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Abstract: Forests are a vital source of food, fuel, and medicine and play a crucial role in climate
change mitigation. Strategic and policy decisions on forest management and conservation require
accurate and up-to-date information on available forest resources. Forest inventory data such as
tree parameters, heights, and crown diameters must be collected and analysed to monitor forests
effectively. Traditional manual techniques are slow and labour-intensive, requiring additional per-
sonnel, while existing non-contact methods are costly, computationally intensive, or less accurate.
Kenya plans to increase its forest cover to 30% by 2032 and establish a national forest monitoring
system. Building capacity in forest monitoring through innovative field data collection technologies
is encouraged to match the pace of increase in forest cover. This study explored the applicability of
low-cost, non-contact tree inventory based on stereoscopic photogrammetry in a recently reforested
stand in Kieni Forest, Kenya. A custom-built stereo camera was used to capture images of 251 trees in
the study area from which the tree heights and crown diameters were successfully extracted quickly
and with high accuracy. The results imply that stereoscopic photogrammetry is an accurate and
reliable method that can support the national forest monitoring system and REDD+ implementation.

Keywords: forest monitoring; tree inventory; stereoscopic vision; photogrammetry

1. Introduction

Forests contribute positively to people’s daily lives worldwide by being a source of
food, medicines, and fuel. They also protect the world’s watersheds, maintain soil structure,
and function as carbon stores [1]. Since forests are the dominant plant biomass source, 50%
of which comprises carbon, they play a critical role in the carbon cycle [2]. Forests are also
important for aesthetic, educational, spiritual, and recreational reasons [3]. Establishing and
monitoring forests also significantly contributes to the United Nations (UN) Sustainable
Development Goal (SDG) 13 on climate action.

Forest monitoring and conservation are needed to help sustain these benefits [3]. Forest
monitoring involves measuring and recording tree-level biophysical parameters and stand-
level attributes in a forest inventory. Forest inventories are the primary information sources
used in forest management and for forestry policy formulation [4–8]. Total tree height (TH)
and diameter at breast height (DBH) are the two most common tree attributes in forest
inventories [9]. From these two, other attributes such as above-ground biomass (AGB),
timber volume, and basal area can be derived [6,9–11]. Crown diameter (CD) and crop
height are usually of interest in precision agriculture [12]. Comprehensive forest monitoring
requires a combination of remote sensing techniques, such as the use of satellite imagery as
well as field data collection at the plot level. Remote sensing is useful for forest monitoring
at scale, e.g., forest cover estimation. At the same time, field data collection gives more
granular data, such as trunk diameters, tree heights, and basal area, from which biomass
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and carbon stocks are calculated. Satellite imagery has been used to estimate forest biomass
as forests are critical to efforts to reduce carbon emissions [13,14]. Unfortunately, satellite
data often result in unreliable forest biomass estimates and can overestimate above-ground
biomass by up to an order of magnitude [15].

Remote sensing is widely applied in forest monitoring in many countries globally [16,17].
For example, the Global Forest Watch maintains a near-real-time online system on global
forest cover, with its data sourced mainly through remote sensing approaches [18]. Despite
the widespread adoption of remote sensing in forest monitoring, certain geographical regions
are lagging in its uptake, particularly developing nations [1,3,6,7,17]. To address this, experts
suggest leveraging emerging technologies, noting that countries with robust monitoring
systems, such as Norway, Finland, and Sweden, have usually been early adopters of new
forest inventory technology [17,19]. The calibration of empirical remote sensing models with
plot-level ground truth measurements is essential, further underscoring the need for improved
speed and efficiency in these measurements [17,20]. Since the remote sensing approach lacks
the granularity found in national forest inventory data, efforts to bridge this gap are crucial
for comprehensive and accurate forest monitoring.

National forest inventories (NFIs) provide high-quality data on national forest re-
sources with a high degree of accuracy and detail. Therefore, many countries regard them
as the best sources of information about their forest sectors [5]. Norway, Sweden, and Fin-
land lead the way with the oldest and most robust NFIs, and they have maintained robust
forest monitoring systems [5,7,17]. One widely adopted practice in forest inventory is the
use of sample plots for collecting plot-level attributes [11,17,21,22]. Plot-level measure-
ments collected from sample plots lend themselves to application in statistical estimators
used in NFIs and in calibrating empirical and machine learning prediction models used in
remote sensing tools [17]. This helps improve the accuracy of remote sensing approaches,
which, although very suitable in situations where scale is a primary consideration [3,17,20],
are known to fall short in measuring under-canopy attributes [16,17,20]. As such, field
surveys will continue to be a necessary component of forest inventory surveys for the
foreseeable future [20]. Accurate forest inventory data are required to compute accurate
biomass and carbon stock data.

