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a b s t r a c t

The quantization error in a fixed-size Self-Organizing Map (SOM) with unsupervised winner-take-
all learning has previously been used successfully to detect, in minimal computation time, highly
meaningful changes across images in medical time series and in time series of satellite images. Here,
the functional properties of the quantization error in SOM are explored further to show that the metric
is capable of reliably discriminating between the finest differences in local contrast intensities and
contrast signs. While this capability of the QE is akin to functional characteristics of a specific class
of retinal ganglion cells (the so-called Y-cells) in the visual systems of the primate and the cat, the
sensitivity of the QE surpasses the capacity limits of human visual detection. Here, the quantization
error in the SOM is found to reliably signal changes in contrast or colour when contrast information
is removed from or added to the image, but not when the amount and relative weight of contrast
information is constant and only the local spatial position of contrast elements in the pattern changes.
While the RGB Mean reflects coarser changes in colour or contrast well enough, the SOM-QE is shown
to outperform the RGB Mean in the detection of single-pixel changes in images with up to five million
pixels. This could have important implications in the context of unsupervised image learning and
computational building block approaches to large sets of image data (big data), including deep learning
blocks, and automatic detection of contrast change at the nanoscale in Transmission or Scanning
Electron Micrographs (TEM, SEM), or at the subpixel level in multispectral and hyper-spectral imaging
data.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Sensitivity to the intensity, spatial extent, and polarity of phys-
ical contrast are two major functional characteristics of natural
visual systems, found in primates and other superior mammals
(Hubel, 1963; Hubel & Wiesel, 1959, 1965, 1968). A large amount
of Steve Grossberg’s theoretical work has been devoted to devel-
oping empirically inspired neural models for visual analysis and
perception-based image interpretation using these, fundamen-
tally important, functional properties of biological visual neurons
(Grossberg, 1997). His work with close colleagues and collabo-
rators most successfully implemented them in increasingly com-
plex and powerful neural network architectures to predict how
the human brain extracts meaning, in terms of 3D objects and
their different specific qualities, from a seemingly random vari-
ability of contrast information in 2D images (e.g. Grossberg, 2013,
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2015; Grossberg & Pinna, 2012; Grossberg, Srinivasan, & Yazdan-
bakhsh, 2011, and many others, before and after). A large amount
of literature from the behavioural neurosciences has confirmed
that the same functional properties as those explored in Steve
Grossberg’s model approaches ensure the visual perceptual pro-
cessing of meaningful 2D image contents, thereby enabling their
further cognitive analysis (e.g. Dresp-Langley & Grossberg, 2016;
Spillmann, Dresp-Langley, & Tseng, 2015; Su, He, & Ooi, 2010;
Zhang & von der Heydt, 2010, and many others, before and after).

This contribution to Steve Grossberg’s Special Birthday Issue
is to be seen as a celebration of his extraordinarily rich and
complex work and achievement as a neural modelling expert
and visual scientist. Our article here explores previously unsus-
pected functional properties of a neural network metric not many
studies have focused on: the quantization error (QE) in the Self-
Organizing Map (SOM). The QE in the SOM, or SOM-QE, is a
statistical metric that represents the difference between data
and results obtained by letting a Self-Organizing neural network
learn the data. In its most generic form a SOM, also known
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as a Kohonen map (Kohonen, 1981, 2014), is a formal neural
network for visual pattern analysis. In previous work by others,
the quantization error from SOM output has been exploited as
a qualitative neural network metric, either in comparison with
vector quantization in variable neural network architectures used
on the same image contents (Kohonen, Nieminen, & Honkela,
2009) or, more recently as a metric for dynamic precision scaling
in neural network training (Taras & Stuart, 2018).

