
    EJERS, European Journal of Engineering Research and Science 
Vol. 4, No. 6, June 2019 

DOI: http://dx.doi.org/10.24018/ejers.2019.4.6.1355                                                                                                                                                                  25 

 

Abstract—Evaluation of the power potential of a particular 

type of wind turbine at a specific site is necessary for economic 

decisions. Therefore, the information of a wind turbine and 

that of a site have to be measured or predicted and then 

combined with the power curve of a wind turbine. The main 

objective of this research was to predict the power potential of 

the existing small wind turbine with a diameter of 3m and the 

wind turbine site at the University of Siegen and compare with 

the annual energy calculated from the measured one year of 

wind and turbine data. Techniques for prediction of the wind 

speed distribution of a site were determined and modeled. The 

power curve of the wind turbine was modeled from data 

recorded by applying a technique from the novel methods for 

modelling the power curve. In this research, artificial neural 

network, Weibull and Rayleigh are the techniques modeled to 

predict wind speed distribution at the wind turbine site. 

Rayleigh and Weibull were chosen since the two models depict 

a better wind speed distribution and require the mean and the 

standard deviation of the wind speed at the wind turbine site. A 

neural network trained with the backward propagation 

levernberg-Marquardt algorithm was applied to predict the 

wind speed and power potential of the wind turbine site. A 

comparison between Weibull, Rayleigh and the Levernberg-

Marquardt trained neural network wind speed was made. The 

power curve of the wind turbine was successfully evaluated 

from wind data and wind turbine data recorded. The results 

indicate that the annual mean wind speed of the region is 2.54 

(m/s) and about 20% of the wind availability was blowing from 

the west. The annual energy yield predicted from the trained 

neural network was 372 (kWh) closer to that determined from 

measured wind speed 360 (kWh) than that determined from 

Weibull and Rayleigh 337 and 233 (kWh) respectively. The 

three prediction models are applicable in any region to predict 

the annual energy of a particular wind turbine site with 

minimal data available. 

 
Index Terms—Rayleigh, Weibull, Artificial Neural Network, 

Power Curve, Annual Energy Prediction. 
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I. INTRODUCTION 

Renewable energy is defined as clean energy, 

environment-friendly energy source, inexhaustible; that is 

naturally replenished by sunlight, wind, rain, geothermal 

heat, and the waves [1]. Worldwide renewable energy has 

accorded 19.3% to the energy utilized by the whole of the 

wind turbine has decreased over the years and now is 

comparable to other renewable energy. The cost per MWh is 

competitive depending on turbine site selected [2]. 

To implement a wind turbine project in a given site, a 

thorough systematic analysis of wind distribution for a 

turbine site must be conducted [3]. The analysis of wind 

turbine site is achieved through the collection of wind data 

at the site or predicting the wind speed distribution and 

power at the site with minimal wind data or data provided 

from wind Atlas [3].   

In the last decade, there is a tremendous increase in 

several types of research on techniques to predict wind 

speed distribution of a given region and power potential of a 

wind turbine site. The wind speed predictions techniques are 

classified into four main approaches: persistence, Artificial 

Neural Networks (ANN)/hybrids models and statistical 

techniques. The advantages of the artificial neural network 

over statistical technique are more precise and after training 

the network can be reused for prediction [4, 5]. The 

statistical techniques utilize mathematical models for 

analysis and evaluation of wind dataset. The statistical 

techniques in the same case as the ANN are based on time 

series data. The main advantages of statistical techniques 

over ANN are more straightforward, cost-effective and give 

a good representation of wind speed distributions   [6, 7]. 

Various statistical techniques are applied to predict wind 

energy potential and to characterize the wind speed of a 

given wind turbine region [8]. In general, there are five 

primary statistical techniques Rayleigh distribution, Weibull 

distribution, lognormal distribution, Logistic distribution, 

and Gumbel distribution. Rayleigh and Weibull techniques 

are applicable where data is not recorded consistently or 

where the mean and standard deviation wind speed of the 

selected site is known [9]. 