A thorough knowledge of carbon stock information is critical in initiating and sus-
taining plans for climate change mitigation, such as under the REDD+ framework and in
laying strategies for bioenergy production [23–25]. This information is usually missing or
grossly inaccurate in many developing countries owing to the unavailability of reliable
forest inventory data [3,7]. Some studies that have been conducted in Kenya to estimate
the above-ground biomass (AGB) stocks are not up to date, and the result is that detailed,
complete, and rigorous assessments of AGB stocks are not easy to find [25,26]. These
studies also show disconcerting planetary health challenges, such as a decline in forest
cover and biodiversity loss across various regions [27–32], mainly due to increasing popu-
lation pressure and demand for agricultural land that has led to deforestation [29,30,33,34].
The decreasing forest cover has decimated the amount of AGB and carbon stocks in the
country [25,26,35]. Therefore, finding the best strategies for enhancing forest conservation
and monitoring is imperative.

One of the strategies for enhancing conservation is the involvement of forest-adjacent
communities in decision making and planning. This has been shown to increase the sense
of ownership over forest resources, thereby fostering a stronger commitment to conserva-
tion [36–39]. The forest management approach significantly shapes the availability, access,
and utilisation of forest products and the extent of community engagement in conservation
efforts [36]. Notably, the involvement of community forest associations in conservation
contributes to a heightened perception of the importance of forest ecosystems [36,39]. More-
over, communities allowed to access and utilise forest products demonstrate increased
participation in conservation initiatives [36,37]. The continued co-management of forest
resources shared between the government and community organisations is a highly rec-
ommended sustainable management strategy [36,40,41]. Another sustainable practice is
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revegetation using native species instead of exotic ones due to its effectiveness in preventing
soil degradation and hydrological changes, thus presenting a synergistic approach to forest
technology [42].

Several studies on land cover changes in various parts of Kenya have observed an
initial increase in forest cover from 1995 to 2001 due to government policy. However, after
2001, there was a steady decline in forest cover. To achieve and maintain the required 10%
forest cover as per constitutional and UN requirements, researchers recommend adequate
and consistent afforestation and reforestation efforts [30–34,37,39]. Acting upon these
recommendations, Kenya’s parliament passed the Forest Conservation and Management
Act in 2016, and the result has been an increase in forest cover [25,30,31,37,43]. The country’s
national strategy includes enhancing forest resource assessment through a comprehensive
national forest inventory, an endeavour which requires capacity building for remote sensing
surveys and field data collection [21,30,31,39,40,43,44]. The responsibility for realising this
lies with the Kenya Forest Service, Kenya Forestry Research Institute, and universities [43].
Given Kenya’s ambitious objective of increasing its forest cover to 30% by 2032, the need to
closely monitor and assess the growth of these young stands has never been more apparent.
This study describes a forest inventory exercise carried out in Kenya using a low-cost,
non-contact approach.

Forest inventories often involve complex variables that require significant effort, exper-
tise, and subjective estimates from field staff [10]. Researchers have explored non-contact
methods that utilise digital image and point cloud processing to overcome these challenges.
Prominent techniques include structure from motion (SfM), laser scanning, and simul-
taneous localisation and mapping (SLAM). However, these methods are typically slow,
expensive, and computationally intensive [45]. Ideal measurement techniques should be
fast, accurate, practical, and cost-effective. SfM reconstructs 3D scenes from a series of
images using multiple-view geometry principles [9,46–50]. Nevertheless, its measurement
accuracy decreases with distance [12,46–48,51]. Laser scanning with LIDAR cameras is
a popular remote sensing tool in forestry due to its high precision [52] and has been ap-
plied in some forest inventory studies [52–60]. Although laser scanning is widely used
in forest inventory studies, the expensive cost of LiDAR cameras hinders broader adop-
tion [50,57–61]. Although less commonly applied in tree inventory, SLAM has been used in
some studies [62,63].

One attractive method of non-contact tree inventory that provides an alternative to
the aforementioned techniques is stereoscopic photogrammetry. This involves obtaining
the geometric information of a scene from a pair of overlapping images [64–66]. It offers
the advantages of low cost, good accuracy, and low computational cost [64,67]. Although
its application in inventory is still a growing area of research, it has been applied in several
studies to estimate the biophysical parameters of trees [45,57,59,64,68–75]. This approach
was used to conduct non-contact tree inventory in this study.

This study was conducted in a reforested stand within the Kieni Forest in Kenya to
assess the applicability of stereoscopic photogrammetry in collecting forest inventory data
for Kenya to automate, expedite, and ease the process of performing field data collection in
forest inventory exercises. The rest of this paper is organised as follows: Section 2 presents
the methodology used in this study; Section 3 contains the results; Section 4 discusses the
results and the limitations of our research; and Section 5 presents the conclusions arrived at
and points out directions for future work.

