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Abstract  
Traditional ways of protecting against the "Fast Gradient Sign Method" attack usually involve methods like 

altering the input data before processing, training systems to recognize harmful inputs, or identifying 

harmful inputs directly. However, these traditional methods have a number of shortcomings, including their 

limited success, vulnerability to more advanced attacks, difficulty in understanding how they work, and too 

much dependence on standard sets of data for testing. By creating a strong protective, the system against 

The Fast gradient Sign Technique, the objective of this study is to enhance the resilience of machine 

learning algorithms against adversarial attacks while improving their safety and dependability in the highest 

level of accuracy and performance. The study is guided by three objectives: to investigate the robustness of 

existing Deep Learning algorithms for defense against the Fast Gradient Sign Method; to implement the 

block-switching algorithm for defending against the Fast Gradient Sign Method; and to evaluate the 

performance metric of the block-switching algorithm for the protection of deep learning models against 

adversarial attacks. The study will consider three theories that underpin the block-switching algorithm 

including: Avalanche effect, Cryptographic Strength, and Probability theory. The research will use datasets 

from the Modified National Institute of Standards and Technology and the Canadian Institute for Advanced 

Research. It will select commonly used deep learning models for image classification, such as Residual 

Neural Network, Visual Geometry Groups, or Inception, for analysis. The study will employ the Fast 

Gradient Sign Method to create adversarial examples for each model within the chosen datasets. The 

researcher will then compare each Deep Learning model's performance on the adversarial dataset with the 

original dataset to see how resilient each one is against first gradient sign adversarial assaults. To evaluate 

these criteria including accuracy, precision, recall, and F1 score will be applied. The research will perform 

a sensitivity analysis on the parameters used in the Fast Gradient Sign Method attack generation to 

investigate how the attack strength and the number of iterations affect the model's robustness against 

adversarial attacks. To perform the sensitivity analysis, the researcher will use Python and a set of test data 

in the Tensor Flow library. 
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1.1 Introduction  

Recent progress in deep learning has markedly improved capabilities in fields like image and 

speech recognition, underscoring the critical need for robust security measures in these 

technologies due to the fast-paced advancements in artificial intelligence (Neil et al., 2020; Xie et 

al., 2020). A major issue is how susceptible machine learning models are to adversarial examples. 

These are inputs that have been intentionally altered to mislead models into making wrong choices 

(Goodfellow, Shlens & Szegedy, 2015). Such deceptive inputs can cause significant mistakes, 

underscoring the continuous struggle to maintain the safety and dependability of machine learning 

systems. Techniques such as the Gradient Sign Method have been identified as effective means 

for attackers to exploit these vulnerabilities (Kurakin, Goodfellow & Bengio, 2016), prompting 

research into defense mechanisms to protect against such attacks, particularly in high-stakes areas 

like computer vision and the Industrial Internet of Things (Hassan, 2021; Dunn, Moustafa & 

Turnbull, 2020). 

To tackle the limitations of traditional machine learning methods, researchers have developed 

representation learning, which involves creating concise and informative representations of input 

data that capture its essential characteristics (Bengio, Courville, & Vincent, 2013). Convolutional 

neural networks (CNNs) have emerged as a key technique in this domain, offering versatility in 

processing both numerical and visual data for a variety of applications, including cybersecurity 

(Taheri, Salem, & Yuan, 2018). Alongside, visualization-based botnet identification methods have 

been introduced, utilizing visual data representations to enhance data feature understanding 

(Vinayakumar et al., 2020). These advanced approaches enable the prediction and learning of 

distinctive network traffic features, contributing to the identification of malicious activities in 

cybersecurity (Catak et al., 2021). The increasing occurrence of adversarial attacks, which use 

slightly altered data to trick deep learning models, presents serious risks to the trustworthiness and 

dependability of these systems. This situation underscores the critical need for strong defense 

strategies to protect against these vulnerabilities (Janiesch et al., 2021). 

As artificial intelligence becomes more prevalent, adversarial attacks, particularly evasion and 

poisoning attacks, are expected to rise, challenging the integrity of AI systems (Liang et al., 2022). 

Evasion attacks manipulate input data to cause incorrect algorithm predictions, while poisoning 

attacks corrupt the training set to teach the algorithm wrong input-output relationships. Despite 

ongoing efforts to mitigate these threats, attackers now target the machine learning algorithms 

themselves, previously focusing mainly on network attack detection (Merenda, Porcaro & Lero, 

2020). Various methods have been proposed to generate adversarial examples, with some based 

on evolutionary optimization techniques (Su, Vargas, & Sakurai, 2019). The Fast Gradient Sign 

Method (FGSM) is a notable gradient-based technique that creates adversarial examples by 

altering the gradient's sign (Goodfellow, Shlens, & Szegedy, 2015). Despite advancements in 

defensive strategies like adversarial training, defensive distillation, and input transformations, 

these have not been entirely effective in thwarting attacks, indicating the ongoing challenge in 

securing AI systems against sophisticated adversarial techniques (Vinayakumar et al., 2020; Taheri 

et al., 2020).  
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The present study presents a strong defense strategy for machine learning that focuses on the 

model's ability to stay accurate even when faced with unexpected or distorted inputs (Catak et al., 