The Self-Organizing Map (a prototype is graphically repre-
sented here in Fig. 1 for illustration) may be described formally as
a nonlinear, ordered, smooth mapping of high-dimensional input
data onto the elements of a regular, low-dimensional array (Ko-
honen, 2001). Assume that the set of input variables is definable
as a real vector x, of n-dimension. With each element in the SOM
array, we associate a parametric real vector mi, of n-dimension.
mi is called a model, hence the SOM array is composed of models.
Assuming a general distance measure between x and mi denoted
by d(x,mi), the map of an input vector x on the SOM array is
defined as the array element mc that matches best (smallest
d(x,mi)) with x. During the learning process, the input vector x is
compared with all the mi in order to identify its mc . The Euclidean
distances ∥ x-mi|| definemc . Models that are topographically close
in the map up to a certain geometric distance, denoted by hci,
will activate each other to learn something from the same input
x. This will result in a local relaxation or smoothing effect on the
models in this neighbourhood, which in continued learning leads
to global ordering. SOM learning is represented by the equation

m (t + 1) = mi (t) + α (t) hci (t) ⌈x (t) − mi (t)⌉ (1)

where t = 1, 2, 3 . . . is an integer, the discrete-time coordinate,
hci(t) is the neighbourhood function, a smoothing kernel defined
over the map points which converges towards zero with time,
α (t) is the learning rate, which also converges towards with time
and affects the amount of learning in each model. At the end of
the winner-take-all learning process in the SOM, each image input
vector x becomes associated to its best matching model on the
map mc . The difference between x and mc , ∥ x-mc ||, is a measure
of how close the final SOM value is to the original input value and
is reflected by the quantization error QE. The QE of x is given by

QE = 1/N
N∑
i=1

Xi − mci

 (2)

where N is the number of input vectors x in the image. The
final weights of the SOM are defined by a three dimensional
output vector space representing each R, G, and B channel. The
magnitude as well as the direction of change in any of these from
one image to another is reliably reflected by changes in the QE.
In previous studies (Dresp-Langley, Wandeto, & Nyongesa, 2018;
Wandeto, Nyongesa, & Dresp-Langley, 2016), we used one and the
same SOM architecture on series of computer generated random-
dot images with systematically introduced changes across im-
ages. The neural network (SOM) was always trained on the first
image (reference) of a given series. We discovered that the SOM-
QE, generated by submitting the other images (tests) from the
same series to the same neural network analysis, displayed (1)
statistically consistent and significant sensitivity to changes in
local contrast intensity when spatial extent of contrast is constant
across images, (2) statistically consistent and significant sensitiv-
ity to changes in local extent of contrast when contrast intensity
is constant across images. It was concluded that the SOM-QE
is a statistically reliable indicator of contrast changes in image
series. The SOM-QE was subsequently exploited by our group for
the computational analysis of image time series in two different
applied contexts.

(1) In the context of medical image analysis for detecting clini-
cally relevant local changes across image contents; the

Fig. 1. Representation of a SOM prototype with 16 models, indicated by the
filled circles in the grey box. Each of these models is compared to the SOM
input in the training (unsupervised winner-take-all learning) process. The input
vector corresponds to the RGB image pixel space; the model in the map best
matching the SOM input will be a winner, and the parameters of the winning
model will change to further approach the input. Parameters of models within
close neighbourhood of the winning model will also change, but to a lesser
extent compared with those of the winner. At the end of the training, each
input space will be associated with a model within the map. The difference
between input vector and the winning model determines the quantization error
in the SOM output.

Hautepierre University Hospital Center (CHU Strasbourg, courtesy
Dr. Philippe Choquet and his team) provided us with time series
of MRI images from two distinct clinical examinations of the knee
of one and the same patient, before and after a minor accident.
The latter had produced localized tissue lesions around the bones
of the knee-joint that were not immediately detected by the
expert radiologist, although the patient had experienced intense
pain. In a clinical context of image interpretation, the first prob-
lem is being able to decide whether meaningful image contrasts
in the clinically relevant image regions are likely to have changed
between examinations or not. Such change is reflected either by
a local increase in spatial image contrast, indicating pathological
tissue alteration due to an inflammatory process, a traumatic
lesion, or a growing tumour, or by a local decrease in spatial
image contrast, possibly indicating that the given pathology may
be receding. By submitting the two MRI image series from the
two clinical examinations of our patient to SOM analysis, we
found a systematic difference in QE from analyses of the first
series and analyses of the second series (Wandeto, Nyongesa
and Dresp-Langley, 2017; Wandeto, Nyongesa, Remond et al.,
2017). Between the two examinations, local image contrasts had
changed consistently and significantly, indicating local tissue
inflammation caused by the minor accident that had happened
between the two clinical exams. These local contrast changes
were reliably captured by the variations in the SOM-QE (Fig. 2).