2. Materials and Methods
2.1. Study Area

Kieni Forest is one of the forest zones that comprise the Aberdare Forest Ecosystem,
located on the Aberdare Ranges (see Figure 1). It is managed by the Kenya Forestry
Service (KFS). The Aberdare Ranges is one of Kenya’s five main water towers and supplies
approximately 80% of the water used in Nairobi through the Ndakaini and Sasumua
dams. The entire ecosystem spreads across four counties—Kiambu, Murang’a, Nyeri, and
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Nyandarua—with Kieni Forest located within Kiambu. Kieni Forest lies between 2200 m
and 2684 m above sea level and receives rainfall of 1150 mm to 2560 mm annually [76]. The
long rain season stretches from March to June, while short rains are received from October
and December. Its soils are rich in organic matter, making them fertile and favourable
to developing thick undergrowth. Its vegetation comprises natural forests, plantations,
bamboo, meadows, and tea zones [77]. The replanted section covers an area of 269 ha and
contains more than ten indigenous species, mainly Dombeya torrida, Juniperus processera,
Olea africana, and Prunus africana. The crown diameters range from 0.4 m to 4.7 m, while
the heights range from 0.75 m to 5.0 m. Being a reservoir of biodiversity, Kieni Forest
also has a wide range of fauna, such as the African elephant (Lexodonta africana), duiker
(Neottragus moschatus), Bush pig (Patomochoerus porcuso), and mongoose (Helogale parvula),
among others [76,77].
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Figure 1. Study area in Kieni Forest.

2.2. Materials

The stereo images were captured using a stereo camera comprising two Logitech
C270 USB web cameras, which have a resolution of 720 × 1280 pixels, in an assembly. A
custom-designed and 3D-printed rig was used to hold the two web cameras together with a
baseline of 12.9 cm. To capture the images, the stereo camera was accessed using a custom-
built software tool featuring an easy-to-use graphical user interface (GUI). The images were
also processed using the same tool. This application is available as an open-source tool [78]
that is useful for extracting tree biophysical parameters. This application was run on an
NVIDIA Jetson Nano 2 GB Developer Kit with an HDMI mini screen. The features of this
kit include a quad-core ARM A57 @ 1.43 GHz processor, 4 GB 64-bit LPDDR4 RAM, and a
128-core Maxwell GPU (NVIDIA Developer, Santa Clara, CA, USA). The application was
built using the Python programming language [79], with the OpenCV [80] library used for
image processing and computer vision tasks and the Kivy library [81] used for building the
user interface.

2.3. Terrestrial Stereo Photogrammetric Survey

The CD and TH estimation images were captured at the designated study area during
the field data collection exercise in March 2023. The weather conditions on those days
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were mostly calm, cloudy, and sunny on a few occasions. The study area was a recently
replanted section of a forest comprising sapling trees with trunks mostly covered by twigs
or too slender to be measured. Therefore, the technique’s performance at DBH estimation
was evaluated using images of tree trunks surveyed during a test run conducted at the
Dedan Kimathi University of Technology. The acquisition setup used is described in
Section 2.2. In total, 251 stereoscopic image pairs of full trees for CD and TH estimation
and 90 stereoscopic image pairs of tree trunks were captured. The images were taken with
the camera positioned at arbitrary distances from the tree in all cases.

2.4. Data Processing Pipeline

The process of extracting the tree attributes from the images happened in a series of
steps captured in the workflow diagram shown in Figure 2. The images were first captured
using a stereo camera and stored in the Jetson Nano kit. These images were then filtered to
remove digital noise and then rectified. Rectification is a process performed to ensure the
pair of images is correctly aligned. A new image known as a depth map is computed from
the rectified images. Each pixel’s intensity in the depth map encodes the depth of that pixel
relative to the stereo camera, making it possible to estimate the coordinates of all points in
the depth map concerning the stereo camera. The depth is then segmented to retain only
the object of interest, in this case a full tree or tree trunk, from which parameters such as
diameter at breast height, crown diameter, and tree height are extracted algorithmically.
Finer details about the algorithms used for computing the depth map and extracting the
tree biophysical parameters are provided in Appendix A.
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Figure 2. Workflow diagram.

Figure 3 shows an example of one tree captured at the study area as it goes through the
processing pipeline. A binary segmentation mask is obtained by segmenting the left image
of the stereo pair. Afterwards, stereo correspondence is performed to yield a disparity map,
an image whose pixel intensities represent the depths of those points in the scene (relative
to the camera). We obtain a segmented disparity map containing only the three pixels by
overlaying the mask on the disparity map. It is from this image that the tree’s biophysical
parameters are extracted. A similar process is followed in the case of a tree trunk.