2021). To fight back against the gradient sign method often used in adversarial attacks, the study 

suggests using a block-switching algorithm, an idea taken from the field of cryptography. In 

cryptography, block-switching algorithms work by encrypting data in set-sized pieces, which 

makes them more secure and efficient than methods that encrypt data bit by bit, as explained by 

Hutter & Tunstall (2019) and further explored by Alekseev and Bozhko (2020). Such algorithms, 

including the well-known Advanced Encryption Standard (AES) and Blowfish, perform a series 

of operations like substitution, permutation, and modular arithmetic on plaintext blocks to produce 

ciphertext (Dolmatov & Baryshkov, 2020). The proposed block-switching approach in machine 

learning disrupts the attacker's ability to exploit gradient information by randomly reordering the 

input blocks, thereby complicating the extraction of meaningful data and enhancing the model's 

defense against adversarial attacks.  

1.2 Statement of the Problem  

Traditional defensive systems against the FGSM attack often rely on techniques such as input 

preprocessing, adversarial training, or detecting adversarial examples. However, these traditional 

defenses have several weaknesses such as limited effectiveness, vulnerability to adaptive attacks, 

lack of interpretability, and over-reliance on benchmark datasets (Liao et al., 2018; Guo et al., 

2017).  Although the FGSM (Fast Gradient Sign Method) attack is widely recognized, the exact 

reasons behind its effectiveness are not fully understood (Goodfellow et al., 2015; Athalye et al., 

2018). This gap in knowledge hinders the development of effective defense methods. Further 

research is needed on how well defenses against FGSM attacks can be applied in different 

situations. A frequently used example of an adversarial attack involves an image of a panda. The 

left picture shows a picture of a panda that has not been modified at all. The intricate neural 

network which has undergone training on a particular dataset of images, has the ability to identify 

the image in question as a panda. It is important to note the model possesses enough confidence in 

its judgment. In this regard, it is estimated that there is a 58% chance that the picture depicts a 

panda. The middle image shows the best direction to change all pixels when computed the exact 

way we may change the image to cause, for instance, ConvNet to make a mistake. The outcome is 

a picture that human beings cannot distinguish from that initial panda when the image of the 

organized assault is multiplied by a small coefficient and added to the original panda. (Goodfellow, 

Bengio & Courville, 2016). According to human perception, there is no discernible distinction or 

dissimilarity between the image on the left and the one on the right. 
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Figure 1: Adversarial Input  

(Source: Goodfellow, Bengio & Courville, 2016) 

1.3 Objectives of the Study  

The study was guided by general and specific objectives.  

1.3.1 General Objective 

The objective of this study is to enhance the resilience of machine learning algorithms against 

adversarial attacks while improving their safety and dependability in the highest level of accuracy 

and performance. 

1.3.2 Specific Objectives of the Study 

i. To investigate the robustness of existing Deep Learning algorithms for defense against the 

Fast Gradient Sign Method. 

ii. To implement the block-switching algorithm for defending against the Fast Gradient Sign 

Method. 

iii. To evaluate the performance metric of the block-switching algorithm for the protection of 

deep learning models against adversarial attacks.  

1.4 Research Questions 

i. Can the robustness of existing Deep learning algorithms for defense against the Fast 

Gradient Sign Method investigated? 

ii. Can the block-switching algorithm for defense against Fast Gradient Sign Method be 

implemented? 

iii. Can the performance metric of the block-switching algorithm for the protection of deep 

learning models against adversarial attacks be evaluated? 

1.4.1 Research Hypotheses   

i. H01: There is no significant relationship between the robustness of existing Deep learning 

algorithms and defense against the Fast Gradient Sign Method. 
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\\\ 

                                                            

https://doi.org/10.53819/81018102t7002  

47 

 

Stratford Peer Reviewed Journals and Book Publishing 

 Journal of Information and Technology  

Volume 8||Issue 1 ||Page 43-64||February |2024|  

Email: info@stratfordjournals.org ISSN: 2617-3573 

 

 

 
ii. H02: There is no significant relationship between block-switching algorithm and defense 

against Fast Gradient Sign Method. 

iii. H03: There is no significant relationship between the block-switching algorithm for 

protection of deep learning models against adversarial attack.  

2.1: Conceptual Review 

The study presents a review of concepts, such as adversarial attacks, whitebox and blackbox 

attacks and block switching methods.  

2.1.1 Adversarial Attacks  

Adversarial attacks pose a serious cybersecurity risk by altering data inputs to deceive machine 

learning models (MLMs) into making wrong choices, as pointed out by Carlini et al. (2018). With 

the growing use of machine learning, there's a heightened focus on the susceptibility of these 

systems to such attacks, jeopardizing their safety and reliability (Oprea, 2021). Machine learning 

systems depend on data and statistical patterns to perform tasks ranging from image recognition 

to language translation. However, this reliance makes them susceptible to adversarial 

manipulations that are subtle enough to evade human detection but can significantly skew the 

model's outputs, as discussed by Catak and Yayilgan (2021). These vulnerabilities emphasize the 

necessity for continuous research aimed at comprehending and mitigating adversarial threats. This 

is crucial to uphold the reliability and safety of machine learning applications. 