(2) In the context of image-based environmental change de-
tection; the same approach was applied to time series of satellite
images of the Nevada Desert nearby Las Vegas City, USA. The
original 25 images for the reference time period between 1984
and 2009 were taken from NASA’s Landsat database. We fed these
images into minimal pre-processing using a contrast normaliza-
tion function to ensure equivalent image quality and then trained
the SOM on the first image of the series. Image-by-image SOM
produced consistently decreasing QE values, reliably reflecting
the critical structural change around Lake Mead (Dresp-Langley
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Fig. 2. After training a SOM on the first image of a first MRI time series (20 images per series; only 12 from each clinical visit are displayed here for illustration)
SOM analysis was performed on the other images in the series, taken from two clinical examinations of a patient’s knee, before and after a minor accident. The QE
from these SOM analyses reliably reflects systematic changes in image contrast contents between the two time series, related to local tissue damage caused by the
accident (from Wandeto, Nyongesa, Remond and Dresp-Langley, 2017). These changes were not immediately detected by human visual inspection.

et al., 2018; Dresp-Langley, Wandeto, & Nyongesa, 2019). The
lake is an artificial reservoir enclosed by the Hoover Dam. It
collects water from the Colorado River, providing sustenance in
water supply to the whole of Nevada and beyond. While the
monotonous desert landscapes further away from the lake have
not changed significantly in the years of the reference time period
from which the image time series used here were taken, the
immediate surrounds of Lake Mead became increasingly arid as
the water levels of the lake progressively dwindled away. Linear
trend analyses and correlation statistics (Pearson’s product mo-
ment P = 0.957; p < .001) showed a significant link between
the QE, the natural phenomenon of drought reducing the surface
covered by the lake year by year, and the water level statistics
from the Hoover Dam Control Room for the same reference time
period (Fig. 3).

The previous work had shown consistently that the SOM-QE
proves a reliable indicator of the magnitude and the direction
of local change in spatial contrast across images (Dresp-Langley
et al., 2018). Some of the subtle variations in contrast contents

across images were undetectable psychophysically in the light
of signal detection theory (Green & Swets, 1966), even by ex-
pert radiologists, while the SOM-QE reliably detected and scaled
these invisible changes (Wandeto, Nyongesa, Dresp-Langley et al.,
2017; Wandeto, Nyongesa, Remond et al., 2017).

The new studies here explore the functional properties of
the SOM-QE further and up to the single-pixel level in series of
computer-generated achromatic and chromatic random-dot im-
ages. To further highlight the fine sensitivity of the unsupervised
SOM-QE neural network metric to single-pixel variations in im-
ages with several millions of pixels, we compared its performance
to the RGB Mean, computed here with the most up-to-date image
analysis tool currently available, ImageJ, which was developed
and made freely accessible by the National Institute of Health
(NIH). It will be shown that the RGB Mean performs in a similar
way as the SOM-QE in signalling percent changes in RGB and
single channel intensities across images when more than 10 out
of 4 710 480 image pixels change, while the SOM-QE crushingly
outperforms the RGB Mean when the task is to detect contrast
change in a single pixel.
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Fig. 3. Results from analyses of times series of satellite images of Lake Mead in the Nevada desert, taken across the years 1984–2009. The two examples on top
show the first and the last images from that series. The QE from the SOM analyses is shown as a function of the year in which a given image was taken (graph
on the left), and as a function of the corresponding water level statistics from the Hoover Dam Control Room for the reference time period (graph on the right).
Linear trend analysis and a one-sample t-statistic signal a statistically significant decrease in the QE from the image analyses, and in the independently measured
water levels. Correlation statistics (Pearson’s product moment P = 0.957; p < .001) showed a significant link between the QE, reflecting the natural phenomenon
of drought reducing the surface covered by the lake year by year, and the water level statistics (from Dresp-Langley et al., 2018, 2019).