2.5. Performance Evaluation

The performance parameters used to evaluate the performance of our technique
include the mean absolute error (MAE), mean absolute percentage error (MAPE), bias, root
mean square error (RMSE), coefficient of determination (R2), and regression line slope.
These performance metrics are highly recommended for evaluating the performance of
non-contact techniques at biophysical parameter estimation [82].
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2.6. Reference Data Collection

Ground truth values of the three tree measurements were recorded during the field
data collection exercises and later used as the benchmark against which the values predicted
by our method were compared. The exercise was conducted over three days.

2.6.1. Crown Diameter (CD)

The CD was measured by projecting the crown edges to the ground and measuring
the length between the edges along the axis of the tree crown to the nearest centimetre
using a measuring tape.

2.6.2. Tree Height (TH)

Tree height is the vertical distance between the highest point on the tree and the trunk
base, a measurement different from the trunk length, which would be longer for leaning
trees. To measure the tree’s height, a graduated pole was placed at the tree base, and the
reading at the tip of the tree was recorded.

2.6.3. Diameter at Breast Height (DBH)

The diameter at breast height (DBH) is the tree trunk’s diameter taken at approximately
1.3 m from the trunk base. It is measured by taking the circumference of the trunk at that
point using a measuring tape and calculating the diameter or by taking the average of
two perpendicular diameters measured using a vernier calliper. In this study, the measuring
tape approach was used.
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3. Results
3.1. Sample Proportions per Species

After randomly sampling the 251 trees of different species, Juniperus procera, Dombeya torrida,
and Olea africana had the highest proportions, at values of 15.1%, 14.3%, and 13.9%, respectively.
The fewest trees belonged to the Hagenia abyssinica species.

3.2. Distribution of Measurements across Species

The distribution of the values of crown diameters and tree heights of trees in the
study area is captured in the boxplots shown in Figure 4. Most species had their mean
crown diameters falling from 100 to 200 cm. The species with the widest trees were
Croton macrostychus and Hagenia abyssinica, with mean CD values of 291.25 cm and 270 cm.
There were as many species with average heights in the 100 cm to 200 cm range as in the
200 cm to 300 cm range. The tallest trees were Croton macrostychus and Dombeya torrida,
with mean TH values of 294.38 cm and 253.06 cm, respectively. The Dombeya torrida species
had the largest outliers in tree heights, with trees as tall as 5 m.

Challenges 2024, 15, x FOR PEER REVIEW 8 of 21 
 

 

Figure 4. Distributions per species of crown diameters (a) and tree heights (b). 

3.3. Biophysical Parameter Estimation 

The estimated values of the DBH, CD, and TH were evaluated against the ground 

truth values, and a summary of this evaluation is provided in Table 1. The crown diameter 

and tree height metrics were calculated using data from the 251 trees surveyed in the 

study area. In contrast, the DBH metrics are based on the images captured during the test 

run at the Dedan Kimathi University of Technology. The regression plots for the DBH, 

CD, and TH are shown in Figure 5. The technique's performance in TH estimation was 

comparatively lower than that for CD in most metrics. Overall, a high correlation was 

observed between extracted and ground truth values of all the parameters, as seen by the 

𝑅2 values and the regression plots. 

Table 1. Summary of performance evaluation results. 

Parameter MAE (MAPE) Bias RMSE 𝑹𝟐 Slope 

DBH 1.41 cm (5.3%) −0.56 cm 1.70 cm 0.9650 1.0310 

CD 9.55 cm (6.43%) −0.96 cm 13.37 cm 0.9484 0.9385 

TH 15.78 cm (7.39%) −10.08 cm 22.43 cm 0.8708 0.9419 

Figure 4. Distributions per species of crown diameters (a) and tree heights (b).



Challenges 2024, 15, 16 8 of 20

3.3. Biophysical Parameter Estimation

The estimated values of the DBH, CD, and TH were evaluated against the ground
truth values, and a summary of this evaluation is provided in Table 1. The crown diameter
and tree height metrics were calculated using data from the 251 trees surveyed in the study
area. In contrast, the DBH metrics are based on the images captured during the test run at
the Dedan Kimathi University of Technology. The regression plots for the DBH, CD, and TH
are shown in Figure 5. The technique’s performance in TH estimation was comparatively
lower than that for CD in most metrics. Overall, a high correlation was observed between
extracted and ground truth values of all the parameters, as seen by the R2 values and the
regression plots.

Table 1. Summary of performance evaluation results.