Addressing adversarial attacks involves both detection and defense strategies. Detection is 

challenging due to the attackers' intent to make their manipulations imperceptible, making it hard 

to discern whether inaccuracies in model predictions are due to attacks or simple errors (Martinez 

et al., 2019). Some researchers have made progress in identifying data patterns indicative of attacks 

and enhancing model robustness against such manipulations (Sharif et al., 2017; Martinez et al., 

2020). On the defense front, strategies include developing more attack-resistant algorithms, 

incorporating adversarial examples into training to improve model resilience, and employing 

ensemble models to complicate the attackers' efforts (Qui et al., 2021; Luo, 2020; Xie et al., 2020). 

These approaches aim to fortify machine learning models against adversarial influences, 

safeguarding their accuracy and reliability in various applications 

2.1.2 Classification of Adversarial Attacks 

Various adversarial examples can be categorized as follows  

2.1.2.1 Whitebox vs. Blackbox Attacks  

Cybersecurity professionals are constantly developing strategies to defend against various types 

of cyber-attacks, including whitebox and blackbox attacks. In a whitebox attack, the attacker has 

complete knowledge of the system's internal structure, including access to source code and design 

documents, enabling the identification and exploitation of obscure vulnerabilities (Athalye et al., 

2018; Carlini & Wagner, 2017; Moosavi-Dezfooli et al., 2016). This thorough understanding 

empowers attackers to execute advanced attacks like code injection, involving the insertion of 

malicious code into an application to undermine its integrity (Goodfellow et al., 2015). In contrast, 

blackbox attacks occur when attackers lack knowledge about the internal workings of the system, 

resorting instead to trial-and-error techniques such as brute force attacks to identify vulnerabilities. 
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Despite requiring less skill, these attacks can be executed more quickly since they don't necessitate 

a deep understanding of the system's architecture (Dezfooli et al., 2016; Athalye et al., 2018; Su, 

Vargas & Sakurai, 2019). Each attack type presents unique challenges and requires tailored 

defensive strategies to ensure the security and integrity of the systems. 

2.1.2.2 Imperceptible vs. Perceptible Attacks  

Cyber attackers deploy a range of tactics to infiltrate systems and access sensitive data, 

distinguishing their methods based on visibility to users and systems. Imperceptible attacks, such 

as rootkits and Trojan horses, are stealthy operations designed to evade detection while granting 

attackers root-level access or delivering malicious payloads without the user's knowledge 

(Mingkang et al., 2021; Zhao, Liu & Larson, 2020). These attacks pose significant challenges due 

to their ability to remain hidden, making them particularly dangerous as they can silently 

compromise systems and exfiltrate data. In contrast, perceptible attacks like phishing and 

distributed denial of service (DDoS) assaults aim to be noticeable, either by directly engaging with 

the user to deceitfully obtain sensitive information or by overwhelming system resources to disrupt 

service, often triggering security alerts (Bai et al., 2022; Carlini & Wagner, 2018). The stark 

difference in the visibility of these attacks necessitates diverse defensive strategies, with 

imperceptible attacks requiring more sophisticated detection mechanisms to uncover hidden 

threats, while perceptible attacks demand robust preventive measures to block or mitigate the 

impact of the assault. 

2.1.2.3 Targeted vs. Untargeted Attacks 

In cybersecurity, the distinction between targeted and untargeted attacks highlights the varied 

strategies employed by cyber attackers. Targeted attacks are meticulously planned and executed 

against specific individuals or organizations, involving in-depth reconnaissance to exploit 

particular vulnerabilities. These attacks are characterized by their tailored nature and persistence, 

often conducted by well-resourced and organized groups aiming for precise objectives (Carlini & 

Wagner, 2018; Taori et al., 2018). Conversely, untargeted attacks, often referred to as "spray and 

pray" tactics, aim to exploit a broad range of systems by leveraging automated tools to scan for 

and exploit known vulnerabilities without specific targets in mind (Anthi et al., 2018). These 

attacks do not discriminate and instead cast a wide net in the hopes of finding and exploiting any 

available weaknesses. Preventive measures for targeted attacks include employee training to 

heighten awareness of security protocols, network segmentation to isolate critical systems and 

hinder lateral movement of attackers within the network, and strict access controls to restrict 

unauthorized access to sensitive data, all of which are crucial in mitigating the risks posed by these 

meticulously planned cyber incursions (Carlini & Wagner, 2018; Taori et al., 2018; Anthi et al., 

2018). 

