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Abstract
Lakes’ ecosystems are vulnerable to environmental dynamisms prompted by natural processes and anthropogenic
activities happening in catchment areas. The present study aimed at modeling the response of Lake Olbolossat
ecosystem in Kenya to changing environment between 1992 to 2022, and its future scenario in 2030. The study
used temperature, stream power index, rainfall, land use land cover, normalized difference vegetation index, slope
and topographic wetness index as datasets. A GIS-ensemble modeling approach coupling the analytical
hierarchical process and principal component analysis was used to simulate the lake’s extents between 1992–2022.
Cellular Automata-Markov chain analysis was used to predict the lake extent in 2030. The results revealed that
between 1992–2002, the lake extent shrunk by about 18%; between 2002–2012, the lake extent increased by about
13.58%; and between 2012–2022, the lake expanded by about 26%. The spatial temporal changes exhibited that the
lake has been changing haphazardly depending on prevailing climatic conditions and anthropogenic activities. The
comparison between the simulated and predicted lake extents in 2022 produced Kno, Klocation, KlocationStrata,
Kstandard, and average index values of 0.80, 0.81, 1.0, 0.74, and 0.84, respectively, which ascertained good
performance of generated prediction probability matrices. The predicted results exhibited there would be an
increase in lake extent by about 13% by the year 2030. The research �ndings provide baseline information which
would assist in protecting and conserving the lake Olbolossat ecosystem which is very crucial in promoting tourism
activities and provision of water for domestic and commercial use in the region.

Introduction
A lake ecosystem, also known as the Lacustrine system, comprises of biotic (living) plants, animals, and
microorganisms and are surrounded by land masses (Wetzel et al., 2001). Lakes are crucial natural resources and
carbon gas emitters that contain fresh or saltwater, especially in arid regions, serving as essential sources for
consumption, �shing, irrigation, power generation, transportation, recreation, and various agricultural and industrial
purposes (Downing et al., 2006). Lake ecosystem dynamism refers to the continual changes and �uctuations within
the structure, function, and components of a lake environment (Grant et al., 2021). Globally, lakes are undergoing
changes in response to climate change and human activities (Zheng et al., 2021). Climate change induces
alterations in temperature, precipitation patterns, and extreme weather events, impacting lake dynamics worldwide.
Warmer temperatures lead to changes in water temperature, affecting the water levels (et al., 2018). Altered
temperature regimes in�uence the distribution and behavior of species, impacting the ecosystem balance (Woolway
et al., 2020). Additionally, changes in precipitation patterns can result in altered water levels and �ow rates in lakes.
Increased precipitation can lead to higher in�ows, potentially causing �ooding, while decreased precipitation may
lead to droughts and lower water levels (Kraemer et al., 2020). Destruction of wetlands and vegetation along the
shores reduces the lake's ability to �lter pollutants and provide habitat for various species thus contributing to
reduced water levels (Maua et al., 2022).

Hampton et al. (2018) examined the impacts of climate change on Lake Baikal, the world's deepest and oldest
freshwater lake. It showed that warming temperatures and changes in ice cover duration altered the lake's
ecosystem, affecting phytoplankton productivity, zooplankton dynamics, and �sh populations. A study by IPCC
(2021) emphasizes how rising temperatures alter thermal strati�cation, ice cover duration, and precipitation regimes
in lakes, in�uencing their structure and function. Jeppesen et al. (2010) provides a comprehensive look at the
impacts of climate change on lakes globally, focusing particularly on shallow lakes and encompassing various
ecological perspectives. Climate change, is also characterized by alterations in temperature and regional weather
patterns, which largely impacts the hydrological cycle (Kundzewicz, 2008; Abbass, 2022). The escalated
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temperatures attributed to climate change cause increased evaporation rates from oceans, lakes, and soil surfaces,
thereby augmenting moisture entering the atmosphere and potentially in�uencing precipitation patterns (Bolan et
al., 2024). The intensi�ed evaporation can exceed incoming water in regions experiencing heightened temperatures,
contributing to lake depletion (Smith et al., 2019). Tian et al., (2019) assessed the spatial temporal characteristics
which in�uence the ecological water levels of lake Dongting in China. Furthermore, alterations in precipitation
patterns induced by climate change modify the frequency, intensity, and distribution of rainfall (Wang et al., 2020).
The study by Smith et al. (2019) underscores how rising temperatures impact evaporation rates and precipitation
patterns, thereby affecting the water balance of lakes.