2. Materials and methods

Achromatic and chromatic random-dot image series and one
random colour-image series, each with one original reference
image (for training the SOM), and between five and 100 test
images in a given series, were generated. After training the SOM
on the original reference image, the other images from each
series were fed into SOM to determine the QE as a function of
systematic change in contrast contents across images. The first
image of each of the different series will be referred to here
as the ‘‘original’’ image (see Figs. 4 and 5, for illustration) used
for training the SOM. Several image series, with achromatic and
chromatic contrast variations and other specific properties were
analysed.

2.1. Achromatic random-dot images

The original of these image series displays a randomly dis-
tributed number of white, black, light grey and dark grey dots
on a medium grey background. The corresponding RGB values are
given in Table 1. The total image area of these random dot images
was 4 710 480 pixels. The diameter (d) of each single dot therein
was 12 pixels. The single dot size (area) is obtained by

(d/2)2xπ (3)

where π = 3.14, which gives a single-dot size of 113 pixels in
all the random-dot images. In the five test images of the first
series (Fig. 4 A1–A5), the area of a single black dot was increased
systematically by 10% (Fig. 4 A1), 20%, 30%, 40% and 60% (Fig. 4
A5). In the second series (Fig. 4 B1–B5), the area of a single white
dot was increased systematically across the five images by the
same magnitudes as here above. In the third series (Fig. 4 C1–C5),
the relative number of dark dots across images was increased by
10% (Fig. 4 C1), 20%, 30%, 40% and 50% (Fig. 4 C5) by increasing the
number of black dots and holding the number of white and grey

Table 1
RGB values of white, black, light grey and dark grey pixels and of the medium
grey image background pixels.

R G B

White 255 255 255
Black 0 0 0
Dark grey 127 127 127
Light grey 191 191 191
Red dots 255 0 0
Green 0 255 0
Blue 0 0 255
Grey background pixels 179 179 179

dots constant across the five images. In the fourth series (Fig. 4
D1–D5), the relative number of white dots across images was
increased by 10% (Fig. 4 D1), 20%, 30%, 40% and 50% (Fig. 4 D5)
by increasing the number of white dots and holding the number
of black and grey dots constant across the five images. In the
fifth image series (Fig. 5 A1–A5), a single black dot was shifted
progressively towards the left across images by 20 pixels (Fig. 5
A1), 40 pixels, 60 pixels, 80 pixels and 100 pixels (Fig. 5 A5). In the
sixth image series (Fig. 5 B1–B5), a single white dot was shifted
progressively towards the left across images by 20 pixels (Fig. 5
B1), 40 pixels, 60 pixels, 80 pixels and 100 pixels (Fig. 5 B5).

2.2. Chromatic random-dot images

In the chromatic image series, the random dots were given
a specific colour (red, green and blue) of maximum intensity
value (Table 1) within the specific single channel (R, G or B). This
yields colour dot images of three different colours. At identical
R, G, and B intensities (255), each of the three colours produces a
markedly different perceived (subjective) intensity, or brightness,
in each of the three reference images (Fig. 6 A1, B1 and C1). In
the three image series here (Fig. 6 A1–A4, B1–B4 and C1–C4)
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Fig. 4. Four random-dot image series from this study. One original reference image (for training the SOM) and five test images in each series were computer
generated. After training the SOM on the original reference image, the five others from each series were submitted to SOM. Variations in QE were studied as a
function of systematic local (single dot) variations in spatial contrast contents, some of them visually undetectable, across the images of a given series.

Fig. 5. Two random-dot image series from this study. In the five test images of each series here, the local spatial position of a single dot with negative contrast
polarity (A) or with positive contrast polarity (B) was systematically varied.

the colour value of a single dot was progressively decreased in
the corresponding channel, from the original value 255 in the
reference image to 150, to 100 and to 50 across the other three
images (2–4 respectively) of a given series.

2.3. Chromatic single-pixel change

To test for single-pixel change detection, all random-dots were
set to grey background RGB (Table 1) and the G channel of a single
pixel from the total of 4 710 480 image pixels was progressively
varied between G = 1 to 30, between G = 55–80, and between
G = 210–255 across a series of 100 images.