To estimate the power potential of a site, the wind speed 

distribution measured or predicted is combined with the 

power curve of the wind turbine. A technique needs to be 

chosen and modeled to determine the curve. There are 

various methods applied to determine the power curve; the 

method of binning was applied to determine the power curve 

as recommended by [10]. 
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II. RESEARCH AT SMALL WIND TURBINE SITE OF 

UNIVERSITY OF SIEGEN 

A. Experimental setup 

The existing wind turbine is a full-scale small horizontal 

axis wind turbine positioned on the rooftop of the Paul-

Bonatz building of the University of Siegen, Germany as 

shown in Fig. 1. The wind turbine tower is 5 m above the 

roof and has a rotor diameter of 3m. It passively tracks wind 

through a wind vane: The rotor blades are self-designed at 

the University of Siegen with the design wind speed of 6.0 

(m/s), design power of 400 W and a tip speed ratio of 7.5. 

The asynchronous 3-phase alternating current (A.C) 

generator rated 2.5 kW was utilized to convert the torque 

generated by wind speed to electrical power. 
 

 
Fig. 1: wind turbine and Measurement stations M1, M2, M3 and M4 on the 

rooftop of the University of Siegen, Germany 

 

B. Measurement station arrangement at the turbine site 

The measurements stations are located three times the 

diameter of the rotor as recommended by [10] away from 

the center point of the wind turbine as illustrated in Fig. 2. 

The measurement stations one is located at 900. 

The effective wind speed was determined by the average 

of wind speed acquired from three sensors, but if one of the 

three wind sensors was in the wake region, the signal from 

the measurement station in the wake region was not 

included as described in Fig. 2. 

Data recorded for wind direction was assumed that the 

wake region has a small effect on the wind direction and 

therefore, the effective direction was achieved from the 

average of the three sensors [12]. 
 

 
Fig. 2: A schematic top view measurement sensors arrangement and turbine 

at the wind turbine site [11]. 

 

C. Experimental data processing 

The data was recorded as explained in Fig. 3, which gives 

an overview of how measurement data was recorded from 

the wind turbine site to the National Instruments (NI) 

measurements cards. The data acquisition was acquired 

continuously twenty-four hours per day and saved in the 

wind database. The parameters recorded are; Date and time, 

three wind speeds, three wind directions, The electrical 

power from the generator, the rotational speed of the rotor, 

temperature, humidity and air pressure. The data was 

transferred to the PC for processing and saving. The 

LabVIEW® software was installed in the PC contained 

subroutines programs known as Virtual Instruments (VI). 

The VIs subprogram gave commands for data saving in time 

series. Fig. 3 describes an overview of how data was 

recorded from the wind turbine and the environment. 

 

 
Fig. 3: Overview of data acquisition from the wind turbine and the 

surrounding via the NI measurement cards to the PC for processing and 

saving. 

 

D. Data conversion and evaluation 

Annually data recorded from 1st Jan–31st Dec 2017 was 

extracted from wind database. The data was saved with 10 

Hz frequency that is one data point at every 0.1s, and each 

file contained 864000 data points. Wind direction, wind 

speed, power, time, air pressure, humidity, temperature and 

number of rotation of the rotor of wind turbine data points 

was applied in this research. The data was converted to 

Matlab files and averaged to one minute as recommended by 

[10] for a small wind turbine. Fig. 3 gives an overview of 

the data converted for the whole year. 