Parameter MAE (MAPE) Bias RMSE R2 Slope

DBH 1.41 cm (5.3%) −0.56 cm 1.70 cm 0.9650 1.0310
CD 9.55 cm (6.43%) −0.96 cm 13.37 cm 0.9484 0.9385
TH 15.78 cm (7.39%) −10.08 cm 22.43 cm 0.8708 0.9419
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4. Discussion

This study demonstrated stereoscopic photogrammetry for estimating tree measure-
ments in a recently planted stand. Overall, we found that this method of non-contact tree
inventory yields measurements that closely approximate ground truth measurements, as
seen by the high accuracies reported. The mean absolute percentage errors (MAPEs) for the
CDs, THs, and DBHs relative to the ground truth values were comparable, with slightly
higher values for the tree heights. This may be attributed to the difficulty of achieving
tree base delineation in images due to undergrowth and crops obstructing the view in the
plantations. Similar challenges in tree extent delineation have been reported in previous
studies involving non-contact techniques [52,68,83]. These same reasons may have also led
to the greater underestimation of tree heights compared to crown diameters, as shown by
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the larger bias values. As such, it is worth pointing out that this technique is suited for
use in sparse plantations where individual tree extent delineation in images is not difficult
to achieve.

For all biophysical parameters, the correlation between estimated and ground truth
values was very high, as indicated by the values of R2 and the regression line slope, which
are both very close to unity. Although similarly good results have been reported in other
studies [57,59,64,67,68,73,84], this study is the first to present an extensive validation and
analysis of the use of stereoscopic photogrammetry for tree parameter estimation in a real
forest setting. The scattering profiles represent the variability in the individual measure-
ments around the regression line. In the case of both parameters, the linear scattering
profile situated close to the regression line coupled with the low MAPE values attest to the
precision and reliability of our stereoscopic photogrammetry approach. Scatter plots and
the other metrics reported here are highly recommended for gauging the performance of
a method in biophysical parameter estimation [82]. Since the technique requires accurate
segmentation of the tree to register good performance, the results affirm its practical sig-
nificance in providing accurate estimates even in spatially heterogeneous environments.
These findings have broader implications for forest monitoring practices, suggesting the
method’s potential applicability and reliability in similar spatial contexts. Researchers and
practitioners engaged in tree dimension estimation can leverage these insights to enhance
their understanding and implementation of stereoscopic photogrammetry. In the broader
context of planetary health, these parameters may then be used as input variables to allo-
metric equations for calculating biomass and carbon stocks, for developing tree growth
models, and so on [11,21,85].

As shown in Table A2 (Appendix B), the acquisition and storage of an image pair
take place instantly since the actions themselves involve nothing more than capturing
images. Since the processing of the images is performed after the acquisition is completed,
the images of all the sampled trees can be acquired in the field, making the field survey
exercise much faster and less cumbersome. Segmentation of the images in this study
involved significant human interaction using image labelling software to ensure perfectly
accurate masks were generated. This step can, however, be automated by implementing
semantic segmentation based on deep learning [86,87], thus paving the way for real-time
tree parameter estimation. This is an area of investigation for future research. The rest of
the steps of image filtering, rectification, depth map computation and segmentation, and
algorithmic parameter estimation are all packaged in a piece of software developed during
this study [78]. Using this software, the extraction of all parameters of the 251 trees took
approximately 2 min, a much shorter period than the three days taken to collect the ground
truth data in the field. These observations imply that obtaining tree biophysical parameters
from sample plots is much easier and faster using stereoscopic photogrammetry.

As an emerging proximate sensing technology, stereoscopic photogrammetry proves
invaluable in field surveys and, consequently, in the effective implementation of REDD+.
This technology facilitates the swift estimation of tree biophysical parameters, ensuring a
rapid and efficient process [57,64,68,73]. Given that REDD+ and other policy frameworks
necessitate precise data for informed decision making [3,4,6,10], the accuracy reported
in this study underscores the potential of stereoscopic photogrammetry to contribute to
evidence-based policy formulation. This aligns seamlessly with international reporting
obligations, exemplified by the Global Forest Resources Assessment (FRA) [1,3,6,7], where
the granularity of forest inventory data is an imperative commitment fulfilled by this
technique [20]. The minimal training required for its use further enhances the capacity of
forest management agencies to implement comprehensive forest-related policies.

Comprehensive and meticulous records of above-ground biomass (AGB) in Kenya
are notably scarce [25,26], a common challenge facing many developing nations where the
availability of high-quality data for international reporting lags behind that of developed
counterparts [3]. Addressing these issues necessitates the establishment of a robust national
forest monitoring system (a plan that is underway in Kenya) that would provide a depend-
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able framework for forest monitoring [3,5,40]. As an emerging plot-level forest inventory
technology, stereoscopic photogrammetry seamlessly aligns with this objective, offering
precise measurements that increase the accuracy of carbon sequestration assessments [17].
Beyond carbon estimation, the proposed technique proves invaluable for monitoring re-
forestation and afforestation initiatives by enabling the timely tracking of stand growth in
rapidly developing plantations such as young forest stands [39]. This becomes particularly
pivotal in areas witnessing extensive reforestation and afforestation, where the monitoring
rate needs to keep up with the pace of plantation establishment.

