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Abstract - As real-time access and high-capacity requirements in wireless communication networks increase rapidly, solutions 

must balance the complex relationship between Spectral Efficiency (SE), and Energy Efficiency (EE) metrics. The proposed 

approach emphasizes the importance of combining Transmit Power Control (TPC), and Optimal Power Allocation (OPA) 

methods to achieve optimal results. The basic premise is that the hybrid algorithm will boost EE while retaining an acceptable 

level of SE. The CF mMIMO technology is first tested in a controlled setting without TPC and OPA. A hybrid algorithm 

combining TPC (Max-min EE) and OPA (Sum SE maximization) is then created, and EE and SE are optimized in the hybrid 

algorithm. The mixed technique is found to outperform the individual TPC and OPA algorithms. With an unparalleled 

33,263,040.4068 bits/Joule, the hybrid algorithm boosts average EE. The hybrid algorithm also exceeds the targeted SE of 21 

bits/s/Hz, demonstrating its capacity to balance EE and SE. This study advances the theory of CF mMIMO systems and offers 

practical insight into energy-efficient wireless communication. Future research and development for sustainable and high-

performing wireless networks can build on these insights. 

Keywords - Cell-Free massive MIMO, Energy Efficiency, Optimal Power Allocation, Spectral Efficiency, Transmit Power 

Control. 

1. Introduction 

Discussions on advancements in wireless 

communication, particularly in the context of 5G and beyond, 

have surged in the past decade. The bottlenecks with these 

networks encompass low energy efficiency, bandwidth 
efficiency limitation, and an increase in carbon impact, among 

others [1, 2].  

Cell-Free massive Multiple Input Multiple Output (CF 

mMIMO) technology, depicted in Figure 1, plays a crucial 

role in these networks, involving collaborative Access Points 

(APs) serving users across a large region without cell 

boundaries [3-8].  

The expanding wireless networks necessitate a balance 

between Spectral Efficiency (SE) and Energy Efficiency (EE). 

The primary challenge being addressed in this research is the 

urgent requirement to enhance EE in the downlink of CF 
mMIMO wireless communication systems. The CF mMIMO 

systems consume a significant amount of energy despite their 

potential for increased spectral efficiency and overall system 

effectiveness. This work focuses not only on improving EE 

but also on maintaining a respectable level of SE in CF 

mMIMO systems. This quest proves especially difficult in the 

face of rising demand and energy usage.  

It is critical to recognize the complex link between EE and 

SE, as an increase in EE frequently results in a decrease in SE 

in CF mMIMO. Striking a careful balance between these two 

elements is an essential focus of this research. In response to 
these problems, a novel hybrid strategy that combines 

Transmit Power Control (TPC) and Optimal Power Allocation 

(OPA) is developed to maximize EE while preserving 

reasonable SE. This methodology improves CF mMIMO 

performance by systematically manipulating several 

parameters, resulting in a wide range of percentage increases. 

Prior research in 5G and beyond has explored various 

strategies to improve efficiency.  
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Fig. 1 Illustration of the Cell-Free massive Multiple Input Multiple 

Output (CF mMIMO) system architecture 

In [8], Beamforming techniques are being studied to 

improve CF mMIMO system performance, particularly in 

higher frequency bands, to increase EE. To enhance both 

network capacity and data rates, Reconfigurable Intelligent 

Surface (RIS)-aided systems that are cost-effective and 

energy-efficient are used. This is done without hardware 

implementation and uses less power than typical CF mMIMO 

systems. However, energy efficiency increases in the study 

had some flaws. The effects of restricted fronthaul capacity on 

power regulation and data transmission in CF mMIMO 
systems must be addressed.  

The study outlined in [9] introduces an innovative method 

to enhance EE in CF mMIMO networks, employing a low-

complexity power control technique with a zero-forcing 

precoding design. Considering backhaul power usage and 

imperfections in channel state information, the method 

addresses the EE maximization problem, accommodating both 

perfect and imperfect channel estimation at Access Points 

(APs). By leveraging the convex nature of the objective 

function, the authors derive Optimal Power Control and 

precoding solutions to unlock the full potential of EE. 
However, the potential areas for further investigation of the 

proposed technique could include testing across diverse 

network and channel scenarios and exploring the impact of 

mobility and interference on energy efficiency in CF mMIMO 

networks. 