The total time T when the wind speed data was recorded 

in hours was given as follows where 
iN  was the total 

number of data points for the whole year 

 

600

iN
T             (1) 

 
TABLE I: DESCRIPTION OF AVERAGED MEASURED AND CALCULATED 

DATA RECORDED FROM 1ST
JAN-31ST DEC 2017 

Names 
Total number of 

data points 
Unit 

Wind speed 517,417 (m/s) 

Wind direction 517,417 (o) 

Electrical power 517,417 (W) 

Temperature 517,417 (K) 

Humidity 517,417 (g/m^3) 

Air pressure 517,417 (bars) 
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E. Analyzing the distribution of wind direction at the 

small wind turbine site 

When analyzing the wind density of a site, a windrose 

diagram was applied to show dominant wind direction as 

well as wind speed frequency. The procedure to create a 

wind rose using Matlab software was carried out as follows 

according to [13]  

Step 1: The windrose diagram was divided into 12 

sectors. The graphical circle has 360o. Therefore, each sector 

contains 30o. 

Step 2: The 514,751 wind direction data points were 

applied to categorize the corresponding wind speed 

frequencies of occurrence in every sector. 

Step 3: The categorized wind direction data was 

represented on the windrose circular graph as a line 

originating at the center of the circle. The magnitude of the 

line was scaled to the frequency calculated from the wind 

direction data. Equation (2) illustrates how each frequency 

if  in every sector was determined in percentage 

frequencies.
iX  represents the wind direction of data points 

of a sector i of the windrose graphical tool. 
 

12

1

100. i
i

i

i

X
f

X





           (2) 

 

Step 4: The categorized wind direction data points in 

each sector were then grouped according to the wind speed 

range from 0 (m/s) wind speed to the maximum wind speed 

recorded. Each range of wind speed was assigned a 

particular code and represented in the windrose graphical 

tool.  

F. Wind speed distribution 

Rayleigh, Weibull distribution and artificial neural 

network are the statistical methods preferred in this study 

over the other methods to determine annual energy 

production  [14] and [15]. The main advantage of Rayleigh 

and Weibull approaches shows wind speed distribution of a 

region where data was not recorded consistently and 

required knowledge of the mean wind speed of a given 

region [16]. Weibull distribution has two parameters, shape 

parameter k and scale parameter c and with knowledge of 

the mean wind speed and standard deviation [17] of a given 

site wind speed distribution can be predicted. Weibull and 

Rayleigh applied for wind data analysis and prediction of 

annual energy output. 

1) Wind speed distribution of measured data  

Wind speed distribution was presented using the binning 

method to categorize time series data measured for the 

annual year 2017 and to calculate annual energy Production 

(AEP). The 514,751 one-minute average yearly-recorded 

wind speed data points were categorized into wind speed 

intervals of 0.5 (m/s). Wind speed data were grouped into 

bins 25tN  of width 0.5iW  (m/s), bin positioned at 
iw  

and 
if  the frequency of occurrence at every bin. Wind 

speed data recorded are categorized into bins as illustrated 

by [9] refer to (3) 
 

1

N

i

i

N f


            (3) 

 

The mean of wind speed U  and the standard deviation 

i  was calculated as follows. 

 

1

1 tN

i i

i

U m f
N 

             (4) 
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2) Rayleigh model for wind speed distribution 

Rayleigh distribution was applied to predict wind speed 

distribution of a given site and the available power of the 

wind of the small wind turbine at the University of Siegen. 

With the knowledge of mean wind speed calculated from the 

measured data. Rayleigh scale parameter c  was taken as the 

mean wind speed. The value of the shape parameter k of 

Rayleigh distribution equals to two [15]. Equation (6) was 

modeled as follows by applying the mean wind speed 

calculated from the annual data. 
 

 

2
0
220

0 22
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U
U

p U e
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          (6) 

 

The frequencies of occurrence of wind speed were 

determined by applying the integral of the probability 

density function ( )
o

p U .
,o k

U was the probability of wind 

speed 
,o kU  positioned at k  between wind speed 

0,xU  and

0,yU . 