In Africa context, Sharma et al. (2020) explains how climate variability leads to changes in water levels, biodiversity
shifts, and altered trophic interactions, impacting the ecological balance of these lakes. Mavuti et al. (2015)
assesses the speci�c threats posed by climate change to African lakes, offering insights into adaptation strategies.
Tierney et al. (2010) observed a decrease in phytoplankton productivity in Lake Tanganyika attributed to climate
change. Warmer temperatures have altered the lake's thermal structure, leading to reduced mixing and decreased
nutrient availability, impacting the productivity of phytoplankton, the base of the aquatic food web. Odero et al.
(2021) focused on Lake Victoria in Kenya and examined the impacts of climate change induced factors such as
altered rainfall patterns and increased temperatures affect the lake's water levels and quality, and their impacts on
�sheries and local communities. Climate change has in�uenced Lake Victoria's ecosystem, contributing to the
decline of native �sh species (Ogutu-Ohwayo et al., 2016). Changes in temperature and rainfall patterns have
affected water levels and quality, impacting the habitat and food availability for native �sh (Ohwayo et al., 2018).
Harper et al. (2004) explains how climate change impacts on Lake Naivasha have been observed to affect water
levels and quality. Shifts in precipitation patterns and temperatures have in�uenced the lake's hydrology, altering
water in�ow, which in turn affects the abundance and distribution of species, particularly impacting the diverse bird
populations that depend on the lake (Haig et al., 2019).

Moreover, the anthropogenic activities such as urbanization, agriculture, and deforestation, have been noted to alter
land cover, nutrient inputs, and hydrological processes. A study by Capenter et al. (2021) highlights the impacts of
land-use changes on nutrient loading, eutrophication, and habitat degradation in lakes. Additionally, Li et al. (2018)
in Asian lakes, demonstrate how land-use changes cause sedimentation, nutrient runoff, and algal blooms,
affecting the water quality and ecological balance of these lakes. Scavia et al. (2014) explains the anthropogenic
activities like agricultural runoff containing phosphorus and nitrogen, have led to harmful algal blooms and
eutrophication in Lake Erie in North America. Ochumba et al. (2012) explains the human activities, such as the
introduction of invasive species and the extensive use of herbicides to control water hyacinth, have had detrimental
effects on Lake Victoria's ecosystem. These actions altered the lake's biodiversity, affecting native species and the
overall ecological balance. Odada et al. (2014) shows how deforestation, agricultural practices, and urbanization,
have contributed to sedimentation and nutrient loading in Lake Malawi. These activities have led to changes in
water quality, affecting the lake's ecosystem and biodiversity. Hecky et al. (2010) explains how Lake Victoria has
experienced severe eutrophication due to anthropogenic activities, such as agricultural runoff, deforestation, and
industrial discharge. Increased nutrient input, especially phosphorus and nitrogen, has led to algal blooms, loss of
biodiversity, and a decline in water quality. Moreover, Harper et al. (2004) explains how anthropogenic activities,
including agricultural practices and rapid urbanization around Lake Naivasha in Kenya, have resulted in habitat
degradation, pollution from agrochemicals, and altered water levels. These activities have affected the lake's
ecological health, including shifts in species composition, water quality issues as well as decrease in the extent of
the lake. Pálmai et al. (2023) explains how the Lake Nakuru has faced anthropogenic pressures, notably from
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urbanization, agriculture, and untreated sewage in�ows. These activities have led to increased nutrient levels,
eutrophication, and algal blooms, impacting the lake's biodiversity, including its iconic �amingo population.

Different methods have been implemented to simulate the effects of climatic, geomorphological and anthropogenic
variables on lake extent. Some have employed geographic information systems techniques (GIS) and remote
sensing technologies because of their ability to explore spatial, spectral and temporal aspects of the causing
factors (Zhao et al., 2018). The Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS) being a
numerical model (computer software) simulates the behavior of watersheds, channels, and water-control structures
to predict �ow, stage, and timing. Precipitation and evaporation from watersheds are represented by the HEC-HMS
simulation techniques. A study by Kaberia et al. (2023) used the HEC-HMS model to predict the sediment loads in
the upper Ewaso Nyiro river basin. Also, Natarajan et al. (2019) used the HEC-HMS model to simulate the effects of
extreme surface runoff in an urban development area. Sengul et al. (2022) used the HEC-HMS model to predict
snowmelt runoff for water supply and �ood control issues in the Euphrates River basin. The study by Chathuranika
et al. (2022) carried out the comparison between the HEC-HMS model and the Soil Water Assessment Tool (SWAT)
model in run-off estimation. Msaddek et al. (2020) used the model to de�ne how land use land cover changes
simultaneously in�uence the hydrological capabilities of a river in Morocco. The Hydrological Engineering Center
River Analysis System (HEC-RAS) model is used to simulate the scenarios of �ooding in rivers and also identify the
�ood risks of the river when precipitation rate is at maximum. Pradhan et al. (2022) used the HEC-RAS model to
simulate the �ood inundation, �ow velocity and water depth in India. Besides, Singh et al. (2023) used the HEC-RAS
model for �ood risk assessment in Hasden River basin in India. Ramly et al. (2016) used the HEC-RAS model to
simulate �ash �oods in order to predict the hazard in Teirang River, Pahang, Malaysia for better �ood preparedness
and minimizing of �ood damages.