2.4. Chromatic random noise with single-pixel removal

This series of 70 images consisted of a random-colour pattern
noise (Fig. 7) with a total image area of 1 040 111 pixels. In the

images of this series, single pixels were ‘‘removed’’ one-by-one
(i.e. in the last image of this series of 70 a total of 69 pixels had
been ‘‘removed’’) from arbitrary colours in the pattern by setting
the single-pixel RGB to R = 0, G = 0, B = 0.

2.5. SOM training and analysis

In each of the image series here, the training process consisted
of 10 000 iterations. The SOM was always two-dimensional rect-
angular map of 4 by 4 nodes, hence capable of creating 16 models
of observation from the data (cf. Fig. 1). The spatial locations,
or coordinates, of each of the 16 models or domains, placed at
different locations on the map, exhibit characteristics that make
each one different from all the others. When new input is fed
into the map, the models compete and the winner will be the
model whose features most closely resemble those of the input.
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Fig. 6. Three random-dot image series (A, B, C) with single channel colours (Red, Green, Blue) set at the maximum level (R = 255 in image A1; G = 255 in image
B1; B = 255 in image C1) in the first of the four images of a given series. In images 2, 3 and 4, the channel colour value of a single dot is decremented to 150,
100, and 50. The colour decrement is easily perceived visually in the case of the green dots (image series B1-4), to a lesser extent in the case of the red dots (image
series A1-4) and hardly if at all in the case of the blue dots (image series C1-4).

Fig. 7. Original image of the last series of 70 images from the experiments here.
Here, the total image area consists of 1 040 111 pixels. In the 69 subsequent
images of this series, single pixels were ‘‘removed’’ one-by-one (i.e. in the
last image of this series a total of 69 out of the 1 040 111 pixels had been
‘‘removed’’). Pixels from arbitrary colours in the image were ‘‘removed’’ by
setting the single-pixel RGB to R = 0, G = 0, B = 0.

An input will thus be classified or grouped by the models. Each
model or domain acts like a separate decoder for the same input,
i.e. independently interprets the information carried by a new
input. The input is represented as a mathematical vector of the
same format as that of the models in the map. Therefore, it
is the presence or absence of an active response at a specific
map location and not so much the exact input–output signal
transformation or magnitude of the response that provides the
interpretation of the input. To obtain the initial values for the map
size, a trial-and-error process was implemented. It was found that

map sizes larger than 4 by 4 produced observations where some
models ended up empty, which meant that these models did not
attract any input by the end of the training. It was therefore
concluded that 16 models were sufficient to represent all the fine
structures in the image data. The values of the neighbourhood
distance and the learning rate were set at 1.2 and 0.2 respectively.
These values were obtained through the trial-and-error method
after testing the quality of the first guess, which is directly deter-
mined by the value of the resulting quantization error ; the lower
this value, the better the first guess. It is worthwhile pointing
out that the models were initialized by randomly picking vectors
from the training image, called the ‘‘original image’’ herein. This
allows the SOM to work on the original data without any prior
assumptions about a level of organization within the data. This,
however, requires to start with a wider neighbourhood function
and a bigger learning-rate factor than in procedures where initial
values for model vectors are pre-selected (Kohonen, 1998). The
procedure described here is economical in terms of computation
times, which constitutes one of its major advantages for rapid
change/no change detection on the basis of even larger sets of im-
age data before further human intervention or decision making.
The times for training the SOM on the original images of the series
from this study here range between 3.97 and 4.1 s. The times for
subsequent SOM analysis of each test image from a series in view
of generating the QE value range between 0.15 and 0.16 s. Thus,
analysis of a series of 100 test images would take about 16 s after
training the SOM (Wandeto, 2018).

The code used for implementing the SOM is freely accessible
at:

https://www.researchgate.net/publication/330500541_Self-or
ganizing_map-based_quantization_error_from_images

2.6. SOM-QE versus RGB mean

For RGB Mean calculations we used ImageJ, developed by the
NIH https://imagej.nih.gov/ij/ The average grey (RGB) level, or
RGB Mean, in each single image from a given series corresponds
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to the sum of all grey values (RGB) of image pixels divided by the
total number of image pixels. For RGB colour images, the software
converts each colour pixel (CP) to greyscale beforehand, using

CP = 0.299xR+0.587xG+0.114xB (4)

In order to compare how well the SOM-QE from performs in
comparison with non-learning single-image analysis of the RGB
Mean, all the images from the different series were uploaded one
by one to Image-J and the mean for each image was computed.

