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Optimal Rate–Delay Tradeoffs and Delay Mitigating
Codes for Multipath Routed and Network Coded

Networks
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Abstract—Via multiterminal information theory, a framework
is presented for deriving fundamental rate–delay tradeoffs that
delay mitigating codes must have when utilized over multi-
path routed and random linear network coded networks. The
rate–delay tradeoff is formulated as a calculus problem on a
capacity region of a related abstracted broadcast channel. Given
this general framework for studying such rate–delay tradeoffs,
the extreme case of uniform networks, in which each possible
received packet arrival order is equally likely, is considered. For
these networks, the rate–delay calculus problem is simplified to
an integer programming problem, which for small numbers of
packets may be solved explicitly, or for larger numbers of packets,
may be accurately approximated through the calculus of varia-
tions by appropriate relaxation of an integer constraint. Explicit
expressions for the rate–delay tradeoff in uniform networks are
presented in the special cases of i) constant packet inter-arrival
times, and ii) exponential independent and identically distributed
(i.i.d.) packet arrival times. Finally, the delay mitigating codes
achieving these rate–delay tradeoffs are discussed.

Index Terms—Connection-oriented service, delay-mitigating
codes, multipath routing, network coding, rate–delay tradeoffs.

I. INTRODUCTION

A. Problem Statement

C ONSIDER a multipath routed network in which a partic-
ular source hands packets (each bits

long) to the lower network layers for transmission at time .
These packets are all headed to the same destination, but,
because of queueing and propagation delays along the different
routes, the packets arrive at the sink at different
time instants , possibly giving a different order.
We will model the source-to-destination effects of the multi-
path routed network transmission, then, as selecting these arrival
times randomly according to some joint distribution
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. We assume packets are not lost in order to focus
our attention on the impact of packet reordering and delay (see
Section VI).

Denote by the index of the transmitted packet that is the
th received packet, so that the packets arriving at the receiver in

order are , with1

, which we denote by . We can then think of
the probability distribution on the arrival times as
being composed of a probability distribution on the arrival
order and a probability distribution on the ordered arrival in-
stants given the arrival order . This paper inves-
tigates in particular the case where the ordered arrival instants
are independent of the arrival order, so that

. Such independence occurs, for example, when
the packet arrival times are independent and identi-
cally distributed (i.i.d.).

Suppose further that the source node wishes to use the packets
to convey some temporally ordered data to the re-

ceiver. For instance, the source node may wish to convey a dig-
ital multimedia file that is the output of a multimedia source
encoder which, after compressing the source, returns data orga-
nized into temporally ordered frames corresponding
to successive chunks of time from the multimedia signal. As-
suming that the source encoder has done a good job of com-
pressing, the data in will be independent. Alterna-
tively, the source node may be controlling the destination node
remotely through the network, with a sequence of temporally
ordered instruction frames that must be executed in
order. As another possibility, the source node may be engaged in
a voice over Internet Protocol (VoIP) conversation with the re-
ceiver. Indeed, almost any connection-oriented network source
application could be considered as relevant for what we are
about to discuss.

All of these temporally ordered source signals share the
common characteristic that later data (i.e., with higher frame
indices) is not useful until earlier data (i.e., with lower frame
indices) has been received. However, since the effective
point-to-point channel that the multipath routed network cre-
ates reorders packets, were we simply to transmit the source
data directly as is over the network channel, we would have
to wait at the receiver, storing packets in a buffer, and re-
ordering them as we played them out. Alternatively, one could
consider a single-source multicast network coded network

1Since we are using continuous time, and thus continuously distributed arrival
instants, the probability that two or more of the arrival instants are equal must
be zero, so we ignore that case in our discussion.
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Fig. 1. The problem and the approach we will use to solve it.

employing random linear network coding [1], [2]. In this
case arriving at the sink will be random linear
combinations of original transmitted packets (letting be the
dimension of the global encoding vector), and we will have
to wait, buffering the received packets, until all innovative
(i.e., with linearly independent encoding vectors) packets have
been received before we can start decoding even the earliest
source frame . Here, we will model the innovative network
encoded packets as arriving at times , giving again
ordered arrival times .