The geographic information systems (GIS) coupled with the analytical hierarchical process

(AHP) model are used to determine the relative importance of criteria in�uencing lake expansion or depletion. These
criteria are prioritized based on their contributions, as identi�ed through the AHP pairwise comparison matrix
(Gharizadeh et al., 2020). The AHP is commonly employed for its straightforward method of assigning relative
weights to causal factors, despite its being subjective (Kulimushi et al., 2021). Additionally, the principal component
analysis (PCA) is an unbiased multivariate model frequently used to reduce data dimensionality among causal
factors. Its advantage lies in its insensitivity to measurement units of input variables (Keyantash and Dracup, 2004),
although it has the drawback of excluding domain knowledge (Gharizadeh et al., 2020)

The current study aimed at assessing the in�uence of climatic, anthropogenic, and geomorphological variables on
the extent of Lake Olbolossat. To achieve this, a GIS-ensemble modelling approach was employed, integrating the
Analytical Hierarchy Process (AHP) and principal component analysis (PCA). This approach was designed to
alleviate the subjectivity associated with AHP and concurrently reducing data dimensionality using the PCA
approach. The research outcomes are anticipated to offer insights into mitigation strategies that can be
implemented to minimize the impact of environmental changes on the lake ecosystem.

Methodology
Description of the study area.

Lake Olbolossat is an alkaline lake in the �ood plain of Aberdare Ranges Nyandarua county and is bordered by
Ndaragwa, Ol’Kalou, and Ol’Jorok sub-counties. It is located approximately 195 km from Nairobi at around latitude
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0° 9' 49" S, and longitude 36° 26' 40"E (Zakaria et al., 2013). It has an approximate area of 43.3 squares kilometers.
Figure 1 shows the lake Olbolossat basin, Kenya water basins and Nyandarua county basin where Lake Olbolossat
lies. It is the source of the famous Thompson Falls in Nyahururu which is a tourist attraction site thus generating
revenue for the County government.

The region has a favourable climate throughout the year. The region around Lake Olbolossat has a tropical climate
due to its proximity to the equator. The climate is semi-humid, and wet and is largely in�uenced by the local
topography because of the surrounding highlands. Mean annual rainfall ranges between 400-1000mm (Zacharia et
al., 2013). Rainfall peaks are between April-June and October to November. The mean annual temperature is 23.5º C
with monthly variations between 10º C and 28º C on the extreme. (Kiama et al., 2021).

The soils in Nyandarua County are volcanic and vary in mineral composition from one region to another. These
soils are generally fertile and well-draining, making them suitable for agriculture for subsistence or commercial
purposes (Gichuki et al., 2000). Soils around Ol’ Kalou have poorly drained clay soils. The region is fairly plain
because it is surrounded by the Aberdare Ranges. It is located in the Great Rift Valley, which is a major geological
feature of East Africa. The Great Rift Valley is an active tectonic feature caused by the movement of tectonic plates
(Mathenge et al., 2014). The geological setting and soil types around Lake Olbolossat play a crucial role in shaping
the surrounding ecosystem and in�uencing the land use patterns in the region. These factors also impact the lake's
water quality and contribute to the rich biodiversity found in and around the lake (Zacharia et al.,2013). However,
geological and environmental conditions might change over time, so ongoing monitoring and research are
necessary to maintain the health and sustainability of Lake Olbolossat.

Dataset description.

The research utilized various datasets to evaluate and forecast the impacts of climatic, geomorphological, and
anthropogenic factors on the lake's extent. These datasets encompassed variables such as slope, stream power
index (SPI), land use land cover (LULC), soils data, plan curvature, aspect, topographic wetness index (TWI),
normalized difference vegetation index (NDVI), bareness soil index, rainfall, and temperature. Landsat imageries
were processed to extract LULC, soil bareness index and NDVI. Other key components used were slope, SPI, aspect,
basin delineation and TWI which were extracted from a 30m digital elevation model obtained from the United States
Geological Survey. Soil types were derived from attributes of soil data obtained from the Kenya Soil Survey (KSS),
and gridded rainfall data were sourced from the Climate Hazards Group Infrared Precipitation with station data
(CHIRPS). Gridded temperature data were acquired from Africa Grid. The software and hardware used were ARCGIS,
ERDAS and Terrset. A summary of the datasets used in the study are presented in Table 1.
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Table 1
Datasets used for assessing and predicting the lake extent.

DATA SOURCE SOURCE SPECIFICATION RELEVANCE

Landsat Imagery

(1992,2002,2002,2012)

USGS 30m spatial
resolution (Raster)

Extraction of Land uses land cover,
Normalized difference

vegetation Index and

Bareness index,

Digital Elevation

Model (DEM)

USGS 30m spatial
resolution (Raster)

Used to extract slope, aspect,

Topographic wetness

index, Plan curvature, and Lineaments.