The frequencies of occurrence of wind speed were 

determined by applying the integral of the probability 

density function ( )
o

p U .
,o k

U was the probability of wind 

speed 
,o kU  positioned at k  between wind speed 

0,xU  and

0,yU . 
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        (7) 

 

The cumulative distribution function was described in (7), 

and according to [18] the frequencies of occurrences of wind 

speed distribution can be estimated from two Rayleigh 

distribution by modelling the probability distribution 

equation into histogram based bins. References [19] and [3] 

suggests that the relative frequencies distribution of 

Rayleigh distribution can be predicted by the continuous 

shape of the Rayleigh distribution.  
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The Rayleigh distribution  (6) 
0,yU was modeled into 

histogram from the integral and represented as follows

0 0, 0,  y xU U U  was the bin width centred at the position

,o kU . The mean wind speed U  was applied in (4) to 

calculate the wind speed distribution of a given region. 
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        (9) 

 

Equation (9) was applied to obtain the time distribution of 

at the wind turbine site according to [9]. A Rayleigh 

modeled histogram was plotted by applying the product of 

(9), the change in wind speed at every bin and T was the 

overall period centred at bin position k . The Mean wind 

speed AMS  was given from wind speed data set recorded 

from 1st Jan- 31st Dec the year 2017. 
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      (10) 

 

3) Weibull distribution 

Weibull distribution has two parameters. Scale factor c , 

and shape parameter k and are estimated from the annual 

mean speed AMS and standard deviation calculated from 

measured wind speed. The Weibull probability density 

function for wind speed distribution was given by (11) 

according to [20]   
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       (11) 

 

To find the frequencies of occurrence of the wind speed 

in a given range  (12) was applied. Weibull cumulative 

distribution function (CDF) was derived from the integral of 

the PDF (11). The Weibull CDF was applied to show that 

the probability of wind speed was less than or equal to given 

wind speed. 
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        (12) 

 

Equation (12) was modeled into a histogram for small 

integral and taking integral of a small range of U . The 

probability density function ( )f U  evaluates the likelihood 

value of wind speed U  occurring between a given range. 
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Equation (13) was applied to create the Weibull model. 
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TABLE II: THE VALUES OF  k  AND  c  WERE ESTIMATED AS FOLLOWS 

USING THE ANALYTICAL AND EMPIRICAL METHOD 

Parameter 
Empirical 

method 
analytical method 

Shape 

Parameter 

k   

1.086

U

U




 
 
 

 

1.086

U

U




 
 
 

 

Scale 

Parameter c   
1

1

U

k
 
 
 
 

 
1

0.433
0.568

k

U
k




 
 
 

 

 

A Weibull modeled histogram was derived by applying 

the product of the integral of (12), with bin width 
o

U and 

T  the overall period when data was recorded was centred at 

bin position n to represent wind distribution stepwise.

  ot U was the time duration of the bin, 
, o nU was the 

change in wind speed positioned at the bin n . The Weibull 

final model was described in  (15);  
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      (15) 

 

4) Wind speed prediction by applying the artificial 

Neural network 

To create the neural network to predict wind speed, the 

procedures were conducted as follows: 

• Characterization of the wind data recorded. 

• Created the network  

• Configured the network 

• Initialized the weights and the biases 

• Finally trained the network 

• Validated the network 

• Re-used the trained neural network created to 

predict wind speed. 

 

G. The design of the Neural Network 

The design of the neural network was done using Matlab 

version 2018b. The neural network applied was the 

Nonlinear Autogressive with External (Exogenous) input 

(NARX) for predictions. The advantage of NARX was 

accurate as compared to Nonlinear Input-Output. NARX-has 

exogenous inputs that is the model can relate the current 

value of a time series to both, past values of the same series 

and current of the driving (exogenous) series. NARX was 

created with an error element that enabled the model not to 

predict not precisely the same value as the initial element 

applied during training. 

In the design of a full artificial Neural Network, the three 

key components to put into consideration were the inputs, 

neurons, the hidden processing components/elements and 

the outputs of the neurons. To connect from one activity to 

precedent activity feed-forward connectors was applied. 

