Cropping Pattern Mapping in an Agro-Natural Heterogeneous Landscape Using Sentinel-2 and Sentinel-1 Satellite Datasets

Show simple item record

dc.contributor.author Aduvukha, Grace Rebecca
dc.contributor.author Abdel-Rahman, Elfatih M.
dc.contributor.author Makokha, Godfrey Ouma
dc.contributor.author Sichangi, Arthur Wafula
dc.contributor.author Landmann, Tobias
dc.contributor.author Mudereri, Bester Tawona
dc.contributor.author Tonnang, Henri E. Z.
dc.contributor.author Dubois, Thomas
dc.date.accessioned 2021-06-30T09:01:20Z
dc.date.available 2021-06-30T09:01:20Z
dc.date.issued 2021-06-07
dc.identifier.citation Aduvukha, G.R.; Abdel-Rahman, E.M.; Sichangi, A.W.; Makokha, G.O.; Landmann, T.; Mudereri, B.T.; Tonnang, H.E.Z.; Dubois, T. Cropping Pattern Mapping in an Agro-Natural Heterogeneous Landscape Using Sentinel-2 and Sentinel-1 Satellite Datasets. Agriculture 2021, 11, 530. https://doi.org/10.3390/agriculture11060530 en_US
dc.identifier.uri https://doi.org/10.3390/agriculture11060530
dc.identifier.uri http://repository.dkut.ac.ke:8080/xmlui/handle/123456789/4790
dc.description.abstract The quantity of land covered by various crops in a specific time span, referred to as a cropping pattern, dictates the level of agricultural production. However, retrieval of this information at a landscape scale can be challenging, especially when high spatial resolution imagery is not available. This study hypothesized that utilizing the unique advantages of multi-date and medium spatial resolution freely available Sentinel-2 (S2) reflectance bands (S2 bands), their vegetation indices (VIs) and vegetation phenology (VP) derivatives, and Sentinel-1 (S1) backscatter data would improve cropping pattern mapping in heterogeneous landscapes using robust machine learning algorithms, i.e., the guided regularized random forest (GRRF) for variable selection and the random forest (RF) for classification. This study’s objective was to map cropping patterns within three sub-counties in Murang’a County, a typical African smallholder heterogeneous farming area, in Kenya. Specifically, the performance of eight classification scenarios for mapping cropping patterns was compared, namely: (i) only S2 bands; (ii) S2 bands and VIs; (iii) S2 bands and VP; (iv) S2 bands and S1; (v) S2 bands, VIs, and S1; (vi) S2 bands, VP, and S1; (vii) S2 bands, VIs, and VP; and (viii) S2 bands, VIs, VP, and S1. Reference data of the dominant cropping patterns and non-croplands were collected. The GRRF algorithm was used to select the optimum variables in each scenario, and the RF was used to perform the classification for each scenario. The highest overall accuracy was 94.33% with Kappa of 0.93, attained using the GRRF-selected variables of scenario (v) S2, VIs, and S1. Furthermore, McNemar’s test of significance did not show significant differences (p ≤ 0.05) among the tested scenarios. This study demonstrated the strength of GRRF in selecting the most important variables and the synergetic advantage of S2 and S1 derivatives to accurately map cropping patterns in small-scale farming-dominated landscapes. Consequently, the cropping pattern mapping approach can be used in other sites of relatively similar agro-ecological conditions. Additionally, these results can be used to understand the sustainability of food systems and to model the abundance and spread of crop insect pests, diseases, and pollinators en_US
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.title Cropping Pattern Mapping in an Agro-Natural Heterogeneous Landscape Using Sentinel-2 and Sentinel-1 Satellite Datasets en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account