Soil Kenya Soil
Survey (KSS)

250 m spatial
resolution

(Shape�le)

Used to extract soil types

Rainfall Chirps 0.25*0.25 resolution

(Raster)

Used to determine the rainfall trends.

Temperature Africa Grid 0.25*0.25
resolution(raster)

Simulate evapotranspiration using
Thornthwaite model

Methodology work�ow
This study adopted the methodology shown in Fig. 2.

Data pre-processing and harmonization
Landsat images underwent preprocessing using remote sensing aimed to rectify distortions arising from
characteristics of the imaging system, imaging conditions, and data gaps. Radiometric corrections were applied to
eliminate atmospheric errors, including cloud cover, atmospheric haze, and image scanline noise. Geometric
correction involved geo-referencing and projecting the images onto the Arc 1960, Universal Transverse Mercator
(UTM), zone 37S coordinate system to improve data overlay. Band combination was done through layerstacking.
Additionally, all other datasets were constrained to the speci�ed spatial extent of the study area, and raster datasets
were resampled using the bi-linear interpolation method to achieve a 30m spatial resolution. Furthermore, vector
datasets, were rasterized to ensure data uniformity before processing. After reclassi�cation and standardization,
they were subjected to the AHP and PCA models.

Data Analysis Extraction of land use land cover
Landsat images for the years under investigation were corrected, clipped to the area of interest and then used to
extract variables like LULC, bareness soil index and NDVI which are part of the input variables to explore the effects
of lake dynamism in response to the changing environment.

The maximum likelihood supervised classi�cations algorithm was used to extract the land use land cover (LULC)
from the pre-processed multispectral Landsat images for 1992, 2002, 2012 and 2022. The classi�cation algorithm
generated six categories of LULC namely: bareland, grassland, forest, built-up area, cultivated �elds, and waterbody.
The extracted LULC were used in the Markov chain analysis model to predict the future scenario of the lake.
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Extraction of topographic attributes from DEM
Topographic features which represent the physical appearance of the area of study such as slope, stream power
index, aspect and topographic wetness index (TWI) were extracted from the 30m spatial resolution DEM. The slope,
aspect and stream power index were extracted using Arc hydro tool which is a spatial extension tool of ArcGIS
software.

Extraction of Bareness soil index
The Landsat images were utilized in ArcMap software's raster calculator to derive the bare soil index for the years
1992, 2002, 2012, and 2022 using equations 1 and 2. The bareness soil index (BSI) was obtained by the
combination of the blue, red, near infrared and shortwave infrared bands to capture soil variation. These spectral
bands are used in a normalized manner. The shortwave infrared (SWIR) and red spectral bands are used to quantify
the soil mineral composition while the blue and near infrared (NIR) are used to enhance the presence of vegetation
(Zhao et al. 2005). Bareness soil index ranges from − 1 to 1 (Diek et al., 2017; Salas et al., 2023).

Extraction of normalized difference vegetation index
The landsat images were used to obtain the normalized difference vegetation index using equations 3 and 4. The
raster calculator was used to achieve the maps for the years 1992, 2002, 2012 and 2022. The normalized difference
vegetation index quanti�es the health and density for vegetation with the range being − 1 to 1 where the − 1 shows
the less vegetative areas like water bodies and 1 show the areas that are highly vegetative (Assefa et al., 2021;
Huang et al., 2021).

Reclassi�cation of the contributing factors
Reclassi�cation of contributing factors was based on the Saaty nine-weighted scale as presented in Table 2
(Sharma, 2018). Additionally, the study adopted the criteria provided in Table 3 to reclassify the causal factors
in�uencing the changes in lake extent.

 

BSI_L8 = (1)
(Band6 + Band4) − (Band5 + Band2)

(Band6 + Band4) + (Band5 + band2)

BSI_L5 = (2)
(Band5 + Band3) − (Band4 + Band1)

(Band5 + Band3) + (Band4 + band1)

NDV IforLandsat8and9 = (3)
(Band5 − Band4)

(Band5 + Band4)

NDV IforLandsat5to7 = (4)
(Band4 − Band3)

(Band4 + Band3)
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Table 2
Saaty nine-point weighted scale for ranking the factors (Sharma, 2018)

Scale Meaning Related �ood’s vulnerability level

1 Equal importance Very Low

3 Moderate importance Low

5 Important Moderate

7 Very Strong importance High

9 Extreme importance Extremely high

2, 4, 6, 8 Intermediate values between adjacent scales  
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Table 3
Criterion table

Factors Criteria scales and scores in parentheses ()   Source

Slope (˚) 0–3(9) 3–8(7) 8–15(5) 15–
25(3)