In reference [3], EE and SE are enhanced through a 

variety of approaches. Specifically, the application of 

Weighted Minimum Mean Square Error (WMMSE) 

minimization, which is employed to optimize power 

allocation, aims for the maximization of the sum SE, along 

with the integration of an OPA algorithm. Through a quadratic 

transform, Fractional Programming (FP) dissociates signal 
and interference components to solve power allocation 

challenges. By using issue structure, the Alternating Direction 

Method of Multipliers (ADMM) solves convex subproblems 

quickly and efficiently for big problems. While FP requires 

fewer iterations, it may have a lower minimum SE at 

convergence than other approaches. The WMMSE 

algorithm’s initialization may break stopping requirements, 

requiring more iterations for convergence, which makes it 

very complex, hence restricting scalability for large networks.  

The study presented in [10] proposes a new way to boost 

massive MIMO systems’ EE. The Energy-Efficient Power 

Allocation (PA) algorithm considers each user’s minimum 

power needs to ensure QoS. The algorithm determines EE 

maximization by comparing minimum power requirements to 

maximum transmission power. Optimization of EE occurs if 

the aggregate is less than the total transmission power; 

otherwise, the technique maximizes cluster user admission. 

Simulation findings show that the suggested technique 

outperforms similar methods. Since Spectral Efficiency is not 

addressed, more analysis is needed to understand the 

algorithm’s limit.  

The research discussed in [11] explores diverse strategies 

for enhancing EE, with a notable focus on the investigation of 

Optimal Power Allocation algorithms. These algorithms are 

currently under thorough examination to improve resource 

allocation within Device-to-Device (D2D) communication 

systems. The primary objective of these algorithms is to 

optimize the distribution of power among users, with the goal 

of maximizing the cumulative transmission rate, thereby 

promoting more efficient utilization of resources, including 

energy.  

Researchers have investigated the utilization of TPC 
algorithms with various strategies to enhance multiple 

metrics. Paper [12] optimizes power allocation using 

transmission power control algorithms to save energy and 

resources. The study also investigates using Minimum Mean-

Square Error (MMSE) combining to reduce interference from 

surrounding User Equipments (Ues) and improve SE. 

Concentrated deployments perform better in SE due to 

channel hardening and propagation, while semi-distributed 

deployments perform better in average UE and downtime. 

Semi-distributed setups should have fewer APs to match fully 

distributed deployments and improve EE. The paper focuses 

on specifically combining precoding schemes and transmit 
power control algorithms; therefore, exploring other methods 

or algorithms may provide different EE and SE results.  

Lastly, the research in [13] examines CF mMIMO EE and 

SE in the uplink. EE is affected by TPC algorithms, the 

quantity and layout of APs and UEs, and their propagation 

channels. The research analyzes three TPC algorithms: max-

power, max-min SE, and max-min EE while preserving a 

target SE. A variety of antenna and UE configurations are 

examined. The max-min EE TPC method improves uplink EE, 

especially when no UE in a group of served UEs has bad 

channel conditions, and the base station antennas are fully 
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spread. However, it is essential to acknowledge that the paper 

concentrates on a specific scenario of CF mMIMO systems 

with measured propagation channels at 3.5 GHz. It evaluates 

a limited number of transmit power control algorithms and 

antenna arrangements and may not encompass all possible 

scenarios and configurations. 

Examining various research patterns in the literature 

review, TPC and OPA are used to improve EE and SE. 

Additionally, there is a mix of techniques involving either 

TPC or OPA and not necessarily a combination of both, 

despite their everyday use to enhance EE and SE. This study 

investigates the integration of TPC and OPA to optimize CF 

mMIMO systems for both energy and spectral efficiency. The 

promising results from simulations contribute significantly to 

future research, showcasing the efficacy of this hybrid 

approach.  

Moreover, the study addresses a literature gap by 

providing baseline EE and SE values for CF mMIMO systems 
without optimization techniques. This foundational insight 

enables a nuanced exploration of the impact of optimization 

methods on CF mMIMO’s energy and spectral efficiency, 

bridging a knowledge gap and establishing the groundwork for 

a deeper understanding of system efficiency dynamics. 

2. Power Control and Power Allocation in CF 

mMIMO for Energy Efficiency 
In the pursuit of optimizing EE in CF mMIMO systems, 

this research explores the collaboration of power control and 

power allocation, which are TPC and OPA. Building on [14], 

which introduces an implicit iterative algorithm for optimal 

power allocation in the downlink of CF mMIMO, the study 

advances this concept by proposing a novel hybrid approach.  

This hybridization combines a max-min EE TPC method 

with a specialized OPA strategy, explicitly targeting the 

maximization of sum-SE. Seeking to balance EE with a 

predetermined SE objective, the hybrid approach represents a 

pioneering effort for superior efficiency gains in CF mMIMO, 

distinct from previous research that focused on individual TPC 

and OPA techniques. 