2.7. Data analysis

The QE values from the SOM output and the image means from
the Image-J analyses were stored in excel files and submitted to
a comparative analysis as a function of the different systematic
variations introduced in the test images of each of the nine image
series.

3. Results and discussion

The SOM-QE and the RGB Mean from analyses of the different
image series were compared as function of the type of systematic
variation in spatial image contrast contents.

3.1. Achromatic random-dot series

The SOM-QE and the RGB Mean distributions from the anal-
yses of the mixed polarity random-dot image series were com-
pared in the first instance. When analysed as a function of a
strictly local increase in the spatial extent (size) of a single dot
in the achromatic image series shown in Figs. 4 and 5, both
the SOM-QE and the RGB mean are found to increase. This is
highlighted further by the results from analyses as a function
of a spatially distributed increase in relative contrast contents
of either polarity across images. When the relative weight of
opposite polarity contents changes in favour of positive polarity
contents, by a systematically increasing number of white dots
across images, the SOM-QE and the RGB mean are found to also
increase systematically. Conversely, when the relative weight of
opposite polarity contents changes in favour of negative polarity
contents, by a systematically increasing number of black dots
across images, the SOM-QE and the RGB mean are found to
decrease systematically. These results are displayed in Fig. 8. It is
shown that both the SOM-QE and the RGB mean are consistently
sensitive to the polarity of changes in the relative weight of
contrast contents across images of a series. When analysed as a
function of changes in the spatial position of strictly local contrast
contents in terms of shifts in the spatial position of a contrast dot
across images in a series, both the SOM-QE and the RGB mean are
found to be invariant, i.e. they do not capture changes in the local
spatial position of image contrast contents of either sign. These
results are displayed at the bottom of Fig. 8. Both the SOM-QE and
the RGB mean are insensitive to the spatial position of contrast
detail in images. This finding has implications for image analysis.
On the one hand it represents a limitation of the change detection
potential of both metrics, as neither the SOM-QE nor the RGB
mean signals change when the criterion is the spatial position
of a specific contrast intensity of any sign, or a specific colour.
On the other hand, in some contexts insensitivity to changes
in the spatial position of a contrast or colour could represent
an advantage. Radiological images from different time series, for
example, are never taken from precisely the same spatial position.
A qualified change detector in this respect would have to be able
to discard image variability due to shifts in spatial position of
specific contrasts or colour. The SOM-QE and the RGB mean both
qualify in this respect. To assess the statistical significance of

SOM-QE and RGB Mean variations, i.e. whether contrast or colour
changes signalled by either metric differ significantly from some
hypothetical ground state, one-sample t-tests were run on the
data displayed in Figs. 8 and 9. In a time series where potentially
meaningful changes may occur from one moment (image) in time
to another, the image reflecting the hypothetical ground state
would be the first image from that series, or some image taken
much earlier in time. Here, the ground state image, called the
‘‘original’’ image on which the SOMwas trained, is always the first
image of a given series. This first image reflects a ground state of
‘‘no change’’ before systematic alterations to the other images of
a series were introduced. The one-sample t-tests run on the SOM-
QE and RGB Mean distributions take the original (first) image of
a given series as the hypothetical ground state or hypothetical
population mean set as criterion for the statistical null hypothesis.
The t-statistic will not be significant if the SOM-QE or the RGB
Mean from the test images of a given image series do not vary
significantly in comparison with the value from analysis of a given
ground state image. The results from these statistical tests are
summarized here Table 2. They consistently show significant t
statistics for both the SOM-QE distributions and the RGB Mean
distributions from the different analyses plotted in Figs. 8 and
9. As could be expected, the t statistics relative to distributions
for the achromatic image series with systematic gradual shifts in
spatial position of contrasts are not significant.

3.2. Chromatic random dot series

The results from SOM-QE and RGB Mean analysis as a func-
tion of single channel colour (Red, Green, Blue) decrements in
a random dot from the three chromatic image series (Fig. 6)
are displayed in the graphs in Fig. 9. Both the SOM-QE and the
RGB Mean are shown to capture the single channel decrements
consistently for each of the three colours.