25–
87(1)

Kanwal et al.
(2016)

LULC level Waterbod

y (1)

Forests (2)
Grassland

s (3)

Bareland

(5)

Built up
areas (7)

Cultivate
d Fields

(9)

Penki et al.
(2022)

Topographic
wetness index

level < 2.8 (1) 2.8–4.2(3) 4.2-6.0
(5)

6.0-
8.2(7)

> 8.2(9) Penki et al.
(2022)

NDVI level < -0.02

(9)

-0.02-

0.30(7)

0.3–
0.4(5)

0.40-

0.5(3)

> 0.5(1) Kanwal et al.
(2016)

Soil Texture level Sandy
(1)

Loamy (3) Clayey
(5)

Very

Clayey
(7)

  Tugen and
Thug (2003)

Aspect   -1 (1) 0 to 22.5(3) 22.6 to

67.5 (5)

67.5 to

112.5
(7)

112.5-

360 (9)

Kanwal et al.
(2016)

Plan

Curvature

Degrees -4 to-1 (1) -1 to 0 (3) 0 to 1
(5)

1 to 3(7) 3–87 (9) Kanwal et al.
(2016)

Stream

Power index

degrees -6 to 0(1) 0 to 5 (3) 5 to
10(5)

10–16
(7)

> 16 (9) Kanwal et al.
(2016)

Temperature Degree
Celsius

< 0 to

16(1)

16 to

18 (3)

18 to 21
(5)

21 to

30 (7)

> 30 (9) Kanwal et al.
(2016)

Precipitation mm < 0 to

90(1)

90 to

140(3)

140 to

180 (5)

180 to

220(7)

> 220(9) Penki et al.
(2022)

Lake extent mapping using multi-criteria decision evaluation
approach
The extent of the lake was modelled using the Analytical Hierarchical Process (AHP) where reclassi�ed slope,
aspect, land use/land cover (LULC), stream power index, plan curvature, topographic wetness index, precipitation,
temperature, bareness soil index, and normalized difference vegetation index were considered as factors. A pairwise
comparison table, re�ecting expert judgment, was created to determine the relative weights of each factor
in�uencing the lake extent. Before conducting pairwise comparisons, the contributing factors were reclassi�ed and
standardized on a nine-point weighting scale (1 to 9) following Saaty (2003). Relative weights for the contributing
factors were applied to obtain the consistency ratio. The scale facilitated comparisons between factors, as
illustrated in Table 4. To address potential bias in criteria weighting resulting from the subjectivity of the AHP
method, a consistency ratio was computed using Eq. 5 to assess the method's reliability (Gacu et al. 2022).
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Where C.I is the consistency index, n is the number of items being compared in the matrix, λ max is the largest eigen
value. The consistency ratio should be 0.10 or below for accuracy purposes ( Mzuri et al., 2022).

 
Table 4

Pairwise comparison matrix for the contributing factors in�uencing lake extent.
ID
1

layername ndvi temp

2

aspect

2

slope_

3

TWI curvature rainfall LULC weight CI

NDVI 1 4 5 7 9 0.31 0.03

2 Temperature 0.5 1 1 2 3 4 6 8 0.20 0.03

3 Aspect 0.33 1 1 2 3 3 5 7 0.18 0.03

4 Slope. 0.25 0.5 0.5 1 2 2 4 6 0.11 0.03

5 TWI 0.25 0.33 0.5 0.5 1 1 3 5 0.08 0.03

6 Curvature 0.17 0.25 0.33 0.33 0.5 1 2 4 0.06 0.03

7 Rainfall 0.14 0.17 0.25 0.25 0.33 0.55 1 3 0.04 0.03

8 LULC 0.13 0.17 0.14 0.17 0.33 0.5 0.5 1 0.02 0.03

Using the criteria weights generated in Table 4, the reclassi�ed cause factors were integrated using the weighted
overlay tool in ArcGIS to simulate the lake extent maps for 1992, 2002, 2012 and 2022. The simulated lake extent
maps were reclassi�ed into �ve levels (very low, low, moderate, high and extremely high) based on broad range of
nine-point weighting scale and extracting the spatial extent of each category (Bagaram et al., 2016)

Lake extent mapping using the Principal Component Analysis
(PCA)
Principal component analysis (PCA) was conducted on the contributing factors, akin to those employed in the
Analytic Hierarchy Process (AHP), to model lake extent maps for the years 1992, 2002, 2012, and 2022. Utilizing the
PCA tool within ArcGIS, the eight contributing factors underwent manipulation, resulting in an 8×8 matrix of factor
eigenvectors and an 8×1 matrix representing the percentages of eigenvalues for the principal component (PC)
layers, as described by (Keyantash and Dracup 2004).