The study, parallel to [15], discusses the benefits and 

limitations of TPC and OPA methods for optimizing EE in CF 

mMIMO systems. TPC, known for its simplicity and real-time 

adaptability to channel conditions, prioritizes minimal EE and 
shows improvements in low SNR or high user density settings 

[16]. However, TPC has a limited scope, may involve SE 

trade-offs, and faces coordination challenges across multiple 

APs [13, 17].  

On the other hand, OPA is praised for its system-level 

optimization and simultaneous optimization of power 

allocation for EE and SE [15]. Yet, OPA encounters 

challenges such as high computational complexity, reliance on 

accurate CSI, and dynamic adaptability to real-time channel 

circumstances [16].  

The suggested hybrid approach, which uses max-min EE 

TPC for individual users and OPA for sum-SE optimization, 

overcomes these strengths and weaknesses [14]. Leveraging 
TPC and OPA adaptability, the hybrid method aims to balance 

system-level EE and SE under unique channel conditions, 

maximizing resource allocation and overcoming each 

method’s limitations. The mixed solution, according to the 

study, has the potential to improve EE performance in CF 

mMIMO systems while retaining SE, thus increasing wireless 

network resource efficiency and sustainability. 

2.1. Applications 

This research will lead to more energy-efficient CF 

mMIMO deployments in 5G and future networks, lowering 

network operator costs and improving environmental 

sustainability. Consumer energy bills and mobile 
communication infrastructure carbon footprint may drop [18].  

The project aims to enhance wireless consumers’ Quality 

of Service (QoS) by improving EE and maintaining 

appropriate SE, ensuring consistent data throughput and 

dependable connectivity from demanding or remote places. 

For video conferencing, streaming, and online gaming, this 

can improve customer satisfaction. 

By optimizing resource use and power distribution, [16] 

showed that denser deployments of CF mMIMO base stations 

can increase network capacity and coverage, meeting the 

increased demand for mobile data traffic. This can improve 
underserved areas and increase digital access. The findings 

could help create future wireless systems like 6G by providing 

insights into optimizing resource sustainability in network 

operations. This could promote low-latency communication, 

huge IoT installations, and holographic networking allocation 

and attainment [14-16]. 

3. Optimization of Wireless Communication 

Systems 
The optimization of wireless communication systems 

encompasses several subjects, such as SE and EE 

maximization, convergence analysis, and Access Point 

selection. These subjects are frequently examined within the 

framework of maximizing the efficiency of wireless resources, 
minimizing energy usage, and optimizing the overall 

performance of wireless networks. 

3.1. EE and SE Maximization 

In the realm of wireless communication systems, energy 

efficiency is commonly described as the ratio of information 

sent to power consumed, typically measured in bits per Joule 

[19]. This is crucial for assessing the sustainability and 
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effectiveness of wireless networks. According to [19, 20], EE 

is commonly characterized as: 

EE (bits/J) =
data rate (bits/s)

Energy consumption (Joules/s)
  (1) 

EE maximizing requires the implementation of advanced 

techniques such as resource allocation algorithms, modulation 

schemes, and transmission power management mechanisms 

[21]. These strategies are designed to optimize data 

transmission efficiency while decreasing energy consumption 

during communication. Maximizing energy EE is especially 

important given the increasing need for wireless connectivity, 

the widespread use of Internet of Things (IoT) devices, and the 
growing dependence on battery-powered communication 

devices. Optimizing the trade-off between spectral efficiency 

and energy consumption is a complex challenge that 

necessitates careful examination of system factors and 

network dynamics. Different objectives, constraints, and 

algorithms are applied while the EE maximization is done.  

Spectral efficiency quantifies the amount of data that can 

be carried per unit of bandwidth in a specific communication 

channel [22]. The parameter measures the net throughput, 

omitting error correction codes. It is commonly expressed in 

bits per second per Hertz (bit/s/Hz). According to [23], the 
general formula is given below: 

𝑆𝐸 (𝑏𝑖𝑡𝑠/𝑠/𝐻𝑧) =
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑏𝑖𝑡𝑠/𝑠)

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (𝐻𝑧)
     (2) 

The performance evaluation of the proposed algorithms is 
based on the utilization of EE and SE as critical metrics. These 

metrics are used as benchmarks to evaluate the effectiveness 

of the algorithms, especially in dealing with the challenges 

related to spectral and energy efficiency discussed in the 

chapters to follow.  

Algorithms 1 and 2 use Equations 1 and 2 customized to 

the optimization problems being solved. The optimization 

objectives focus on enhancing the overall performance of the 

CF mMIMO system by maximizing the minimum EE and 

maximizing the sum SE. 