3.3. Chromatic single-pixel change

The SOM-QE and the RGB Mean, plotted as a function of single-
pixel G channel variations across 100 grey images of a total image
area of 4 710 480 pixels each, are displayed in the graphs in
Fig. 10. These results show that the SOM-QE consistently detects
and scales the single-pixel G channel variations while the RGB
Mean is insensitive to changes at the single-pixel level.

3.4. Chromatic random noise with single-pixel removal

The limitation in sensitivity of the RGB Mean to contrast
changes at a fine spatial scale is highlighted further by the graphs
in Fig. 11, which compare between the SOM-QE and the RGB
Mean as a function of progressive one-by-one single-pixel ‘‘re-
moval’’ across 70 random-colour noise images with a total area
of 1 040 111 pixels (illustrated in Fig. 7). Pixels from arbitrary
colours in these image were progressively ‘‘removed’’ by setting
the single-pixel RGB to R = 0, G = 0, B = 0. The SOM-QE, as
shown in the graphs in Fig. 11, consistently detects each and
every single-pixel ‘‘removal’’, the RGB Mean is insensitive to any
change smaller than 10/1 040 111 pixels.

3.5. Functional implications

The ability of the SOM-QE to signal the finest changes in
spatial contrast or colour across images with a to-the-single-pixel
precision has potentially important implications in the wider con-
text of biologically inspired neural networks for image analysis.
The ability to discriminate with fine spatial precision between
different levels of local contrast intensities and contrast signs is
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Fig. 8. The SOM-QE (left) and the RGB Mean (right) as a function of the percent increase in (a) single contrast dot area (113 pixels in original training image; total
image area: 4 710 480 pixels) towards positive and negative polarities (top), (b) relative amount of either polarity reflected by the relative number of white and
black dots (middle), and (c) spatial position shift across images towards left or right of a single contrast dot with positive or negative contrast polarity (bottom).

akin to known functional properties of a specific class of retinal
ganglion cells (the so-called Y-cells) in the visual systems of the
primate and the cat (i.e. Shapley & Perry, 1986). It is therefore
legitimate to affirm that SOM-QE mimics some of the early stages
of visual information processing in the primate brain (Fig. 12) and,
in addition, is capable of performing beyond the capacity limits of
human visual detection. This conveys to the SOM-QE an hitherto
unsuspected and potentially important functional property.

The visual analysis of changes in spatial position, on the
other hand, requires the higher-order functional properties of
orientation-selective visual cortical neurons (Hubel & Wiesel,
1959, 1965, 1968), only some of which are selective to contrast
polarity (the so-called simple cells) while others (the so-called
complex cells) are not (e.g. Su et al., 2010; Zhang & von der
Heydt, 2010). Long-range interactions between cortical neurons
(Tzvetanov & Dresp, 2002; Spillmann et al., 2015, for a compre-
hensive review) may allow for a finely tuned visual integration of
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Fig. 9. The SOM-QE (left) and the RGB Mean (right) as a function of the single channel colour (Red, Green, or Blue) of one random-dot of constant size (dot area
= 113 pixels) in the image. The single channel (R, G or B) of a random-dot in the image is progressively decremented across images. Both SOM-QE and the RGB
Mean are sensitive to these single channel decrements.

even the smallest local changes in spatial position. This potential
of cortical visual neurons is reflected by a well-studied human
ability called ‘‘visual hyperacuity’’, which is the ability to detect
changes in the local spatial position of contrasts ten times smaller
than the narrowest spacing of visual receptors in the retina (Wes-
theimer, 1981). This functional property of human vision is partly
a result of perceptual learning, and requires modelling by deep
neural network structures with complex functional architectures
(e.g. Wenliang & Seitz, 2018) akin to those developed already
much earlier by Steve Grossberg and colleagues (e.g. Grossberg,
2013, 2015, for reviews).