Since forests play a crucial role in carbon sequestration and climate change mitigation,
there is a pressing need to consistently enhance the capacity for swift and precise forest
monitoring. This study signifies a notable stride in that direction, constituting a valuable
contribution toward the realisation of SDG 13 on climate action. The accuracy of projections
aimed at reversing or mitigating climate change is intrinsically linked to the precision
and reliability of the underlying data [11,21,69]. This underscores the importance of
obtaining accurate data, a principle fundamental to this study. Moreover, the research aligns
harmoniously with SDG 15 on biodiversity conservation, as it facilitates the monitoring of
forest ecosystems, thereby contributing significantly to the preservation of biodiversity and
the promotion of sustainable land management practices [30,31,38,77].

The cameras used in this study have a low resolution of 720 × 1280 pixels, which
reduces the maximum distance from the stereo camera for which an accurate measurement
can be extracted [48,49]. This is one of the limitations of this study and can be easily
addressed by using higher-resolution cameras. In this study, we focused on estimating only
the crown diameters and tree heights because the study area comprised mainly saplings
with trunks covered by twigs or too slender to be measured. The occlusion of the trunk
made it impossible to estimate the diameter using the proposed non-contact technique. This
is yet another limitation of this technique and, indeed, an inherent limitation of light-based
measurement systems [67,72]. Notwithstanding these limitations, the ability to extract the
crown diameter and tree height in a fast, accurate, and low-cost non-contact approach as
achieved in this study is a valuable contribution to the science of forest inventory, especially
when monitoring young stands such as those in the study area.

Future research can be explored in areas such as automated tree crown segmentation
based on deep learning, real-time biophysical parameter extraction, and the combination of
terrestrial field surveys with aerial surveys for further validation.

5. Conclusions

This study successfully evaluated the applicability of stereoscopic photogrammetry
for performing tree inventory of a recently reforested stand in Kenya. The need to monitor
young stands is rising as reforestation efforts ramp up because of the government’s focus
on climate change mitigation. Part of the country’s strategy is to establish a national
forest monitoring system. This goal will require concerted efforts from the government,
environmental agencies such as the Kenya Forestry Service, and universities. This study
aligns with the government’s objective of building capacity for monitoring forests and
implementing its REDD+ strategy. In this study, heights, crown diameters, and diameters at
breast height of trees were estimated faster, more efficiently, and with reasonable accuracy,
thus paving the way for quicker and more reliable estimation of biomass of carbon stocks.
Through faster and more efficient methods for measuring these tree attributes, it will be
possible to keep growing the national tree cover without losing track of the progress of
already planted forests. Globally, this study contributes to planetary health and the United
Nations’ SDGs 13 and 15 on climate action and biodiversity conservation, respectively.
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Appendix A. Materials and Methods

Appendix A.1. Cost of Materials

A breakdown of the cost of the acquisition setup is provided in Table A1. On an
item-by-item comparison, the amount we spent is lower compared to that spent in the
studies of Eliopoulos et al. [16] and McGlade et al. [32], who spent USD 179 and USD 399 on
the depth cameras alone and are both described as using low-cost approaches.

Table A1. Material cost breakdown.

Item Qty Cost (KES) Cost (USD)

Logitech C270 720p USB camera 2 10,000.00 71.00
3D-printed stereo camera rig 1 5500.00 39.00
NVIDIA Jetson Nano 2GB Developer Kit 1 21,000.00 149.00
7-inch HDMI LCD 1024 × 600 screen 1 12,500.00 90.00
20,000 mAh Oraimo power bank 1 3000.00 21.00
Total 52,000.00 370.00

Appendix A.2. Geometry Derivation

The algorithm for extracting the three parameters of interest relies heavily on the scene
geometry and camera specifications. In the figures presented in the following sections, the
real-world distances between the stereo camera and various points on the tree are derived
from the disparity images.