While buffering has been extensively studied as a technique
for connection-oriented transmission over current networks
such as the Internet, we note that routing data from the same
temporally ordered flow simultaneously along multiple paths
and/or employing network coding for the sake of greater re-
liability and speed opens up a host of packet and information
reordering phenomena. Buffering techniques designed for
networks such as the present internet which generally maintain
a first-in first-out (FIFO) delivery policy to the same packet
flow [3], [4] may thus not be as appropriate for these situations.
Thus, for these multipath routed and network coded networks
we wish to consider an alternative to buffering: an approach
based on coding. In particular, we propose to use a linear delay
mitigating code to create the data in the transmitted packets
from the source packets in such a way as to minimize the delay
incurred while playing the source out at the receiver. This
approach is to be contrasted with classical techniques that code

for packet erasures with erasure correcting codes, where the
focus is on delivering reliable transmission of a large block
after a large delay. Our focus, instead, is to study the tradeoffs
between rate and delay on these channels in a more concrete
manner than allowed by, e.g., an error exponent based study.

B. Solution Techniques

To achieve the goal of exhaustively characterizing and de-
signing the best such delay mitigating codes, we use the fol-
lowing four-step technique, depicted in Fig. 1.

Step 1) Find the capacity region of the associated ab-
stracted broadcast channel. Define an abstracted broadcast
channel matching the packet reordering and combining charac-
teristics of the network in question, in which different receivers
correspond to the cumulative set of packet observations after
different successive packet arrivals at the sink. Recognize this
channel as a degraded broadcast channel, and calculate its
capacity region , the general form of which is known [5]–[7].
This capacity region dictates the set of possible rate vectors

over all possible delay mitigating codes.
Here, each indicates the amount of new information that
may be decoded upon each successive packet arrival at the sink
(Section III).

Step 2) Define the rate and delay. Define the overall rate
and overall delay for a particular delay mitigating

coding scheme in terms of the rate vector (Section IV-A). The
overall rate will reflect the number of bits per second that will
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be delivered by the connection. The connection will provide this
constant bitrate data in the form of a fixed number of new bits

delivered every seconds for seconds. The chosen
delay metric should reflect any deviation from this information
delivery schedule.

Step 3) Determine the fundamental rate–delay tradeoff.
Find the optimal tradeoff between rate and delay by maximizing
the overall rate subject to a delay constraint over
all feasible rate vectors in the capacity region

(1)

An optimal delay-mitigating code is found as a ca-
pacity-achieving code from the previous step with rate vector

(2)

Our work also investigates a variational calculus approach
for calculating in closed form the solutions to the rate–delay
tradeoff problem (1) in the limit of large numbers of packets.
This amounts to approximating the rate vector, after appropriate
scaling in the limit, as a continuous function mapping to

. The rate and delay are then normalized to each lie within
and are approximated as functionals. In some cases, this

approximation can be aided by the theory of order statistics.
The rate–delay tradeoff programming problem then becomes
a calculus of variations problem that we have solved in some
special cases (Sections IV-C, IV-D, IV-E).

Step 4) Determine capacity-achieving codes for the ab-
stracted degraded broadcast channel. These codes have rate
vectors on the boundary of the capacity region . Despite the
asymptotic block lengths employed in proving the degraded
broadcast channel capacity region (which defeat the whole
notion of bounding delay), surprisingly there exist codes block
length of one (i.e., a single broadcast channel use) exhibiting
the desired rate–delay tradeoffs (Section V) in the uniform case
which is studied in this paper. In Section V, capacity-achieving
codes in the uniform case are shown to be priority encoded
transmission (PET) [8], [9] codes with an optimized collection
of component code rates selected through the introduced frame-
work. In other nonuniform cases, classes of codes other than
PET codes are capacity achieving, but the rate–delay tradeoffs
we provide still hold as bounds.

C. Overview of Main Results

Section II discusses related work on error correction, fountain
codes, priority encoded transmission, and error exponents. Sec-
tion III gives capacity regions for two degraded broadcast chan-
nels modeling packet reordering with delays and network coded
networks, respectively. Theorem 2 gives the rate region for the
uniform permutation channel, i.e., when all packet reordering
permutations are equally likely. Theorem 3 gives the analogous
rate region for the uniform network coded channel, i.e., when
the encoding matrix is selected uniformly at random over all
matrices of given rank. In both cases, the rate region is those
vectors such that . Sec-
tion IV presents the fundamental rate–delay tradeoffs. While the
presented rate–delay tradeoff framework holds for more gen-
eral situations, the remainder of the paper focusses on the uni-