To accommodate spatial-temporal variations in the primary in�uencing factors, Principal Component Analysis
(PCA) was performed separately for each time period, as emphasized by (Kalantari et al., 2013). In order to
minimize the in�uence of temporal �uctuations on factor weights, the obtained weights for contributing factors
were normalized across all years. A geometric mean of the relative weights was then calculated for each
contributing factor, as outlined in Table 7. Additionally, the normalized relative weights were utilized to amalgamate
the eight reclassi�ed factors for modeling lake extent maps in the years 1992, 2002, 2012, and 2022. Employing
Saaty's (2003) reclassi�cation approach, the lake extent maps were categorized into �ve levels (very low, low,
moderate, high, and extremely high), and the area under each category was computed.
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Lake extent mapping using the GIS-ensemble modelling
approach
To integrate the outcomes of AHP and PCA, a hybrid lake extent map for the years 1992, 2002, 2012, and 2022 were
generated using the geometric mean. This synthesis was conducted within a GIS environment, employing the raster
calculator tool. To evaluate the effectiveness of the GIS-ensemble model, various metrics including overall accuracy,
Kappa statistics, producer accuracy, and user accuracy were calculated based on model simulated extents and the
global positioning systems (GPS) points collected during �eldwork. Additionally, the lake extent map produced
through the GIS-ensemble approach for each year investigated was reclassi�ed into �ve classes (very low, low,
moderate, high, and extremely high) using Saaty's (2003) methodology.

Lake extent prediction using the Cellular Automata-Markov Chain
Analysis
The study utilized the Markov chain model to illustrate changes over time (Mokarram and Pham 2022). Markov
chain analysis was applied to the output of the ensemble approach to generate probability area matrix, transition
suitability image, and Markov transition area �les. This was done by using lake extent maps for 1992 as the earlier
image and 2012 as later images and the number of years between the epochs was speci�ed. The probability area
matrix �les and the suitability image obtained from the Markov chain analysis model were input into the Cellular
Automata model for prediction of the nearing cells. To predict the lake extent map for 2022, the study input the
generated transition suitability image and Markov transition area �les, along with the 2012 lake extent map, into the
Cellular Automata/Markov chain predicting tool. The number of Cellular Automata iterations was set to 10, and a
standard 5×5 contiguity Cellular Automata (CA) �lter was used to determine the weight factor of transition (Wanjala
et al. 2020). Validation of the predicted lake extent map for 2022 involved a comparison with the simulated lake
extent map for the same year. Kappa coe�cients, were calculated for accuracy assessment to determine the
reliability of the prediction model (Nath et al. 2020).

Additionally, using the lake extent map for 2022 as the base image, the study employed the generated transition
suitability image and Markov transition area �les to simulate the lake extent map for 2030. This simulation included
8 Cellular Automata iterations, corresponding to the number of years between 2022 and 2030, using CA-Markov
chain analysis. The predicted lake extent map for 2030 was then classi�ed into �ve classes, and the area of each
category was computed.

Results

Lake extent modelling using AHP modelling approach
The reclassi�ed AHP-based lake extent maps are shown in Fig. 3. The results depict that the lake extent had been
�uctuating over the years which could be contributed by spatio-temporal variations of climatic, geomorphological
and anthropogenic variables. Moreover, the results show that over the years considered, the percentage area of the
lake extent in the region had been �uctuating. The very low class represented the waterbody and in 1992 the extent
of the lake was large but in 2002 it shrunk drastically by 15% which may be attributed to climatic variables or
anthropogenic variables, in 2012 the extent of the lake increased by 12.28% and in 2022 the extent also increases
by 23% as shown in Fig. 3. Table 6 shows the transitions of classes area sizes of the lake from 1992 to 2022
whereby the very low class represented the waterbody, low represented the forest area, the moderate class
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represented the built-up areas the extremely high represented the cultivated �elds and the high class represented
bareland. Clearly the cultivated �elds had a great impact upon the lake extent because they are the major
anthropogenic activities that in�uence the lake.

Table 5
Statistics for the AHP area transitions of the classes for the years

1992, 2002, 2012 and 2022.
Classes 1992 2002 2012 2022

Very Low 3310.25 1790.25 1802.53 4102.67

Low 6019.54 7530.86 6012.12 3329.38

Moderate 6534.68 5422.71 2526.34 1587.94

Extremely high 16532.31 10307.61 18790.52 16600.65

High 2146.67 8210.68 4936.78 8912.62

Lake extent simulation based on PCA modelling approach
The results for the weighted PCA-based lake extent maps are shown in Fig. 4. The results depict that the lake extent
had been �uctuating over the years which could be contributed to the spatio-temporal variations of climatic,
geomorphological and anthropogenic variables. Table 7 shows the PCA comparison matrix that has the weights
obtained using the eigen vectors and eigen percentages.