Several factors, including power, frequency, noise power, 
and bandwidth, influence the optimization processes for EE 

and SE. It is worth mentioning that in the hybrid scenario, the 

algorithm incorporates certain conditions to adjust power 

allocation. This adaptation is motivated by the difference 

between the average EE and SE, aiming to achieve a solution 

that is harmonized and balanced. 

Further details will be provided in the upcoming chapters 

to bring about a clear picture of these concepts and their 

practical implications. These details will help shed light on the 

complexities of the algorithms, giving a better understanding 

of how they affect system performance and efficiency. 

3.2. Convergence Analysis 

Convergence analysis involves a thorough examination 

and discussion of the inherent convergence properties in the 

algorithms being used. This examination explores the 

complex mechanisms by which the proposed approaches 

attain stability and optimal solutions during their iterative 
processes [24]. Every algorithm used in this research has its 

unique convergence characteristics when applied to find 

optimal solutions. In power adjustment, TPC demonstrates 

convergence once it reaches the maximum number of 

iterations.  

The OPA algorithm distributes power based on the weight 

of each AP. Convergence is achieved once power is assigned. 

The integration of TPC and OPA involves a complex 

convergence process that requires careful consideration of 

weights and a set threshold to balance the performance 

indicators EE and SE.  

The hybrid of the two has a maximum iteration value of 
50,000. The initial iterations bring about significant changes, 

while the subsequent iterations aim to find a balance between 

the EE and SE objectives. The forthcoming results section 

provides a comprehensive explanation of these convergence 

behaviors and their implications. 

3.3. Access Point Selection 

Choosing the right access point is crucial in wireless 

communication systems as it dramatically affects network 

performance and user satisfaction. In order to make the 

communication process more relatable, it is essential to have 

a good AP selection. This involves considering important 
factors such as signal strength, channel conditions, and load 

balancing [25].  

This careful selection guarantees efficient use of 

resources and effortless connectivity for users. The choice of 

access points in wireless communication systems greatly 

influences network performance and user experience. 

Although the current work primarily focuses on optimizing EE 

and SE in CF mMIMO, it is crucial to recognize the influence 

of access point selection on these metrics. Efficient AP 

selection schemes strive to improve the scalability of 

communication systems, ensuring optimal resource utilization 

and connectivity for end-users.  

In a recent paper [26], a novel joint optimization strategy 

that makes use of the Accelerated Projected Gradient (APG) 

method was introduced. This approach prioritizes the 

protection of legitimate users’ quality of service while 

minimizing the signal-to-interference-plus-noise ratio for 

potential eavesdroppers.  

The research presents a comprehensive optimization 

framework that emphasizes the importance of collaboration 

between AP selection and power optimization in enhancing 
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resource efficiency. The combination of AP selection and 

power optimization plays a vital role in creating a wireless 

communication network that is both efficient and dependable. 

The existing literature [27-31] offers valuable insights into 

different AP selection strategies, with a focus on enhancing 

SE and EE. Although the current study does not explicitly 
address access point selection algorithms, the discussion 

highlights their importance in optimizing wireless 

communication. Future research could investigate the 

integration of dynamic AP selection mechanisms to improve 

the performance metrics discussed in this study further. 

4. System Model 
The CF mMIMO system is carefully analyzed in the sense 

of how it operates in Time Division Duplex (TDD) mode. 

TDD enhances the ability to switch between uplink and 

downlink transmissions in the same time/frequency block, 

improving communication flexibility and efficiency [4]. 

Figure 1 from the first chapter illustrates the system 

architecture, which consists of N randomly placed APs.  

Each AP is equipped with K antennas and can serve 

single-antenna UEs simultaneously. The essential fronthaul 

network connects all APs, creating a crucial connection to a 

Central Processing Unit (CPU). This network facilitates the 

flow of important network information between APs, 
promoting a synchronized and effective operation of the CF 

mMIMO system [32].  

This case scenario’s focus hinges on the downlink, which 

is the communication from APs to UEs facilitated by the 

fronthaul link. The assumption is that all N APs can 

concurrently serve all M users within the same time-frequency 

resource. The complex channel gains ℎ𝑛𝑚 capture the wireless 

channel characteristics between the nth AP and the mth UE. The 

channel model is defined by:  

hnm   =  βnm
1/2  .  gnm  (3) 

This formula captures the essence of wireless 

communication, where large-scale fading, 𝛽𝑛𝑚 and small-

scale fading 𝑔𝑛𝑚 intricately shape the link between the nth AP 

and the mth UE. The small-scale fading is typically modeled 

as a Rayleigh fading distribution, which assumes that the real 

and imaginary parts of the channel gain are independently and 

identically distributed with a zero mean and unit variance.  