There were two sets of weights each representing all the 

hidden layers’ neurons activations and the governing of 

activations of output neuron. Fig. 4 shows the complete 

open-loop neural network with four inputs, 20 hidden layers 

and the output. 
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Fig. 4: The open neural network with four inputs wind direction, 

temperature, air pressure and humidity and target input as wind speed 

denoted by y (t). 
 

Three types of learning algorithm were applied to train 

the neural network. The main three algorithm includes the 

Bayesian Regularization, scaled conjugate gradient and 

levenberg-Marquardt algorithm.  The algorithm that gave 

the least MSE and the best regression was chosen for 

training. According to Table III Levenberg-Marquardt 

algorithm (LMA) depicted the least value of mean square 

error (MSE) and a regression much closer to 1 compared 

with the three algorithms. Therefore, LMA was chosen for 

training the created neural network. 
 

TABLE III: RESULTS OF THE CHOSEN 3 TRAINING ALGORITHM TESTING 

WITH THE MSE AND REGRESSION RESPECTIVELY. 

Name of the algorithm MSE Regression 

Bayesian Regularization  2.29849e-2 9.97076e-1 

Scaled conjugate gradient 2..6068e-2 9.96886e-1 

Levenberg-Marquardt 

algorithm 
2.37850e-2 9.97124e-1 

 

The Levenberg Marquardt algorithm was applied to adjust 

the error between the target value and forecast wind speed. 

The adjustment begun from the output layer, vie each 

hidden layer to the antecedent hidden layer until the 

termination condition was achieved. The design of the 

neural network was summarized as follows;1 

 Determination of the weights 

 Normalizing inputs data 

 Error propagation toward backward 

 Termination conditions 

During training, the network was trained with the four 

inputs data; wind direction, temperature, humidity and air 

pressure and the target value was the wind speed from 

recorded wind data at the wind turbine site. The error was 

minimized by varying the total hidden layers, the number of 

delays, learning parameters and the epochs applied for 

testing. 

The Levenberg –Marquardt algorithm was distinctively 

devised to miniaturize the sum of square error as described 

by (16). 
 

 
2 21 1

1
2 2

kE k e e           (16) 

 

Where 
k

e  was the error in the exemplar at k  the position 

and e  was the vector with element 
k

e .when the change 

between the antecedent and subsequent weight was small, 

the error vector was expanded by Taylor series first order 

derivative as shown in (17); 
 

        1 1
/k ij j j j

e e e e w w
 
             (17) 

 

Equation (17) error function was defined as follows; 

 

      
2

1

1
/

2
k ij j j

E e e e w w


           (18) 

 

The error function was minimized with respect to the 

adjusted new vector weight as expressed in (17). In the 

Levenberg-Marquardt algorithm (LMA), the error function 

was adjusted by applying (18). Fig. 5 shows a fully trained 

closed neural network with four inputs and wind speed as 

the output target. The number of hidden layers applied was 

twenty and the number of delays chosen was two. The 

activation bias applied was the tansig function. 
 

 
Fig. 5: The closed trained LMA neural network with four inputs wind 

direction, temperature, air pressure and humidity and y (t) the output Wind 

speed. 

 

H.  Power curve modelling of the small wind turbine 

The modelling approach of the power curve of the wind 

turbine on the objective purpose, dataset available and 

desired accuracy [21]. To enhance maximum power 

generated from wind energy at a particular wind turbine site, 

it is essential to predict the expected power of a wind 

turbine. Therefore for any wind energy project, a precise 

estimation of power expected by a wind turbine at 

foreseeable future is of considerable significance [21]. 

Applying (19) the power generated P by a wind turbine as 

described by [22] and [23]. 
 

2 21

2
p m gp c R V  

 
  

 
        (19) 

 

The power produced by a wind turbine is directly 

proportional to the density of air  , wind speed u and 

turbine efficiency parameters  , ,
p m g

c   . The main 

advantage of the power curve was that it depicts the wind 

turbine characteristics without analyzing the technical 

aspects of turbine generator [23]. 