Table 6
Statistics for the PCA area transitions of the classes for the years

1992,2002,2012 and 2022.
Classes 1992 2002 2012 2022

Very Low 3262.23 1854.3 1793.10 3913.79

Low 6017.76 7479.09 5404.49 3328.38

Moderate 6475.54 5488.69 2533.54 1580.42

Extremely High 17355.24 10307.61 19770.16 16579.33

High 1091.16 8341.83 5264.32 9365.19
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Table 7
Relative weights generated using eigenvectors and eigenvalues generated based on PCA

      PCA COVARIANCE MATRIX        

  Aspect Curvature TWI slope NDVI BSI Rainfall Percentage Weights

Aspect 0.99 0.01 0.00 0.00 0.00 0.00 0.00 59.67 59.17

Curvature 0.00 0.00 1.00 0.00 0.00 0.00 0.00 13.56 11.71

TWI 0.00 0.07 0.33 0.06 0.68 0.19 0.00 11.71 8.52

slope 0.01 0.56 0.00 0.26 0.17 0.00 0.00 8.91 11.10

NDVI 0.00 0.03 0.00 0.01 0.15 0.81 0.00 3.95 2.89

BSI 0.00 0.00 0.00 0.00 0.00 0.00 1.00 2.19 0.02

Rainfall 0.00 0.33 0.00 0.67 0.00 0.00 0.00 0.02 10.44

total 1.00 1.00 1.33 1.00 1.00 1.00 1.00    

Moreover, the results show that over the years considered, the percentage area of the lake extent in the region had
been deteriorating. The very low class represented the waterbody and in 1992 the extent of the lake was big but in
2002 it reduced by 18% which may have been attributed to by climatic variables or anthropogenic variables, in 2012
the extent of the lake increased by 13.58% and in 2022 the extent also increased by 26% as shown in Fig. 4. Table 6
shows the area transitions of the classes over the years.

Simulating the lake extent using GIS-ensemble modelling
approach
The results of the reclassi�ed weighted PCA-based lake extent maps are presented in Fig. 5. The results exhibit that
a large chunk of the Lake Olbolossat basin is occupied by cultivated �elds and the waterbody extent �uctuates due
to anthropogenic activities which may include deforestation that affected the rainfall and temperature patterns of
an area thus attributing to a smaller lake extent in incidences of drought and increase in rainy seasons. Additionally,
the results show that over the years considered, the percentage area of the lake extent in the region had been
deteriorating. The very low class represented the waterbody and in 1992 the extent of the lake was big but in 2002 it
reduced by 18% which may be attributed to by climatic variables or anthropogenic variables, in 2012 the extent of
the lake increased by 13.58% and in 2022 the extent also increased by 26%. Table 8 shows the area transitions for
the GIS–ensemble approach of the classes.
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Table 8
Statistics for the GIS-ensemble approach area (km2) transitions of the

classes for the years 1992, 2002, 2012 and 2022.
Classes 1992 2002 2012 2022

Very Low 3262.23 1854.3 1793.10 3913.79

Low 6017.76 7479.09 5404.49 3328.38

Moderate 6475.54 5488.69 2533.54 1580.42

Extremely High 17355.24 10307.61 19770.16 16579.33

High 1091.16 8341.83 5264.32 9365.19

Prediction of the lake extent
The results for the predicted lake extent map for the year 2030 are presented in Fig. 6. The validation results
produced Kno, Klocation, KlocationStrata, Kstandard, and average index values of 0.80, 0.81, 1.0, 0.74, and 0.84,
respectively. These statistical coe�cients guaranteed the accuracy and reliability of the transition estimates
(probability area matrix, transition suitability image, and the Markov transition area �les) to generate future lake
extent scenario map for the year 2030 (Fig. 6). The predicted lake extent map for the year 2030 exhibited that
20.01%, 9.52%, 4.6%, 11.6%, and 23.52% of the classes registered very low, low, moderate, high, and extremely high
extent levels. This signi�ed that the very low class will transition in the year 2030 which shows the waterbody and
hence an increase in the lake extent. The blue colour shows the lake and from 1992 to 2022 signi�cantly the area
size signi�cantly reduced and increased there after depicting that the lake faced threats of climatic conditions as
well as the anthropogenic variables. On the other hand, the cultivated �elds increased in area thus becoming threat
to the lake levels. Table 9 shows the area transitions for the prediction of the lake extent for the year 2030.

Discussion
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The AHP-based lake extent maps showed that the largest area under cultivated �elds had a major contribution to
the lake extent as depicted in the land use land cover maps shown in Fig. 7. The spatio-temporal patterns could be
attributed to climate change (Hampton et al., 2017) and anthropogenic activities (Scavia, et al., 2014). The extent of
the lake kept �uctuating from one year to another which could be attributed to the dynamisms of the climatic and
anthropogenic variables. Land use practices for the past 30 years show that after every ten years vegetation cover
decreases due to increased population which only means that the vegetation cover has been cleared to create room
for settlements on for fuel wood and also reducing the percolation of water and thus causing sedimentation that
causes the lake to shrink (Wubie, 2022; Sugianto et al., 2022).