form permutation and uniform network coded channel cases,
which may be considered to be extreme cases of the more gen-
eral problem. Theorem 4 gives the structural properties of the
rate–delay tradeoff in this uniform case, emphasizing that the
problem can be parameterized in the decoding deadlines indi-
cating the number of packets that must be received before de-
coding each frame. Because the decoding deadlines are integer
valued, this result transforms a continuous nonlinear program
into an integer program, making the problem amenable to exact
solution for small . Then, Theorem 5 discusses a relax-
ation of the rate–delay tradeoff problem via variational calculus.
The integer-valued decoding deadline sequence is relaxed to a
continuous function mapping . This relaxation
gives a tractable solution which is a reasonable approximation of
the optimal rate–delay tradeoff for large . Theorem 6 uti-
lizes the approximation from the previous theorem to give an al-
gebraic expression for the rate–delay tradeoff in the special case
of constant inter packet arrival times. Similarly, Theorem 7 gives
an algebraic expression for the special case of i.i.d. exponen-
tial packet arrival times. In order to demonstrate the feasibility
of the results, Section V discusses practical small block-length
codes achieving the rate–delay tradeoffs. Section VI shows that
although the rate–delay tradeoffs are obtained using forward
error correction (FEC), they are also optimal in a certain sense
with respect to schemes incorporating feedback, e.g., TCP. Sec-
tion VII contains a brief conclusion. Appendix A summarizes
the key mathematical notation. Proofs of key theorems are pre-
sented in Appendices B through G.

II. RELATED WORK

Now that we have introduced the problem we wish to solve,
and the technique we will use to solve it, we presently review
some of the related literature.

A. Erasure and Error Correction for Network Coded Networks

One of the most important breakthroughs in the information
theory community within the past decade has been the con-
cept of network coding [1], [10]–[12] and its necessary utility
in achieving the capacity of multicast networks. There is fur-
ther a recent interest in erasure and error correction over net-
work coded networks [13]–[15]. While some of this work can be
used in delay mitigating codes research, e.g., [9], [16], it solves
a different problem. The focus in network erasure and error-cor-
recting codes is typically designing block codes that can handle
a particular (expected or exact) fraction of erasures or errors.
Our work attempts to design codes which have unequal erasure
protection (UEP), as in [9], [17], with a specific novel focus on
choosing the UEP in such a way as to optimally trade transmis-
sion rate for delay. This builds into our model interest not just in
the fraction (or expected fraction) of packets which are lost, but
rather the way in which the channel combines, reorders, and de-
livers packets. Classic basic block erasure and error-correcting
codes do not incorporate these channel aspects.

Delay of random linear network coding is also addressed
in [1], [18], where the delay properties of a particular random
linear network coding scheme are assessed. Our scheme, in con-
trast, attempts to mitigate delay to be lower than that offered by
unmodified random linear network coding by trading some of



5494 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009

the rate with a concatenated (outer) delay mitigating code at the
source. Alternatively, one could consider a fixed known network
topology, and try to design the network code itself to accommo-
date both full-rate transmission and zero delay, as was attempted
in [19]. Designing such a network code requires global central-
ized coordination and therefore may not be feasible in practical
networks. Our scheme, in contrast, is more likely to be feasible
since it does not require any such global coordination.

B. Fountain Codes

Fountain codes [20], [21] are another related recent break-
through in reliable broadcasting/multicasting over networks
with users suffering different amounts of packet losses. Foun-
tain codes can be seen as infinite block-length (zero-rate)
analogs of irregular low-density parity-check (LDPC) codes
[22]–[26], exploiting the same iterative low complexity belief
propagation (BP) decoder, and the same sparse graph code
construction. An unbounded number of packets are transmitted
for a fixed block of source information. Their major inno-
vation is that source information can be recovered with high
probability and low computational complexity as long as a
sufficient number of transmitted packets have been received
by a particular receiver, no matter which subset of the original
transmitted packets they were. Thus, different users can come
in and out of the network, and can receive different subsets of
transmitted packets, but as soon as they have received a number
of bits that is times the number of source bits they can
decode all of the source information with high probability.

Our delay-mitigating codes are fundamentally different from
fountain codes in a number of ways. First, our delay mitigating
codes are not block codes at the decoder, unlike fountain codes
which are. Since we are looking at a situation in which dif-
ferent information is decoded from all of the previously received
packets upon each new packet arrival, block codes, and thus
fountain codes do not apply. There have been some studies as
to the fraction of bits that can be decoded in fountain codes be-
fore the necessary number of packets have been received to de-
code all of the source information [21], [27], [28]. Delay-mit-
igating codes require not just that a certain fraction, say ,
of the bits are recoverable, but in fact require the much stronger
property that the recovered bits are the first of bits of the
source. Even more, delay-mitigating codes require a sequence
of decoding deadlines be enforced, e.g., decode the first bits
after receiving the first packet, decode the first packets
after receiving the first two packets, etc. This requirement of en-
forcing a sequence of decoding constraints precludes the use of
Raptor codes.