The measured power curve was evaluated from the power 

and wind data recorded using the method of binning as 

recommended by [10]. The power and wind speed data 

points were averaged in one-minute data. The power curve 

of a small wind turbine was determined as follows according 

to [10]. 

1) Step 1 

The data points were normalised as recommended by [10] 

and wind and wind turbine data recorded when the wind 

turbine was not operating was discarded. 

2) Step 2 

The normalised, data sorted by applying the binning 

procedure, the height of the hub wind turbine was the same 

as that of the masts. A bin width of 0.5 (m/s) was applied in 

this approach to analyze the normalised wind speed data and 

normalised power output data set according to (20) 
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Normalised averaged wind speed in the bin i  was given by 

iv and the normalised wind speed of data set j  in the bin i  

was denoted by 
, ,n i jv . The number of data points in the bin 

i was represented by 
, ,n i jv . In power measurement the 

normalised and averaged power output of data set j  in the 

bin i  as denoted as 
, ,n i jP  and the normalised and averaged 

power output at bin i was given by 
, ,n i jP . 

 

, , , ,

1 1

1 1
,

i iN N

i n i j i n i j

j ji i

v v P v
N N 

          (20) 

 

I. Calculation of annual energy output 

Calculated annual energy production was determined 

from the combination of power curve obtained and wind 

speed distribution calculated from measured data, Rayleigh 

and Weibull model. Measured annual energy production of 

the wind turbine was compared to Rayleigh predicted annual 

energy and Weibull predicted annual energy respectively. A 

comparison of the three methods was determined, and 

accuracy between Weibull and Rayleigh was evaluated to 

show which distribution with better estimate compared to 

measured annual energy. 

The predicted wind speed in time series using the back 

propagation LMA neural network was multiplied with the 

power coefficient, area of the rotor of the small wind turbine 

and the calculated air density at the small wind turbine site 

to calculate the predicted power. A comparison between 

power predicted and that determined from measured wind 

speed was carried out. The annual energy output predicted 

was calculated by summing up the power predicted in 

(kWh). 

 

III. RESULTS AND DISCUSSIONS 

A. Characterization of data at the wind turbine site 

The wind rose diagram in Fig. 6 describes the wind 

characteristics at the turbine site for the yearly data of one 

minute averaged intervals. The total number of data points 

in each category data applied was 514,751 points. 

The wind speed data was classified in a range of 2 (m/s) 

in every sector after categorizing the data points in the 

direction of the 300 range. The colour band describes the 

wind speed ranges. About 20 % frequency of wind speed 

was blowing from the west as described by the longest 

spoke. Less wind was expected from the North. Wind speed 

between 2 to 4 (m/s) was pre-dominant from any direction. 

The frequency of wind higher than 10 (m/s) was less than 5 

%. Each concentric circle demonstrates a distinctive 

frequency, originating from the midpoint to increasing 

frequencies at the extrinsic circles. 
 

 
Fig. 6: Wind rose diagram characterizing wind speed and wind direction at 

the wind turbine site of the University of Siegen 

 

B. Wind speed distribution 

1) Measured and predicted wind speed distributions 

Rayleigh prediction modeled indicating wind speed 

distribution at the site turbine was compared with the 

measured wind speed distribution. Fig. 7 describes the 

comparison between Rayleigh predicted annual wind speed 

distribution and measured annual wind speed grouped in 0.5 

(m/s) bins and each bin centred at 0.25 (m/s). When the 

wind was below 2 (m/s) measured wind speed distribution is 

higher than the predicted Rayleigh modeled histogram time. 

At wind speed, higher than 2 (m/s) up to 4.5 (m/s) predicted 

wind speed time availability is higher than the measured 

wind speed. Also measured wind speed greater than 5 (m/s) 

depicts higher time availability compared to Rayleigh 

modeled histogram time. 

Weibull predicted wind speed was compared with 

measured wind speed at the turbine site as described in  Fig. 