This model is frequently employed to capture the wireless 

channel characteristics in cases where there is no prominent 

line-of-sight component and the signal experiences 

unpredictable multipath fading, symbolizing large-scale 

fading, thereby representing the deterministic attenuation of 

the signal over distance and environmental obstacles. Below 

are the details of the two algorithms which have been 

incorporated in this research: 

4.1. Transmit Power Control (Max-Min EE) 

TPC is a technique used to adjust the transmit power 

levels of APs based on the channel conditions. The goal of the 

Max-Min EE approach is to maximize the minimum EE 

among all APs. The algorithm iteratively adjusts transmit 

powers to achieve a balance between maximizing EE and 
maintaining acceptable SE [13]. 

Algorithm 1: Transmit Power Control - Max-Min EE 

Approach 

Input: 

 Maximum number of iterations (max_iter) 

 Initial transmit powers (P) for APs 

 Number of APs (N) and Mobile Stations (M) 

 Channel gains (g) representing the wireless channel 

Steps: 

1. Initialize transmit powers for TPC 

2. Perform iterations from 1 to max_iter 

a. Calculate EE for the current power allocation:  

EEi = log2  (1 +
 P_with_TPC∗g

𝑁0∗𝐵
)             (4) 

Where: 

 EEi is the Energy Efficiency for the ith AP-UE pair. 

 P_with_TPC  is the Transmit power after applying the 
TPC algorithm. 

 G is the Complex channel gain between the AP and UE. 

 𝑁0 is the noise power. 

 B is the channel bandwidth. 

b. Find the minimum EE values for each AP:  

c. Update transmit powers based on the Max - Min EE 

approach: 

for i = 1 to N  

i. Find the positions with minimum EE for AP i:  

ii. If min_positions is not empty, update powers:         -

P_with_TPC (i, min_position) = 2 * P_with_TPC (i, 

min_position) 

iii. Else, display a message:  

      - No minimum position found for AP 
3. End for loop 

4. Finish iterations 

Output: 

 Updated transmit powers (P_with_TPC) based on the Max-

Min EE approach 

 SE and EE with TPC 

4.2. Optimal Power Allocation (OPA) - Sum SE 

Maximization 

Sum-SE maximizing power allocation refers to the power 

allocation strategy in CF mMIMO systems that aims to 

maximize the sum SE of all users. In this approach, the 

objective is to prioritize users with good channel conditions 

and allocate power in a way that maximizes the overall data 

throughput [3]. 
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Algorithm 2: Optimal Power Allocation - Sum SE 

Maximization 

Input: 

 Number of Access Points (N) and Mobile Stations (M) 

 Transmit Power (P) for each AP 

 Channel Gains (g) representing the wireless channel 

 Channel Bandwidth (B) 

 Noise power (N0) in Watts/Hz 

Steps: 

1. Initialize weight W equally for each access point: 

2. Allocate power P_i to each access point based on 

calculated weights: 

3. Calculate SE with OPA after the power allocation: 

SE_with_OPA = log2  (1 +
∑ 𝑃𝑤𝑖𝑡ℎ_𝑂𝑃𝐴,𝑚 ∗ 𝑔𝑛𝑚

𝑀
𝑚=1

𝑁0∗𝐵
) (5) 

4. Calculate EE with OPA: 

𝐸𝐸_𝑤𝑖𝑡ℎ_𝑂𝑃𝐴 =
log2  (1+

∑ 𝑃𝑤𝑖𝑡ℎ_𝑂𝑃𝐴,𝑚 ∗ 𝑔𝑛𝑚
𝑀
𝑚=1

𝑁0∗𝐵
)

∑ 𝑃𝑤𝑖𝑡ℎ_𝑂𝑃𝐴,𝑚 + 𝑁0
𝑀
𝑚=1

  (6) 

For Equations 3 and 4: 

 EE_with_OPA is the Energy Efficiency with OPA. 

 SE_with_OPA is the Spectral Efficiency with OPA. 

 𝑃𝑤𝑖𝑡ℎ_𝑂𝑃𝐴,𝑚 is the allocated power for the mth UE under 

the OPA scheme. 

 𝑔𝑛𝑚 is the complex channel gain between the nth AP and 
the mth UE. 

 𝑁0is the noise power. 

 B is the channel bandwidth. 