2.1.3 Block Switching Method 

The block Switching (BS) technique is a good optimization technique to train deep neural 

networks. The BS model is trained in two distinct levels. Individual sub-models that possess 

similar features within the same framework are trained separately, in the Fast phase using random 

weights (Ashutosh et al., 2021). Switching between various blocks, makes the network extract 

complex and important features to optimize the performance and the robustness of the proposed 

model, making it give an accurate prediction because random initialization and stochasticity in the 
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training process can lead to variations or unpredictability in the outcomes of MLMs (Xiao et al., 

2020). 

The sub-block is further subdivided into two segments after the Fast training, the lower module, 

and the upper module. Lower module is assembled into parallel blocks while the upper module is 

discarded of the block switching.  In the second round, the entire block switching using the same 

set of training data, for the purpose to attain the best accuracy (Xiao et al., 2020). 

 2.1.4 FAST Gradient Sign Method (FGSM) 

The Fast Gradient Sign Method (FGSM), pioneered by Goodfellow et al. (2015), stands out as a 

significant adversarial attack technique. It creates slight perturbations in input data, deceiving 

neural networks into reaching incorrect conclusions. By manipulating the gradient of the loss 

function, this method exposes the susceptibility of neural networks to minor alterations in input, 

stressing the importance of enhancing model robustness. However, FGSM's effectiveness is 

limited in scenarios where attackers cannot access the model's internals, such as in black-box 

attacks (Kurakin, Goodfellow, & Bengio, 2016; Carlini & Wagner, 2017). Despite various 

proposed defensive measures like adversarial training and defensive distillation, challenges remain 

in fully countering FGSM attacks (Vinayakumar et al., 2020; Taheri et al., 2020). Nonetheless, 

FGSM's ease of use and quick execution make it a valuable tool for both attacking and enhancing 

model defenses, suggesting its dual utility in cybersecurity (Goodfellow et al., 2015; Althaye et 

al., 2018). 

2.2 Theoretical Review 

The study considered three theories that underpin the block-switching algorithm including: 

Avalanche effect, Cryptographic Strength, and Probability theory. 

2.2.1 Avalanche Effect 

The Avalanche Effect, introduced by Horst Feistel in 1973, is fundamental in cryptography, 

emphasizing that minor changes in input should result in major alterations in output, a principle 

critical for the security of block ciphers (Shi, H., Deng & Guan, 2011). This effect enhances the 

difficulty for attackers to exploit vulnerabilities, as small errors or variations in input lead to 

unpredictable changes in the encrypted output, thereby securing the cipher against pattern analysis 

and attacks (Bhoge & Chatur, 2014). The block-switching algorithm capitalizes on this 

phenomenon, guaranteeing that even slight modifications in the plaintext lead to substantial and 

unforeseeable alterations in the ciphertext. This enhances the encryption's resilience against 

decryption efforts and data leakage (Echeverri, 2017; Ramanujam & Karuppiah, 2011). This 

research utilizes the Avalanche Effect to affirm the effectiveness of the block-switching algorithm, 

showcasing its ability to preserve encryption reliability and precision, even when confronted with 

minor input perturbations. 

2.2.2 Cryptographic Strength  

Cryptographic strength is a critical measure in cryptography, denoting the security level of an 

algorithm based on factors like key length, encryption rounds, and attack resistance, without being 

credited to any single individual (Preneel, 2000). The strength of the block-switching algorithm, 

for instance, hinges on these aspects, ensuring its effectiveness against various cryptographic 
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attacks and enhancing the accuracy of encryption outcomes (Afzal et al., 2000). Incorporating the 

Advanced Encryption Standard (AES) due to its robustness and widespread acceptance, the 

algorithm employs AES's symmetric key and variable key lengths for heightened security (Sulak 

et al., 2000; Ukrop, 2016). Furthermore, the adoption of Cipher Block Chaining (CBC) mode, 

which utilizes an Initialization Vector (IV) for encryption randomization, bolsters the algorithm 

against pattern detection and cipher vulnerabilities. The employment of multiple encryption rounds 

solidifies the algorithm's reliability, ensuring significant alterations in ciphertext output with any 

slight changes in the input, thereby underpinning the encryption process's accuracy and the cipher's 

overall cryptographic robustness (Afzal et al., 2020; Ukrop, 2016).. 

2.2.3 Probability Theory 

The foundational framework of probability theory, pivotal for analyzing the block-switching 

algorithm's effectiveness, traces back to the 17th-century correspondence between Blaise Pascal 

and Pierre de Fermat, later systematically expounded by Jacob Bernoulli in "Ars Conjectandi" 

(Grimmett & Stirzaker, 1992). This mathematical theory aids in evaluating the block-switching 

algorithm by estimating the likelihood of specific outcomes within the encryption process, 

particularly its capacity to generate ciphertext that appears random, thereby enhancing security by 

obscuring patterns in encrypted data (Sulak et al., 2010). Utilizing probability theory, one can 

assess the randomness of the ciphertext produced, calculating the probability of the output being 

indistinguishable from random data under given inputs and encryption settings (Li et al., 2012). 

This approach not only verifies the encryption's integrity but also gauges the encryption's resilience 

against cryptographic attacks by estimating the effort required for an adversary to compromise the 

system (Killmann & Schindler, 2001). Consequently, probability theory offers a robust 

mathematical basis for scrutinizing the block-switching algorithm's accuracy and security, 

ensuring its reliability in safeguarding data. 