7. The Weibull distribution was closer to the measured wind 

speed. The predicted time availability for the Weibull model 

depicts a little deviation from the measured wind speed 

below 2.5 (m/s). The time availability for wind speed 

between 2.5 (m/s) to 5.0 (m/s) in the Weibull model much 

agreed with that of measured wind speed. There was a slight 

difference between measured wind speed for wind speed 

higher than 5.5 (m/s) to 9.5 (m/s). Wind speed greater than 

10 (m/s) time availability in both cases time was less than 50 

hours in the annual year. 
 

 
Fig. 7: Annual wind speed distribution of measured wind speed recorded 

and the predicted wind speed distribution from Rayleigh and Weibull 

models 
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2) Wind Speed prediction Using Artificial Neural 

network 

The trained LMA neural network, validation and testing 

of the network output was described in Fig. 8. The error 

from the target and output during training, validation and 

testing was observed to be less than five when training, 

validation and testing of the network. This showed that the 

model was accurate and ready for reuse. Fig. 9 shows the 

error histogram with twenty bins during training, validation 

and testing of the model created. For all the instances, it can 

be observed that the data points were between -2.407 and 

4.185. Fig. 9 shows that the model was well trained since 

the majority of data points are closer to zero error. 
 

 
Fig. 8: The training, validation and testing of the neural network and the 

response after training the network 

 

 
Fig. 9: Error histogram with 20 bins of the neural network model created  

 

 
Fig. 10: Validation performance of the model during training, validation 

and testing. 

 

Fig. 11 describes the best validation performance plot and 

it occurred at 55 epochs and the Means square error (MSE) 

was 0.025865, which was least during the simulation hence 

the model was well trained and was ready for re-use. The 

final mean-square error was small at 0.025865. From Fig. 10 

it can be observed that test error and the validation set error 

displayed the same characteristics. There was no significant 

overfitting happen by iteration 56 and at this iteration, the 

perfect validation performance happened. 

The performance analysis of the trained LMA network 

was carried out as described in Fig. 11. The regression r is 

0.9908 and signifies an imminent relationship between the 

outputs and the inputs. 
 

Fig. 11: Regression graph plots wind speed data during training, testing and 
validation of the LMA neural network model. 

 

MRE was the mean squared difference between the 

outputs and targets. Lower values of MSE means the trained 

neural network is perfect. Regression R-values was 0.99705, 

which was a correlation between outputs and targets of the 

data points applied. An R-value of 0.99705 of the trained 

neural network means a close relationship hence the neural 

network was good since R was much closer to one. 
 

 
Fig. 12: The measured wind speed and the predicted wind speed in time 

series as predicted by the trained neural network. 

 

C. Evaluation of the power curve of the small wind 

turbine at the University of Siegen 

The measured power curve was obtained from the power-

generated data and measured wind speed recorded. The 

measured power scatters plot was described in Fig. 13, 
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which illustrates the scatter plot of one minute averaged 

power data. At wind speed below 2 (m/s), there was no wind 

power data, and more power scatters data points are between 

4 (m/s) and 8 (m/s). Some data points are observed above 

cut out wind speed, and power fluctuates as wind speed 

changes. At high wind speed, more data points are scattered 

on the upper part-indicating increase in power generated by 

the small wind turbine as wind speed increases. 

The bar plot of Fig. 14 describes the average generated 

power in every bin. The power in every normalized bin 

increases with increases in wind speed. Generated power 

between wind speed 9 (m/s) and 12.5 (m/s) as described was 

almost constant since the turbine generator was operating at 

rated power range. When wind speed higher than 12.5 (m/s) 

the wind turbine the cut-out speed was reached hence the 

wind turbine turns to helicopter shifting the area of rotor 

away from incoming wind hence no power was generated. 

 

 
Fig. 13: Power performance scatters plot data one minute averaged data 

points. 