5. End  

Output: 

 Power allocation matrix (P_with_OPA) based on the Sum 

SE Maximization approach 

 SE and EE with OPA 

5. Materials and Methods 
The simulations conducted in this study explore the 

performance of TPC, OPA, and a hybrid model combining 

both algorithms within the context of the CF mMIMO 

systems. The objective is to enhance the energy efficiency of 

the system while ensuring a satisfactory level of spectral 

efficiency. The results demonstrate the effectiveness of these 
algorithms in achieving a balance between energy and spectral 

efficiency in the TDD-operated CF mMIMO setup. 

The simulation models a CF mMIMO system operating 

in TDD mode. The system involves N randomly deployed 

APs, each equipped with K antennas and M single-antenna 

UEs. The simulation parameters are shown in Table 1. 

Utilizing MATLAB for simulation, the study was 

initiated with a straightforward approach involving the 

generation of random complex channel gains through the 

Rayleigh fading model. The system’s performance was 

assessed by computing both SE and EE. Following this, a TPC 

mechanism was implemented using the Max-Min EE 

approach, dynamically adjusting transmit powers for balanced 

system performance. The simulation also integrated OPA for 

Sum SE Maximization, distributing power based on assigned 
weights to each AP. 

Table 1. Simulation parameters and values 

Parameters Values 

Number of Access Points (N) 64 

Number of Mobile Stations (M) 128 

Number of Antennas per Access Point (K) 8 

Transmit Power of Each AP (P) 1 Watt 

Frequency of Sub-6 GHz Frequency Band (f) 2.4 GHz 

Channel Bandwidth 10 MHz 

Noise Power Spectral Density (N0-dBmHz) 
-174 

dBm/Hz 

Threshold 0.001 

 

The innovative solution introduces a hybrid model that 

intelligently combines TPC and OPA by iteratively adjusting 

power allocations to effectively address the challenge of 

achieving a balanced trade-off between EE and SE. A 

threshold mechanism was incorporated to prevent oscillations 

and ensure convergence to a stable state.  

The results are visually represented using MATLAB 

plots, which are Cumulative Distribution Functions (CDF) 
plots that depict the distribution of EE and SE over all 

investigated techniques. Furthermore, a Pareto front value 

graphic dynamically captures and revises the EE and SE 

values during the iterative process of the hybrid model. The 

pareto graphical representation provides a clear view of the 

intricate balance between energy efficiency and spectral 

efficiency, offering valuable insights into how these two 

important objectives interact. 

During the simulations, several challenges were 

encountered that added complexity to the study. One 

significant challenge was the complicated balancing act 

required in optimizing the hybrid model. Achieving 

equilibrium between TPC and OPA to strike an optimal 

balance between EE and SE posed difficulties. The iterative 

nature of the hybrid model introduced potential oscillations in 

power allocations, requiring the implementation of a threshold 

mechanism to ensure stability and convergence to a consistent 

state. 
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Another challenge stemmed from the dynamic and 

unpredictable nature of wireless communication channels, 

modeled using the Rayleigh fading. The randomness inherent 

in channel gains added variability to the simulations, making 

it crucial to devise robust algorithms that could adapt to 

changing channel conditions. This necessitated the 
implementation of sophisticated control mechanisms to 

mitigate the impact of channel fluctuations on the overall 

system performance.  

Furthermore, the process of combining TPC and OPA in 

the hybrid model posed difficulties in terms of algorithmic 

complexity and parameter adjustment. Careful consideration 

was given to balancing the weights assigned to each AP in the 

OPA scheme and determining the appropriate weight for TPC 

in order to achieve optimal performance. Addressing these 

challenges involved a combination of algorithmic refinement, 

robust control strategies, and careful parameter tuning to 

enhance the resilience and effectiveness of the proposed 
hybrid model in real-world scenarios. 

Several assumptions were made to streamline the model 

and focus on specific aspects of Cell-Free massive MIMO 

systems. These assumptions include but are not limited to, 

perfect synchronization, ideal backhaul and front haul links, 

and static user locations. The assumptions were made to 

simplify the simulation process and to isolate particular facets 

of the problem for a more targeted analysis. Each assumption 

introduced in this simulation model serves a specific purpose 

and is grounded in a well-defined rationale.  

For instance, ensuring perfect synchronization is essential 
for isolating the impact of particular algorithms on energy 

efficiency. Although dealing with real-world synchronization 

can be challenging, this assumption allows for a more targeted 

examination of the effectiveness of the proposed techniques, 

free from the complications of synchronization problems.  

It is imperative to discuss the potential impact of these 

assumptions on the outcomes of the simulation study. Take 

into consideration that assuming static user locations 

oversimplifies the complex reality of user mobility. Although 

this simplification allows for a more straightforward analysis 

of the proposed algorithms, it might result in overly optimistic 

performance estimates in situations where users’ movements 
are constantly changing. Understanding these assumptions is 

crucial for a comprehensive interpretation of the results. 