2.3 Empirical Literature Review  

Adversarial attacks in machine learning have garnered significant attention due to their ability to 

exploit vulnerabilities in Machine Learning Models (MLMs) through carefully crafted 

perturbations, impacting various domains such as natural language processing, computer vision, 

and cybersecurity. These attacks are primarily categorized based on their reliance on the model's 

decision-making process or its comprehensive information, with techniques like Boundary Attack 

and Evolutionary Attack focusing on decision-based strategies, and others employing gradient-

based methods to manipulate input data and induce errors (Qiu et al., 2019; Chen, Jordan & 

Wainwright, 2020; Dong et al., 2020; Mao et al., 2020; Mekala, Porter & Lindvall, 2020; Kwon 

et al., 2021). The sophistication of these attacks, especially in black-box scenarios where attackers 

have limited knowledge of the underlying model, underscores the urgent need for developing more 

resilient defense mechanisms to safeguard sensitive systems, particularly in areas like face 

recognition (Dong et al., 2019). 

Research endeavors have focused on strengthening the resilience of deep neural networks against 

adversarial inputs. Khalil (2021) notably investigated the detection of first-order adversarial 

attacks using Siamese Neural Networks (SNNs), showcasing the model's exceptional performance 

across different datasets and attack strategies while maintaining generality. This progress in 

defending against adversarial threats underscores the effectiveness of specialized neural network 
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architectures in recognizing and mitigating malicious inputs, thereby enhancing the security and 

dependability of machine learning systems. 

In parallel, innovative approaches like the one proposed by Taheri et al. (2020), which utilizes 

Generative Adversarial Networks (GANs) to generate new adversarial examples for model 

retraining, show promise in fortifying models against such attacks. This technique leverages the 

adversarial generation capabilities of GANs to iteratively improve model resilience, showcasing 

the effectiveness of adaptive retraining strategies in the ongoing battle against adversarial threats. 

Similarly, the research conducted by Chen (2020) on the resilience of deep neural networks and 

tree-based models introduces a novel method for learning robust trees, addressing the max-min 

saddle point issue in node splitting and suggesting efficient tree-building techniques that 

significantly enhance model robustness. 

Emerging defensive strategies like the hierarchical random switching (HRS) and CRU-Net defense 

concept further illustrate the evolving landscape of adversarial defense mechanisms. HRS, with its 

multi-block randomization approach, demonstrates enhanced resilience against adaptive attacks 

and white-box misclassification techniques, improving the robustness-accuracy trade-off (Wang 

et al., 2020). CRU-Net, drawing inspiration from previous defensive models, employs residual 

learning and U-Net architectures to effectively map adversarial examples back to clean images, 

showcasing its efficacy in maintaining network robustness in computational vision applications 

(Ali et al., 2022). Additionally, the novel noise data enhancement framework (NDEF) introduced 

by Xie et al. (2021) incorporates random erasing to mitigate over-fitting to adversarial samples, 

offering a promising avenue for enhancing model defense against a broad spectrum of adversarial 

attacks. These advancements highlight the dynamic and multifaceted nature of research in 

adversarial defense, underscoring the critical importance of continuous innovation in securing 

machine learning models against evolving threats. 

3.0 Research Methodology. 

The study leveraged the extensive ImageNet dataset as its primary data source, providing a broad 

range of labeled images for comprehensive model training and evaluation. A selection of 

established deep learning models commonly employed in image classification tasks—specifically 

ResNet, VGG, and Inception—were chosen for their proven efficacy and widespread use within 

the research community. To assess the vulnerability of these models to adversarial threats, the Fast 

Gradient Sign Method (FGSM) was utilized to generate adversarial examples, introducing 

carefully crafted perturbations to the input images. In response to these adversarial challenges, a 

defensive architecture was devised, incorporating Convolutional Variational Auto-Encoders 

(CVAE), Block Switching (BS), and Grad-CAM, aimed at enhancing the models' resilience 

against such attacks. The robustness of the models was evaluated by comparing their performance 

on both the original and adversarially altered datasets, employing key metrics such as accuracy, 

precision, recall, and F1 score. This methodological approach facilitated a nuanced analysis of 

each model's resistance to FGSM-induced adversarial examples and the efficacy of the proposed 

defensive mechanisms. Additionally, a rigorous analysis delved into the models' sensitivities to 

adversarial parameters, leveraging TensorFlow and PyTorch libraries for implementation and 

validation. This comprehensive approach enabled a nuanced understanding of model 

vulnerabilities and the effectiveness of defensive strategies in mitigating adversarial threats.  
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4.0 Research Findings and Discussion 

The study findings are presented per objective. 

 4.1 Experiment Results 

Table 1 below represent the results obtained after performing the sensitivity analysis using Python 

and a set of test data in the TensorFlow library. The FGSM attack was utilized to generate 

adversarial examples with varying values of epsilon and iteration numbers.  