Appendix A.2.1. Estimating the Breast Height

The geometry for locating the breast height in a disparity image is shown in Figure A1.
Using Equation (A1), the coordinates of the trunk base b are found as (xb, yb, zb). The

angle β is calculated using trigonometry as follows:

β = tan−1
(

zb
yb

)
(A1)

The cosine rule is applied as follows:

d2
h = h2

f + d2
g − 2h f dgcos β = 1.32 + d2

g − 2.6dgcos β

where h f ≈ 1.3 m is approximately the breast height (1.3 m above the ground).

dg =
√

x2
b + y2

b + z2
b

https://github.com/DeKUT-DSAIL/TreeVision
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dh =
√

1.69 + d2
g − 2.6dgcos β

The sine rule is used as follows:

θ = sin−1
(

1.3sin β

dh

)
The camera has a vertical field of view vFoV = 28.68◦:

sh(px) =
720 × tan θ

2

tan vFoV
2

=
720 × tan θ

2
tan 14.31

= 2822.61tan
(

θ

2

)
px

This is the number of pixels from the trunk base to the breast height.
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Appendix A.2.2. Estimating the DBH

The geometry for estimating the DBH is obtained from Figure A2.
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The horizontal field of view of the camera is hFoV = 48.81◦. The DBH spans sd pixels
in the disparity image. Therefore, the following is true:

1280 px
tan hFoV

2

=
sd px
tan θ

θ = tan−1(sd × 3.546 × 10−4)

da is obtained by converting the disparity of A to distance.
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R = datan θ

DBH = 2R

Figure A2 and the approach presented above were also used to calculate the crown diameter.

Appendix A.2.3. TH Estimation

To estimate the TH, Figure A3 is used.
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The lengths dT and dB are determined by finding the coordinates of points T and B, respec-
tively, and calculating their respective distances from the camera. The following is then true:

720
tan 14.31

=
st px

tan
(

θ
2

)
θ

2
= tan−1

(
sttan 14.31

720

)
⇒ θ = 2 × tan−1(st × 3.543 × 10−4)

ϕ = tan−1
(

zB
yB

)
TB = TH =

dTsin θ

sin ϕ

Appendix A.3. Extraction Algorithms

Based on the scene geometry presented, we wrote computational geometric algorithms
to extract the DBH, CD, and TH from the disparity maps.
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Appendix A.3.1. Algorithm for Pixel of Interest Identification

Algorithm A1

Input Left and right images, mask, calibration parameters
Output Vector of intensities of pixels of interest
Step 1 Compute disparity image
Step 2 Mask the disparity image
Step 3 Find the non-zero pixels in the masked disparity image
Step 4 Calculate the row of the breast height
Step 5 Identify the base, breast height, top, and crown regions of interest
Step 6 Find median intensities in all regions of interest (base, breast height, top, and crown
Step 7 Save intensities in a vector

Appendix A.3.2. Algorithm for DBH Extraction

Algorithm A2

Input Left and right images, mask, calibration parameters, reference DBH
Output DBH value, error in estimation
Step 1 Compute disparity image
Step 2 Mask the disparity image
Step 3 Find the non-zero pixels in the masked disparity image
Step 4 Calculate the row of the breast height
Step 5 Identify the base and breast height regions of interest
Step 6 Find median intensities in base (b) and breast height (h) regions of interest
Step 7 Find coordinates of b = (xb, yb, zb) and distance to b as db =

√
x2

b + y2
b + z2

b

Step 8 Find coordinates of x = (xh, yh, zh ) and distance to h as db =
√

x2
h + y2

h + z2
h

Step 9 Find angle θ1 subtended by breast height at the camera
Step 10 Find number of non-zero pixels at the breast height
Step 11 Find angle θ2 subtended by breast height at the camera
Step 12 Calculate DBH from θ2 and da, and compute error in estimation

Appendix A.3.3. Algorithm for TH Extraction

Algorithm A3

Input Left and right images, mask, calibration parameters, reference TH
Output TH value, error in estimation
Step 1 Compute disparity image
Step 2 Mask the disparity image
Step 3 Find the non-zero pixels in the masked disparity image
Step 4 Identify the base and top regions of interest
Step 5 Find median intensities in base (b) and top (t) regions of interest
Step 6 Find coordinates of b as (xb, yb, zb) and distance to b as db =

√
x2

b + y2
b + z2

b

Step 7 Find coordinates of t as (xh, yh, zh) and distance to t as dt =
√

x2
t + y2

t + z2
t

Step 8 Find complementary of angle ϕ subtended at tree base by camera height
Step 10 Find angle θ subtended by tree height at the camera
Step 11 Find angle θ2 subtended by breast height at the camera
Step 12 Calculate TH from θ, ϕ, and dt, and compute error in estimation
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Appendix A.3.4. Algorithm for CD Extraction

Algorithm A4

Input Left and right images, mask, calibration parameters, reference TH
Output TH value, error in estimation
Step 1 Compute disparity image
Step 2 Mask the disparity image
Step 3 Find the non-zero pixels in the masked disparity image
Step 4 Identify the crown region of interest
Step 5 Find median intensities in the crown (c) regions of interest
Step 6 Find coordinates of c as (xc, yc, zc ) and distance to c as dc =