6. Results and Discussion 
Figures 2(a), and 2(b) depict EE and SE values, 

respectively, through CDF plots. These plots illustrate the 

performance of both the baseline, represented by the simple 
approach, and the proposed hybrid approach in the simulation. 

Notably, the hybrid approach demonstrates a remarkable 

99.99% improvement in EE but incurs a 52.26% reduction in 

SE. The trade-off between EE and SE was carefully managed 

by setting a threshold, ensuring a balance between the two 

metrics. Upon convergence, the average EE and SE values for 

both approaches are as follows: In the simple approach, the 

average EE is 0.78924 bits/J, while the average SE is 50.5112 

bits/s/Hz. In contrast, the hybrid approach yields an average 
EE of 33,263,040.4068 bits/J and an average SE of 24.1157 

bits/s/Hz. These outcomes align with the primary objectives 

of the simulation, aiming for an EE target equal to or greater 

than 10 Mbit/J and SE similar to or greater than 21 bits/s/Hz.  

The benchmark was established based on insights gleaned 

from relevant literature [3, 12, 13, 33], where EE and SE were 

pivotal performance indicators, often involving TPC or OPA 

algorithms. While the achieved EE exceeded expectations, SE 

needed to be improved to meet the stated objective, 

highlighting the importance of the proposed solution 

improvements over the baseline method. 
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Fig. 2 Comparison of (a) EE, and (b) SE between the simple and hybrid 

approaches. 

In Figures 3(a), and 3(b), a comprehensive portrayal of 

EE and SE values, respectively, are presented, utilizing CDF 
plots.  
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Fig. 3 Comprehensive comparison of (a) EE, and (b) SE across all four 

explored scenarios. 

These visuals encapsulate the performance of four distinct 

approaches: the baseline, OPA, TPC, and the hybrid model. 

The average metrics derived from the plots are shown in Table 

2. These outcomes emphasize the evolution from a basic 

scenario, where the simple approach established a reference 

point. Implementing TPC maintained a commendable SE of 

50.7459 bits/s/Hz but at the cost of a substantial EE reduction 

to an average of 0.2241 bits/J.  

On the other hand, OPA showcased an improvement in 
EE to an average of 44.5112 bits/J, coupled with a reduction 

in SE to 44.5112 bits/s/Hz, illustrating a distinct trade-off 

between energy and spectral efficiency. Notably, the hybrid 

approach emerged as a standout performer, achieving an 

exceptional average EE of 33,263,040.4068 bits/J, which is a 

99.99% improvement over the simple approach. Despite a 

decrease in SE to 24.1157 bits/s/Hz, the hybrid strategy struck 

a commendable balance, surpassing literature standards and 

meeting predefined thresholds. 

The SE and EE in the study exhibit a clear trade-off 

connection. An exciting tendency was discovered, as shown 

in Table 2, where a decrease in SE of at least one led to a 

considerable surge in EE (almost double the initial value of 

EE right before the drop), showing an inherent feature of 

wireless communication networks. The incorporation of a 

threshold mechanism in the hybrid algorithm was pivotal in 

effectively managing a gradual reduction in SE, ensuring that 

it did not drop below the predetermined threshold of 21 

bits/s/Hz. This strategic implementation adds a greater level 

of complexity to enhance the hybrid method. It ensures that 

the reduction in SE is intentional and regulated, in line with 
the overall goal of maximizing EE while still maintaining a 

satisfactory level of SE. 

Table 2. The averages of EE and SE for all four scenarios 

Type of 

Approach 

Average EE in 

Bits/J 

Average SE 

in Bits/s/Hz 

Simple 0.78924 50.5112 

TPC 0.2241 50.7459 

OPA 44.5112 44.5112 

Hybrid 33,263,040.4068 24.1157 

 

The deliberate distribution of weights, specifically the 

giving of a greater weight of 0.725 to the OPA algorithm 

compared to TPC, which was 0.275, demonstrates an 

intentional choice to emphasize the improvement of EE. This 

technique, which takes into account the relative importance of 
different factors, shows a deep awareness of the complexities 

of the system.  

The weight allocation mechanism significantly 

contributes to the higher performance of the hybrid algorithm 

in comparison to individual scenarios, such as the simple 

approach, TPC, and OPA. In addition, the evaluation of the 

threshold, allocation of weight, and gradual decrease in SE 

inside the hybrid model all contribute to the surpassing 

outcomes achieved by the conventional state-of-the-art 

method. The effectiveness of the suggested hybrid approach is 

supported by the careful adjustment of parameters and the 
repeated experimentation involved in completing a delicate 

balance. 