A second fundamental difference between delay-mitigating
codes and fountain codes, turbo codes [29]–[32], or erasure-cor-
recting sparse graph codes, is that delay-mitigating codes are
for a different channel than these codes. The most common
channel model for erasure-correcting codes is the binary erasure
channel (BEC) or packet erasure channel, which erases each bit
(or packet) with a given probability . Our codes, by contrast,
are for an abstracted degraded broadcast channel relevant for
trading rate for delay over multipath routed/network coded net-
works.

C. Priority Encoded Transmission

The above discussion of UEP brings up another body of older
related work called PET codes, or codes for priority encoded
transmission [8], [33] and their rank metric counterparts [17],
[19]. The basic setup in PET and the related work [34], [35]
involves a source comprised of different parts of information
with different priorities, such as results from the use of a succes-
sive refinements encoder (e.g., as in the MPEG video standard
[36]–[38]). Under successively decreasing prescribed erasure
rates, source information of successively lower priority may be
decoded. The PET construction is specified such that reception
of any fraction of the encoded packets guarantees
that the data with priority greater than or equal to is all ca-
pable of being decoded . To allow this, PET codes
time share maximum distance separable (MDS) codes of dif-
ferent rates, and the time sharing construction can be thought as
achieving points on a capacity region of an associated broadcast
channel [33].

Our work is different from classic PET coding due to the
focus on quantifying delay. In delay-mitigating codes, the
different classes of source information correspond to different
frames or time instants in the source data, with the requirement
that earlier source data must be played out at the sink before
later source data can be used. In a particular context of uniform
network coded network and uniform multipath routed networks
discussed later in the paper, our code construction amounts to
optimally selecting the component rates for a PET code, and
so PET codes are critical to our work. Selecting these compo-
nent rates to correctly ensure specified delay constraints is
in fact nontrivial and part of our work in this paper addresses
this problem, see Section V.

D. Error Exponents as Delay Metrics

A classic metric used as a surrogate for delay in informa-
tion-theoretic analysis of channels is the random coding error
exponent [39]. The error exponent is the asymptotic exponen-
tial rate at which the sequence of error probabilities decays as a
function of the block length in the limit of infinite block lengths
when a random code is used. Because this metric is closely re-
lated to the necessary block length to achieve a certain bound on
the probability of error for a given code rate, albeit when using
a random code, it is often considered to be a reasonable metric
related to the delay associated with the channel [40]. However,
error exponents are inappropriate for our problem for two rea-
sons.

First, the error exponents of codes we encounter in the con-
text of this paper are infinite. In channels such as the BEC, the
error exponent is finite, reflecting the fact that the probability
of error when using random codes, although decreasing to zero
with increasing block lengths, is not zero for any finite block.
The channels we are investigating, by contrast, do not share this
characteristic. From the perspective of code design they are mul-
titerminal analogs of fixed erasure fraction channels, which have
capacity-achieving (MDS) codes with zero probability of error
even for finite block lengths.

Second, the relationship between block length and temporal
delay is tenuous in a network context. Rate measured in bits per
channel use does not map smoothly to rate measured in bits per
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Fig. 2. The permutation channel reinterpreted as an abstracted degraded broadcast channel for the purpose of analyzing rate–delay tradeoffs. Upon reception of
the first ���� packets, the sink may decode the first � frames. The decoding deadlines ��� � ������ � � � � ����� are illustrated in Fig. 7.

second when a channel use is defined as simultaneously trans-
mitting a block of packets. This is because the packets take dif-
ferent amounts of time to traverse the network, owing to time
spent waiting in different queues, and thus arrive at the sink for
decoding at (unevenly spaced) random time instants. Using this
channel repeatedly in a classic block code manner, the temporal
rate at which information may be played out at the destination
in bits per second is only indirectly related to the rate of the code
in bits per channel use.

III. CAPACITY REGION OF SOME RELEVANT DEGRADED

BROADCAST CHANNELS

In this section, we introduce two abstracted broadcast chan-
nels in which different receivers correspond to successive packet
arrivals at a common sink in the network. These two channels
model the case of packets reordering with delays (Section III-A)
and network coded networks (Section III-B), in a way that we
will clarify in greater detail in (Section III-C).