√
x2

c + y2
c + z2

c

Step 7 Find angle θ subtended by the crown at the camera
Step 8 Calculate CD from θ and dc, and compute error in estimation

Appendix A.4. Camera Calibration and Depth Map Generation

Camera calibration was performed using OpenCV’s implementation of Zhang’s algo-
rithm [88] to estimate the camera’s intrinsic and extrinsic parameters. These parameters
were used to compute the image rectification and undistortion transformation mappings.
This was done by capturing 30 images of a 6 × 9 checkerboard pattern and using OpenCV
functions to extract these parameters.

Stereo matching between the left and right images was performed using OpenCV’s
implementation of the Semi-Global Block Matching (SGBM) algorithm, a modified ver-
sion of Hirschmuller’s Semi-Global Matching (SGM) technique [66]. The disparities in
SGM are computed based on information contained in neighbouring pixels in eight di-
rections. To reduce computational complexity, SGBM matches blocks rather than pixels,
allowing for matching cost aggregation from five and eight directions instead of only
eight. Post-processing steps applied to the resulting disparity image include peak re-
moval by invalidating small segments, image normalisation to fit the intensities within the
range 0 to 255, and median filtering to remove other irregularities.

Appendix A.5. Distance–Disparity Relationship

An accurate distance estimation using the disparity map established a consistent
relationship between distance and disparity. Disparity maps for a single tree were computed
from image pairs taken in the range of 3.0 m to 12.6 m from the trunk. The disparities of
the trunk’s mid-point in the middle row of the disparity map were recorded. A distance–
disparity scatter plot was then obtained followed by curve fitting using the Trust-Region-
Reflective Least Squares optimisation [89] available on MATLAB. From two-view geometry,
the depth of a point on the scene varies inversely to its disparity. In fitting the curve, this
was taken into consideration and the best resulting curve was a rational polynomial with a
numerator of order 2 and a denominator of order 3. Equation (A2) represents the curve,
with x being the pixel intensity and y the distance in metres.

y =
346x2 − 116.7x − 1.961

x3 − 5.863x2 + 47.24x + 487.6
(A2)

Given a disparity image Dm with the left image as the base, the real-world coordi-
nates of any pixel p on the image in the camera coordinate frame are the vector given by
Equation (A3). xb

yb
zb

 =
b

ul − ur

ul
vl
fx

−

ox
oy
0

 (A3)

where ul and vl are the x and y ordinates of the pixel p in the disparity image,
(
ox, oy

)
is

the principal point of the image, fx is the focal length of the camera along the x direction
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in pixels, and ul − ur is the disparity of the point at pixel p. The value ul − also equals the
greyscale intensity of pixel p in the disparity map.

Appendix A.6. Finding the Pixels of Interest

The pixels of interest are the edge pixels at the tree’s base, top, crown extremes, and
breast height. The pixels of interest for TH and CD estimation are the easiest to locate since
they are simply the top, base, and crown edge pixels, respectively. In the case of the DBH,
the method presented for locating the breast height will be applied and edge pixels at that
height will subsequently be identified. In a good disparity image, the pixels of interest
have greyscale intensity values equal to or close to those pixels in their neighbourhood.
However, there may be anomalies (sharp changes in pixel intensities) in some cases. Since
the real-world distance to a pixel is based on its greyscale intensity, anomalies can cause
errors in distance estimation and parameter extraction.

To eliminate the effect of these anomalies, regions of interest are formed from sets of
pixels surrounding the pixels of interest (Figure A4). In the case of base and top pixels, the
region of interest includes all pixels in the bottom 20 rows and the top 20 rows of the object
pixels in the disparity map. In the case of the DBH, all non-zero pixels five rows above and
five rows below the breast height location constitute the region of interest. The disparity of
the pixel of interest is taken as the median of pixel intensities in the region of interest.
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Appendix B. Results

Image Acquisition and Processing Times

Table A2 shows a breakdown of the time taken to acquire and process each image pair
until the tree parameters are obtained algorithmically. The total time taken to extract the
crown diameters and tree heights of the 251 trees and the DBH from the 90 trees is included
in the table.

Table A2. Image acquisition and processing times.

Activity Time Taken

Image acquisition (per image pair) <1 s
Depth map computation (per image pair): filtering, rectification,
correspondence matching, post-processing, masking 3.1 s

Image segmentation (per image) 2 min
TH and CD extraction (per depth map) <1 s
TH and CD extraction (251 depth maps) 2 min
DBH extraction (per depth map) <1 s
DBH extraction (251 depth maps) <1 min
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