Table 1: Summary of Sensitivity Analysis Results 

Number 

of Images 

Attack Model Defense Model 

Successful 

attack 

Failed 

attack 

Attack Model 

Accuracy (%) 

Successful 

Defense 

Failed 

Defense 

Defense Model 

Accuracy (%) 

80 74 6 91.89 71 9 90.96 

80 75 5 93.33 67 13 83.96 

160 150 6 93.33 134 26 83.96 

240 225 15 93.33 201 39 83.96 

322 299 23 92.31 283 39 89.81 

392 363 29 92.01 344 48 89.63 

397 368 29 92.12 347 50 89.16 

401 372 29 92.20 349 52 88.65 

402 373 29 92.23 350 52 88.69 

412 383 29 92.43 357 55 88.12 

The accuracy of the model is assessed using both the original test data and the generated adversarial 

examples. The process is repeated for different values of epsilon and number of iterations.  

4.2 The Attack Model 

Figure 2 shows the percentage of attack model accuracy as it changes with different iteration and 

number of images.  
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Figure 2: Number of images versus attack model accuracy 

According to Figure 2, as the number of images rises from 80 to 240, the accuracy of the attack 

model increases from 91.89% to 93.33%. This indicates a positive correlation, where a greater 

number of images corresponds to higher accuracy in the attack model. Between 240 and 402 

images, the accuracy of the attack model remains relatively consistent, hovering around 93.33% 

to 92.43%. This suggests that increasing the number of images beyond 240 does not lead to a 

significant improvement in accuracy. After 402 images, there is a slight decrease in accuracy, with 

the accuracy gradually dropping from 92.43% to 92.12%. This indicates a mild decrease in 

performance of the attack model as the number of images further increases. Between the data 

points, there are some fluctuations in accuracy even when the number of images remains constant. 

For example, there is variation in accuracy around 92.33% for some data points with 402 images. 

This suggests that factors other than the number of images may be influencing accuracy. Figure 3 

below shows a similar trend when the successful attacks are plotted against the accuracy of the 

attack model.  
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Figure 3: Successful Attacks vs. Attack Model Accuracy 

From Figure 3 above, as the accuracy of the model increases from 91.89% to 93.33%, the number 

of successful attacks generally increases. This indicates a positive relationship between model 

accuracy and the number of successful attacks. Once attack model accuracy reaches 93.33%, the 

number of successful attacks stabilizes at 225. This suggests that beyond an accuracy of 93.33%, 

further improvements in accuracy do not result in a significant increase in successful attacks. 

4.3 The Defense Model 

 

Figure 4: Number of Images vs. defense model accuracy 

Figure 4 above shows that as the number of images increases from 80 to 412, the accuracy remains 

relatively stable around 83.96% to 90.96% for the defense model. There is a slight decrease in the 

accuracy of the defense model as the number of images increases from 80 to 412. This suggests 

that, in this dataset, having more images may not necessarily lead to higher defense model 

accuracy. There are fluctuations in accuracy even when the number of images remains the same. 
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For instance, the model accuracy at 80 images is different for two data points (90.96% and 

83.96%). This indicates that factors other than the number of images may be influencing accuracy 

in this case. 

Figure 5 below shows the behavior of accuracy of the model for each instance of successful 

defense.   

 

Figure 5: Number of Iterations Vs. Defense Model Accuracy and Successful Defense 

The accuracy of the defense model remains constant at 83.96% for all data points. This indicates 

that the accuracy of the defense model is consistent and doesn't vary with changes in the number 

of successful defenses. The number of successful defense instances increases as you move down 

the dataset, going from 71 to 357. This suggests that the defense model is becoming more 

successful in defending against attacks. 

4.4 Evaluation of the Models 

The study models are evaluated per objective. 

4.4.1 Successful Attacks versus Success Defense 

The mean is a measure of central tendency. For successful attack, the mean is 268.20, and for 

successful defense, it is 250.30. On average, there were 268.20 successful attacks and 250.30 

successful defenses, respectively. However, the median, which represents the middle value in a 

dataset when values are arranged from lowest to highest, differs. According to Manikandan (2011), 

the median for successful attacks is 331.00, while for successful defenses, it is 313.50. This 

suggests that in both cases, the median is higher than the mean, indicating a negatively skewed 

distribution.  

The standard deviation measures the spread or dispersion of data points around the mean (El Omda 

& Sergent, 2023). A higher standard deviation indicates more variability in the data. For successful 

attack, the standard deviation is 127.240, and for successful defense, it is 121.092. This implies 

that there is some variability in the number of successful attacks and successful defenses, with a 

slightly lower standard deviation for successful defense. The variance is the square of the standard 

deviation and provides a measure of the spread of data. For successful attack, the variance is 

16,189.956, and for Successful defense," it is 14,663.344. 
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Skewness measures the asymmetry of the data distribution. A negative skewness value indicates a 

leftward (negatively) skewed distribution, meaning the tail on the left side of the distribution is 

longer or fatter than the right side (Senger, 2013). Both variables have negative skewness 

(Successful Attack: -0.715, Successful Defense: -0.679), confirming the leftward skew. The SPSS 

output table for the descriptive statistics is shown below; 

 

Table 2: Descriptive Statistics 

 Successful      Attack Successful  

Defense 

N 
Valid 10 10 

Missing 0 0 

Mean 268.200 250.300 

Median 331.000 313.500 

Std. Deviation 127.240 121.092 

Variance 16189.956 14663.344 

Skewness -.715 -.679 

Std. Error of Skewness .687 .687 

Kurtosis -1.337 -1.456 

Std. Error of Kurtosis 1.334 1.334 

A One-Sample T-Test was done to compare the means between successful attacks and successful 

defense and the results presented below.  

