Climate and Land Cover Analysis Suggest No Strong Ecological Barriers to Gene Flow in a Natural Baboon Hybrid Zone

Show simple item record

dc.contributor.author Wango, Tim L.
dc.contributor.author Musiega, Douglas Engoke
dc.contributor.author Mundia, Charles N.
dc.contributor.author Altmann, Jeanne
dc.contributor.author Alberts, Susan C.
dc.contributor.author Tung, Jenny
dc.date.accessioned 2017-09-14T06:10:54Z
dc.date.available 2017-09-14T06:10:54Z
dc.date.issued 2017-07-21
dc.identifier.citation DOI 10.1007/s10764-017-9989-2 en_US
dc.identifier.uri http://41.89.227.156:8080/xmlui/handle/123456789/632
dc.description.abstract Admixture between diverging taxa has made, and continues to make, an important contribution to primate diversity and evolution. However, although naturally occurring hybrids have now been documented in all major primate lineages, we still know relatively little about the factors that shape when and where admixture occurs. Baboons (genus Papio), in which multiple natural hybrid zones are well described, provide a valuable system to investigate these factors. Here, we combined Geographic Information Systems and weather station data with information on genetically characterized populations in southern Kenya to investigate if ecological variables present a potential barrier to gene flow between anubis baboons and yellow baboons in the region. Specifically, we asked if altitude, seasonal temperature, or seasonal precipitation differ for weather stations in anubis, yellow, or hybrid ranges in southern Kenya, and if land cover or altitude covary with population ancestry near the hybrid zone. Our analyses suggest that the range of yellow baboons in Kenya is climatically distinct from the range of anubis baboons, with hybrids in intermediate regions. However, we identified no clear pattern of climate or land cover differentiation near the hybrid zone itself. Thus,when yellow baboons and anubis baboons come into contact, our data suggest that the resulting population composition is not consistently predicted by the ecological variables we considered. Our results support the designation of baboons as highly flexible Bgeneralists,^ and suggest that more fine-grained analyses (e.g., relative success in ecologically stressful years) may be necessary to detect clear signals of ecological barriers to gene flow. en_US
dc.language.iso en en_US
dc.publisher Int J Primatol en_US
dc.subject Admixture . Gene flow. Geographic Information Systems . Hybrid zone . Papio en_US
dc.title Climate and Land Cover Analysis Suggest No Strong Ecological Barriers to Gene Flow in a Natural Baboon Hybrid Zone en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account