In summary, the hybrid approach presents a promising 

solution, demonstrating a substantial increase in EE without 

disproportionately compromising SE. These results align with 

established literature goals and fulfill specific thresholds set 

for the study, highlighting the practical applicability of the 

hybrid strategy in real-world scenarios. The findings 

emphasize the critical importance of striking a delicate 

balance between energy and spectral efficiency for optimal 

system performance in CF mMIMO configurations.  

Figure 4 presents a pareto front plot, visually capturing 
the intricate trade-off dynamics between EE and SE values. 

The plot unveils a linear relationship, portraying the inherent 

challenge of enhancing one metric at the expense of the other, 

as clarified previously.  
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Fig. 4 Visualization of the trade-off between Energy Efficiency and 

Spectral Efficiency through pareto front plot 

The graph pattern shows that as EE experienced 
improvements, there was a concurrent reduction in SE values, 

which is characteristic of the delicate equilibrium required in 

optimizing CF mMIMO systems. Commencing from the 

initial position of the plot’s starting point, one comes across 

the SE and EE values that come before the first iteration of the 

hybrid model. 

This initial representation serves as a starting point, 

capturing the current state of SE and EE before the 

optimization process begins. Subsequently, the second point 

on the graph encapsulates the outcomes following the first 

iteration. This stage demonstrated a significant reduction of 

37.5% in SE, contrasted with a 0.95% gain in EE. Throughout 
subsequent iterations, guided by a carefully chosen threshold 

to balance EE and SE, the plot unveils gradual improvements.  

The approach used resulted in reduced SE levels and 

significant improvements in EE. This iterative refinement 

process played a crucial role in achieving excellent EE 

performance while also maintaining a harmonious balance 

with SE metrics. The Pareto front plot provides a dynamic 

record of the optimization process, showcasing the convoluted 
balance between EE and SE and the strategic trade-offs made 

to reach an optimal equilibrium. Table 3 presents a 

comprehensive overview of this work’s results in relation to 

other notable works in the domain. 

This comparative analysis underscores the diversity of 

approaches employed by different studies to optimize EE and 

SE in CF mMIMO systems. While each work may have 

distinct objectives, the performance indicators extracted from 

CDF plots against SE and EE provide a standardized basis for 

comparison. This work, employing the Hybrid TPC & OPA 

algorithm in a downlink scenario, has a reasonable EE range 

of 32.5-33.9*106 bits/J, showcasing a substantial 
improvement over some other algorithms. Furthermore, the 

SE range of 23.6-24.5 bits/s/Hz signifies a commendable 

balance between achieving high EE and maintaining 

competitive SE.  

It is important to note that the observed ranges in EE and 

SE are context-specific and may vary based on the unique 

goals and scenarios targeted by each algorithm. This 

comprehensive overview serves as a valuable reference for 

researchers and practitioners in the field of CF mMIMO, 

offering insights into the diverse landscape of algorithmic 

approaches and their corresponding performance outcomes. 

Table 3. Comparative analysis of CF mMIMO algorithms for improved Energy and Spectral Efficiency 

Reference Type of Algorithm Link Type EE Range Bits/J SE Range Bits/s/Hz 

[10] EE Power Allocation Downlink 4.6 * 106 N/A 

[13] TPC (Optimized) Experimental Uplink 1.2-2.7 * 109 6-16 

[3] Hybrid OPA & FP Downlink N/A 1-4.5 

[12] TPC & MRC Downlink 0.2-1.4 * 106 1-3 

[7] Max-Min Power Control Downlink 7.5-9.5 * 106 2.5-3.5 

This Work Hybrid TPC & OPA Downlink 32.5-33.9 * 106 23.6-24.5 

 

7. Conclusion 
In conclusion, the model provides substantial insights, 

and the findings achieved the target of attaining higher EE 

with a balanced level of SE. Although the model provides 

valuable insights, it is essentially a representation of CF 
mMIMO systems that simplify certain complexities found in 

the real world. Future studies should include realistic factors 

like dynamic user mobility and non-uniform user 

distributions. These changes aim to improve comprehension 

of CF mMIMO systems in practical circumstances, placing 

this work’s findings in a more realistic context. The model 

must be refined to make this research applicable and relevant 

in the dynamic telecom industry. Despite the acknowledged 

simplifications, the proposed algorithm has demonstrated 

effectiveness. It solves simulation issues, advancing CF 

mMIMO system optimization. The proposed method’s 

efficacy and attention to real-world considerations make it a 

worthwhile contribution to the area. 
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