Table 3: One-Sample Statistics 

 N Mean Std. Deviation Std. Error Mean 

Successful Attack 10 268.20 127.240 40.237 

Successful Defense 10 250.30 121.092 38.293 

The standard error of the mean for successful attack is 40.237 while for successful defense is 

38.293. According to Lee et al. (2015), the SEM indicates the precision of the sample mean 

estimate. A higher SEM suggests that the sample mean may be less precise as an estimate of the 

population mean.  
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Table 4: One-Sample Test 

 Test Value = 0 

t df Sig. (2-

tailed) 

Mean  

Difference 

95% Confidence Interval 

of the Difference 

Lower Upper 

Successful Attack 6.666 9 .000 268.200 177.18 359.22 

Successful Defense 6.536 9 .000 250.300 163.68 336.92 

Both successful attack and successful defense have very low p-values (p = 0.000), indicating that 

the sample means for both variables are significantly different from the test value of 0. The 95% 

confidence intervals further support this conclusion, as they do not include 0. This suggests that 

both successful attack and successful defense are significantly greater than 0. 

4.4.2 Attack versus Defense Accuracy 

The results of descriptive statistical analysis using SPSS are presented below. 

Table 5: Attach Vs. Defense Accuracy Descriptive Statistics 

 Attack Accuracy Defense Accuracy 

N 
Valid 10 10 

Missing 0 0 

Mean 92.52 87.69 

Median 92.27 88.67 

Std. Deviation .580 2.687 

Variance .336 7.217 

Skewness .783 -.707 

Std. Error of Skewness .687 .687 

Kurtosis -1.303 -1.256 

Std. Error of Kurtosis 1.334 1.334 

The mean for attack accuracy is 92.52, indicating that the average attack accuracy is 92.52%. The 

standard deviation for attack accuracy is 0.580, which quantifies the amount of variation or 

dispersion in the data (Lee et al., 2015). A lower standard deviation suggests less variability in 

attack accuracy. The variance is the square of the standard deviation and provides a measure of the 

spread of data. For attack accuracy, the variance is 0.336. Skewness measures the asymmetry of 

the data distribution. A positive skewness value, such as the one reported (0.783), indicates a 

rightward (positively) skewed distribution. This implies that the tail on the right side of the 

distribution is longer or thicker than the left side. Kurtosis, as described by Kim (2013), measures 

the "tailedness" of the data distribution. A negative value, like the reported -1.303, indicates a 

platykurtic distribution, meaning the distribution has thinner tails and is less peaked than a normal 

distribution. It's worth noting that the statistics provided for defense accuracy are similar to those 

for attack accuracy. 
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A One-Sample T-Test was done to compare the means between successful attacks and successful 

defense and the results presented below.  

Table 6: One-Sample Statistics: Attack Vs. Defense Accuracy 

 N Mean Std. Deviation Std. Error Mean 

(SEM) 

Attack Accuracy 10 92.52 .580 .183 

Defense Accuracy 10 87.69 2.687 .850 

The standard error of the mean for attack accuracy is 0.183. According to Andrade (2020), a lower 

SEM suggests that the sample mean is a more precise estimate of the population mean. The SEM 

for defense accuracy is 0.850. The SEM for defense accuracy is higher than that of attack accuracy, 

indicating that the sample mean for defense accuracy is less precise as an estimate of the population 

mean. 

Table 7: One-Sample Test: Attack Vs. Defense Accuracy 

 Test Value = 0 

t df Sig. (2-

tailed) 

Mean  

Difference 

95% Confidence Interval 

of the Difference 

Lower Upper 

Attack Accuracy 504.730 9 .000 92.518 92.10 92.93 

Defense Accuracy 103.219 9 .000 87.690 85.77 89.61 

Both attack accuracy and defense accuracy have very low p-values (p = 0.000), indicating that the 

sample means for both variables are significantly different from the test value of 0. The 95% 

confidence intervals further support this conclusion, as they do not include 0. This suggests that 

both attack and defense accuracy are significantly greater than 0. 

4.4.3 Confusion Matrix 

Table 8 shows the confusion matrix.  