 

 
Fig. 14:  Power bar plot illustrating the characteristics power curve of the 

generator of the small wind turbine at the University of Siegen, Germany. 
 

D. Determining the Annual energy output  

The annual energy distribution was calculated from the 

combination of the power bar plot obtained in Fig. 14 with 

the wind distribution calculated from the measured wind 

speed; Rayleigh predicted model and Weibull Predicted 

model. Fig. 15 describes the annual energy distribution 

(AED). Rayleigh predicted energy distribution showed a 

significant deviation change compared to the measured wind 

speed. Despite the changes in the estimation, the annual 

energy distribution values calculated between wind speed 2-

5 (m/s) using the Rayleigh distribution model shows 

reasonable estimates and the results are closer to the 

measured. Rayleigh predicted AEP for wind speed between 

5 (m/s) and 12 (m/s) displayed different values compared to 

measured data. 

The Weibull predicted AED gave a reasonable estimate as 

wind speed varies the same as that of measured wind speed. 

For wind speed between 0-2 (m/s), annual energy outputs 

was zero as observed in Fig. 15. The energy predicted from 

both model shows a similar trend and energy harnessed 

around the design wind speed of the small wind turbine was 

6 (m/s) is higher in the Weibull model than for Rayleigh. 

The energy increases higher around 5 (m/s) for the Weibull 

model while Rayleigh model energy predicted was high 

when wind speed was 4.5 (m/s)  

Fig. 16 shows the comparison between the predicted 

power using the LMA backpropagation neural network and 

that determined from measured wind speed at the turbine 

site. From the plot, it can be observed that power generated 

was below 1000 Watts in most instances as time varies. Few 

instances where recorded whereby power was higher than 

the specified by generator above 1000 Watts this was 

because the torque produced by the wind was much higher 

than the recommended and the wind turbine was operating 

at its optimal point. Table IV gives total annual energy 

production (AEP) of calculated power from measured wind 

speed, LMA neural network prediction model, Rayleigh 

prediction and Weibull prediction respectively. 

 

 
Fig. 15: Comparison of measured AED, Rayleigh predicted and Weibull 

predicted AED 
 

The total energy was calculated for the prediction models 

and compared with that calculated from the measured data 

as shown in TABLE IV 
 

 
Fig. 16: Comparison of Predicted power applying the trained Neural 

network using LMA and power generated from the measured wind speed in 
time series. 

 

TABLE IV: AEP FROM MEASURED WIND SPEED, RAYLEIGH, WEIBULL 

AND THAT DETERMINED BY TRAINED NEURAL NETWORK FOR THE YEAR 

2017 

Prediction technique 
AEP 

DETERMINED 

From measured wind speed  360.43 (kWh) 

From Rayleigh model 233.39 (kWh) 

Weibull model 337.15 (kWh) 
Levenberg-Marquardt algorithm Neural 

Network 

372 (kWh) 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

From the research carried out, it was possible to predict 

the power potential of a particular site with knowledge of 

mean wind speed of a region by applying Rayleigh and 

Weibull model. The mean wind speed of the region was 

2.54 (m/s) showing that the region is a low wind speed 

region. The wind speed distribution predicted using the 

LMA neural network depicted the same as that measured at 

the wind turbine site. At the turbine site, it was noted that 20 

% of wind availability was blowing from the Western part. 

Annual energy production determined by the Weibull model 

was closer to that determined from measured wind speed. 

The wind power predicted using the trained neural network 

backward propagation LMA was closer to that determined 

from measured wind speed than that determined from the 

two statistical models. The annual predicted power by 

Weibull, Rayleigh and LMA neural network at the small 

wind turbine site was 233,337,372 (kWh) respectively. The 

annual power predicted by the LMA neural network was 

closer to that determined from measured wind speed. 

This research has identified a possible further 

investigation that is, creating a model to predict the power 

potential of a site speed prediction by applying a hybrid 

technique of the statistical model incorporated in the LMA 

backpropagation neural network model. 
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