE technique is fourfold: first, in the usage. SOM-QE employs a SOM to determine QE for different images - typically, in a time series dataset - unlike the traditional usage where different SOMs are applied on one dataset. Secondly, the SOM-QE value is introduced as a measure of uniformity within the image. Thirdly, the SOM-QE value becomes a special, unique label for the image within the dataset and fourthly, this label is used to track changes that occur in subsequent images of the same scene. Thus, SOM-QE provides a measure of variations within the image at an instance in time, and when compared with the values from subsequent images of the same scene, it reveals a transient visualization of changes in the scene of study. In this research the approach was applied to artificial, medical and geographic imagery to demonstrate its performance. Changes that occur in geographic scenes of interest, such as new buildings being put up in a city or lesions receding in medical images are of interest to scientists and engineers. The SOM-QE technique provides a new way for automatic detection of growth in urban spaces or the progressions of diseases, giving timely information for appropriate planning or treatment. In this work, it is demonstrated that SOM-QE can capture very small changes in images. Results also confirm it to be fast and less computationally expensive in discriminating between changed and unchanged contents in large image datasets. Pearson’s correlation confirmed that there was statistically significant correlations between SOM-QE values and the actual ground truth data. On evaluation, this technique performed better compared to other existing approaches. This work is important as it introduces a new way of looking at fast, automatic change detection even when dealing with small local changes within images. It also introduces a new method of determining QE, and the data it generates can be used to predict changes in a time series dataset. en_US
dc.language.iso en en_US
dc.subject change detection, self-organizing map en_US
dc.title Self-Organizing Map Quantization Error Approach for Detecting Temporal Variations in Image Sets en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account