Table 8: Confusion Matrix 

Aspect  Score 

Accuracy 0.6748 

Precision 0.873367 

Recall 0.765664 

F1 Score 0.815962 

The achieved accuracy of 67.48% indicates that the model correctly predicts the class labels for 

approximately two-thirds of the instances. While moderate, this accuracy needs to be considered 

in the context of adversarial attacks, where model robustness is of primary concern. The high 

precision value of 87.34% is a notable strength. It signifies that when the model classifies an 

instance as adversarial, it is correct about 87.34% of the time. This is particularly crucial in 

applications where misclassifying an adversarial example as benign could have severe 

consequences. The recall of 76.56% implies that the model successfully identifies approximately 
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three-quarters of the actual positive instances, i.e., the adversarial examples in the dataset. While 

a respectable figure, the tradeoff with precision suggests there might be instances where actual 

adversarial examples are missed. The F1 score, being the harmonic mean of precision and recall, 

provides a balanced assessment. The achieved F1 score of 81.60% suggests a good compromise 

between precision and recall. It serves as an overall indicator of the model's performance against 

the Fast Gradient Sign Method (FGSM) attack. 

The set of metrics collectively reveals the model's performance against adversarial attacks. The 

high precision reflects a strong capability to accurately classify adversarial instances, while the 

balance with recall offers a nuanced assessment of the model's overall effectiveness. The trade-off 

between precision and recall is a common challenge in machine learning, and it is apparent in this 

study. While precision is high, indicating confidence in the model's predictions, there is a trade-

off with recall, suggesting a potential need for improvements in capturing a larger portion of actual 

adversarial instances. Overall, the achieved metrics collectively indicate a reasonable level of 

robustness against the FGSM attack. High precision is reassuring, especially in scenarios where 

false positives can have severe consequences. Further investigation into techniques that can 

enhance recall without sacrificing precision may be warranted. The sensitivity analysis on the 

parameters of the FGSM attack provides valuable insights into how the model responds to 

variations in attack strength and iterations. Understanding these sensitivities is crucial for refining 

and optimizing the defense mechanisms, including the block-switching algorithm 

5.0 Summary of Study Findings  

The analysis employed the FGSM attack to generate adversarial examples, with varying values of 

epsilon and iteration numbers. The primary focus is on the relationship between the number of 

images, attack and defense models, and their corresponding accuracy. The attack model's accuracy 

consistently increased as the number of images rose from 80 to 240, demonstrating a positive 

correlation. Figure 1 illustrates the relationship between the number of images and the accuracy of 

the attack model, reinforcing the observation that a higher number of images generally leads to 

improved accuracy. Successful attacks grew in number as the accuracy of the attack model 

increased, indicating a positive correlation between model accuracy and the number of successful 

attacks. 

The defense model's accuracy remained relatively constant at 83.96% to 90.96% as the number of 

images increased from 80 to 412. This suggested that, in this dataset, an increase in the number of 

images did not necessarily lead to higher defense model accuracy. Figure 3 visually depicts the 

relationship between the number of images and defense model accuracy. The defense model's 

accuracy exhibited consistency at 83.96% across all data points, indicating that its performance 

did not significantly vary with changes in the number of successful defenses. Notably, the number 

of successful defense instances increased progressively, from 71 to 357, as we moved through the 

dataset. This signifies an enhancement in the defense model's effectiveness against attacks. 

6.0 Conclusions 

The study concludes that the number of images used in the dataset significantly impacts the 

accuracy of both the attack and defense models. Increasing the number of images beyond a certain 

point does not necessarily lead to a significant improvement in model accuracy; in some cases, it 

can even result in a mild decrease in performance. The accuracy of the defense model remains 
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relatively stable across different data points, indicating its consistency in handling attacks. 

Additionally, there is a positive relationship between the accuracy of the attack model and the 

number of successful attacks, up to a certain threshold. Moreover, the dataset exhibits certain 

variability and influences beyond the number of images, which can affect model accuracy. 

7.0 Recommendations 

The study recommends underscoring the importance of ensuring the integrity and robustness of 

machine learning models in cybersecurity. Policymakers should consider incorporating guidelines 

that encourage the evaluation and enhancement of both attack and defense models to adapt to 

evolving threats. Organizations utilizing machine learning models in their cybersecurity strategies 

should be aware of the critical role played by the quantity and quality of training data. Ensuring 

diverse and substantial datasets is essential for maintaining model accuracy. 

The study further recommends exploring the block-switching algorithm as it offers a secured data 

encryption approach compared to traditional techniques. By using high-level encryption methods, 

organizations can effectively safeguard data against cyber-attacks and unauthorized access. 

Additionally, a strong defensive system enhances the reliability of an organization's cybersecurity 

measures. By establishing a system that's less susceptible to breaches or attacks, organizations can 

maintain the trust of their customers and stakeholders while minimizing the risk of harm. 

Consequently, numerous industries face requirements concerning data privacy and security. 

Through the implementation of a system utilizing the block-switching algorithm, organizations 

can ensure compliance with these regulations, avoiding penalties and legal liabilities. In the present 

era, cybersecurity holds increasing significance for businesses. Therefore, by adopting a system 

incorporating the block-switching algorithm, organizations raise their bars by showing 

commitment to cybersecurity and consumer data security. 
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