4. Conclusions

The quantization error in Self-Organizing Maps with a rela-
tively simple functional architecture can be effectively exploited

as an indicator for the rapid automatic detection of systematic
and potentially significant changes in images from large time
series, albeit with clear limitations. The indicator will reliably
signal change in situations where potentially critical information
is removed from or added to a scene, but will not signal change
when relative and total amounts of information are constant, but
the spatial location of a contrast element in the scene is changed.
This may represent either an advantage or a disadvantage for
automatic change detection, depending on what is required. In
situations where small shifts in spatial location of image contents
are irrelevant, the indicator qualifies as an effective quantitative
measure. In summary, the quantization error in Self-Organizing
Maps displays reliable sensitivity to the relative spatial extent,
intensity, and polarity of local contrast in images akin to that of
visual neurons (Y-cells) in the retina. This level of visual analy-
sis does not take into account the higher-order cortical neural
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Fig. 10. The SOM-QE (left) and the RGB Mean (right) as a function of single-pixel G channel variations across 100 grey images of a total image area of 4 710 480
pixels each. The 4 710 479 non varying grey pixels are set at R = 179, G = 179, B = 179). The SOM-QE consistently detects and scales the single-pixel G channel
variations, the RGB Mean is insensitive to such changes at the single-pixel level.

Table 2
Results of the one-sample t-tests on the SOM-QE (top) and the RGB Mean (bottom) distributions for images
(N = 6, including the original) from the six first series.
SOM-QE dot size+

sign+

dot size+
sign−

n dots+
sign+

n dots+
sign−

pos shift
sign+

pos shift
sign−

N images 6 6 6 6 6 6
Normality test .965 .963 .949 .940 .056 .064
DF 5 5 5 5 5 5
One-sample ‘t’ 3.264 3.277 3.025 2.998 1.973 2.125
Probability p < .05 p < .05 p < .05 p < .05 NS NS
95% confidence .392–3.302 .403–3.340 .081–.992 .0777–1.013 .001–.007 .0007–

.0008

RGB mean dot size+
sign+

dot size+
sign−

n dots+
sign+

n dots+
sign−

pos shift
sign+

pos shift
sign−

N images 6 6 6 6 6 6
Normality test .835 .815 .963 .956 Failed Failed
DF 5 5 5 5 5 5
One-sample ‘t’ 2.935 2.863 3.287 3.265 – –
Probability p < .05 p < .05 p < .05 p < .05 – –
95% confidence .00120–.0181 .00226–.0421 .0119–.100 .0122–.100 – –
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Fig. 11. The SOM-QE (left) and the RGB Mean (right) as a function of progressive one-by-one single-pixel ‘‘removal’’ across 70 random-colour (Fig. 6) images with
a total area of 1 040 111 pixels. Pixels from arbitrary colours in the image were progressively ‘‘removed’’ by setting the single-pixel RGB to R = 0, G = 0, B = 0.
The SOM-QE consistently detects single-pixel ‘‘removal’’, the RGB Mean is insensitive to changes smaller than 10 pixels.

mechanisms exploited in complex neural network architectures
for human vision, like those developed by Steve Grossberg and
his colleagues. The QE in SOM does not seem to capture detailed
shape information or spatial location and is therefore not directly
exploitable whenever these latter need to be taken into account.
Finally, from a user perspective and that of potential applications,
it may be worthwhile pointing out that the SOM-QE approach as
exploited here in this work does not require human intervention
for image annotation, classification, selection of regions of inter-
est in the image, or change criterion setting. The approach is, in
this respect, fully automatic and therefore objective. The SOM-
QE approach described here takes a whole series of images as
it is, without further human intervention, and automatically sets
criteria for change or no change in terms of the QE associated
with the final synaptic weights and after unsupervised learning.
These criteria then become the benchmarks against which each

subsequent image is compared. The consistently fine sensitivity
of the SOM-QE to single-pixel-change in long series of large
images has potential within the context of unsupervised image
learning and computational building block approaches for fully
automatized image analysis. This includes deep learning blocks
for large unsorted image data sets, and the automatic detection
of contrast changes at the nanoscale in Transmission or Scanning
Electron Micrographs (e.g. Wandeto & Dresp-Langley, 2019), or
at the subpixel level in multispectral and hyper-spectral imaging
data (e.g. Kerekes & Baum, 2002).
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