Vegetation acts as surface runoff regulator which ensures that there is less runoff hence increasing in�ltration and
reducing soil erosion. These ensures that the runoff carries less silt load to the lake basin which increases the lake
extent(Kamamia et al., 2022). But in contrast to this, the vegetation has been cleared and therefore there is a risk of
the basin shrinking due to the silt carried to the rivers by surface runoff water (Plate 1). Even though the agricultural
practices tend to reduce over the years, there is a fact that such practices have an effect on the lake.

Given that changes in land use and land cover practices, such as deforestation, contribute to decreased rainfall and
increased sedimentation, there should be a focus on implementing and enforcing sustainable land use
management practices. This may involve regulations to control deforestation, promote afforestation, and manage
settlements to mitigate the impact on vegetation cover (Mzuza et al., 2019). This will directly assist in mitigating the
anthropogenic activities which are a threat the ecosystem of lakes which was a major �nding of this research
(Dieng et al., 2023).

Similar results were obtained when modeling lake extent using the PCA-based approach where the lake kept
dwindling and increasing from one year to another due to the climatic conditions and even the anthropogenic
activities that are a major threat. Besides, the region around the lake has clay soils that are able to retain water and
hence the ability to have a lake, the other regions to the west have loam soils and to the eastern sandy soils which
are poor in water retention and hence easy sediment transportation into the lake (Zacharia et al., 2013). The region
also is relatively �at and is bound by the Aberdare ranges which also makes sedimentation process of loads into
the lake ecosystem as shown in plate 1.

Plate 1 gives a clear scenario of the effects of the anthropogenic activities such as farming that has invaded the
shores of the lake and thus leading to reduction of the water levels. The results obtained in this study showed that
the anthropogenic and climatic variables have largely in�uenced the lakes sustainability.

Similarly, the results from the GIS-ensemble model manifested that most parts of the lake basin are covered by the
cultivated �elds which are extremely high contributing factors to the depletion of the lake extent. Therefore, the
comparisons of the three modelling approaches demonstrated the same spatial-temporal trends of lake dynamism
on environs of the lake ecosystem with the years 2002 and 2022 exhibiting least and high levels of the lake extent,
respectively (Fig. 4, Fig. 5 and Fig. 6). The results revealed that despite the AHP approach being subjective, its
outcome agreed with the PCA-based output as well as for the GIS-ensemble based modelling approach. The results
from the three approaches demonstrated that the largest section of the lake Olbolossat ecosystem is vulnerable to
depletion which could be attributed to adverse climatic conditions, excess anthropogenic activities, relatively �at
landscape con�guration where the lake is situated while the vicinities comprise of ridges, escarpments and ranges
(Karuku et al., 2019).
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Conclusions
The assessment of the lake extent of Lake Olbolossat was based on the following modelling approaches, that is,
AHP-based, PCA-based, and ensemble-based. The research concludes that anthropogenic activities are the major
contributor to lake expansion and depletion as well as the climatic variables while the geomorphological variables
insigni�cantly affect the expansion and depletion of the lake. The average rainfall in the region can be attributed to
various changes occurring in the basin. These changes encompass practices related to land use and land cover,
such as deforestation, which ultimately result in reduced rainfall. Consequently, this issue can be resolved by
e�cient land use management.

Additionally, develop and implement integration of water resource management plans that consider the impact of
both anthropogenic activities and climatic variations on the basin. This involves collaboration among stakeholders,
including local communities, governmental bodies, and environmental organizations. With the policy makers and
stakeholders, the issue of anthropogenic variables will be solved because the people will be educated on the matter
and policies established hence minimizing the risks of shrinkage. However, few studies have been done on lake
dynamism which was a limitation for this research, future researchers should take part in lake dynamism studies so
that environmental management for the lakes is easier and hence a sustainable environment.
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Figure 1

Location map for Lake Olbolossat.
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Figure 2

The methodology framework
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Figure 3

Weighted AHP-lake extent maps for 1992, 2002, 2012 and 2022

Figure 4

Weighted PCA-based lake extent maps for the year 1992, 2002, 2012 and 2022
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Figure 5

GIS-ensemble based lake extent maps for the years 1992, 2002, 2012 and 2022
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Figure 6

(a) Simulated Lake extent map for the year 2022 using the GIS-ensemble, (b) predicted lake extent map based on
Cellular Automata-Markov chain analysis for the year 2022, (c) Predicted Lake extent map for the year 2030.
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Figure 7

Land use land cover maps for the years 1992, 2002, 2012 and 2022.
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