A. Permutation Channel Capacity Region

Recall is the random permutation determining the order of
packet arrivals at the destination, and is the probability
of each possible permutation . We are interested in
the region of possible amounts of information that may be
decoded upon each successive packet arrival at the sink. In
particular, denote by the amount of new information that
can be decoded after packets have arrived at the sink per
collection of packets transmitted at a common time at the
source. Collect these rates into a vector .
We can determine the region of feasible (mutually satis-
fiable) rate vectors as the capacity region of an abstracted
degraded broadcast channel shown in Fig. 2. Different receivers
in the abstracted broadcast channel correspond to the cumu-
lative packets received upon each successive packet reception
at the sink. The packets are assumed to be labeled so that
upon receiving the th packet, , the destination knows
both the payload and the packet index (through
the packet header). The observed values at the th receiver
are . This
broadcast channel is degraded; this is seen from the fact that
the time reversed observations form a Markov chain through
erasure operations .

Theorem (Capacity Region of Degraded Broadcast Channel
(DBC) [6], [5], [7], [41]): The capacity region of the degraded
broadcast channel (DBC) is the closure of the convex hull of the
region of rates satisfying

(3)

(4)

(5)

for a sequence of dummy discrete random variables
with bounded support, where

is the channel input.2

Note that the auxiliary random variables in this theorem play
the part of message variables in a random code [6], [5], [7], i.e.,
the decoder at receiver can determine the messages associated
with the random variables , for each .

Proposition 1 (Permutation Channel Capacity Region): In
the particular case of the permutation channel, the generic DBC
capacity region expression can be simplified to

(6)

(7)

(8)

The proof of this proposition is provided in Appendix B.
From this expression we can view the capacity region as the
image under a linear transformation whose coefficients are de-
termined by the permutation distribution of the set of all pos-
sible entropy vectors created from joint entropies of subsets of
the dummy random variables . In the two spe-
cial cases of interest we presently discuss, the expression for the
rate region can be simplified even further.

Proposition 2 (Special Case: Single Permutation): When
only one permutation is possible, the amount of information
received upon the th packet arrival is limited by the cumulative
number of received bits. In particular, the rate region is the

2References [6], [5], [7], [41] mostly focus on the two-user case, however
there is no difficulty in extending the coding scheme [7] and converse proofs
[41] to the presented � -user case.
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Fig. 3. The permutation channel’s capacity region for � � �. The two ex-
treme rate regions (known single permutation �� � ��� ��� and uniform per-
mutation selection �� � ����) are shown here, with � indicating the probability
that the packet numbered 1 when placed in the stack at the source node arrives
first at the receiver. Note that the rate region boundaries for the intermediate
cases lie in between those for these two extreme cases.

collection specified by the
inequalities

This rate region for is shown as the region
in Fig. 3. An additional interesting special case occurs when the
distribution on the reordering permutation is uniform. Such
a uniform distribution for occurs, for instance, via symmetry
when the unordered arrival times are i.i.d.

Theorem 2 (Uniform Permutation Channel): When all per-
mutations are equally likely ( for each ) the
capacity region is specified by the inequality

(9)

The proof is found in Appendix C. This rate region for
is shown as the region in Fig. 3.

B. Network Coded Case

In the random linear network coded case where the packets
that arrive at time instants are linear combinations of
the transmitted packets, we are again interested in a similar
abstracted DBC, depicted in Fig. 4. The different receivers
correspond to successive innovative packet arrivals and the
vectors correspond to the global encoding vector of the th
received packet. Because we are considering random linear
network coding from a source-to-sink viewpoint, we model a
random linear network coded network as a device that selects
the random global encoding matrices
according to a probability distribution on the set of

matrices with rank . The rate region corresponding
to the amounts of new information that can be decoded upon
successive innovative packet arrivals at the sink is given by

(10)

(11)

(12)

where (11) ranges over . This region follows
from substituting the definition for the received signals in the
network coded context into (3), (4), and (5), and mimicking the
steps detailed in Appendix B.

We consider next the specific case where we can model the
source-to-destination channel created by network coding as
sampling the random encoding matrices uniformly from
the set of all encoding matrices in GF of rank
(henceforth, the uniform network coded channel). In this in-
stance, the capacity region of the abstracted broadcast channel
determining the amounts of information decodable upon each
successive packet arrival is given by the following theorem.

Theorem 3 (Uniform Network Coded Channel Capacity Re-
gion): For the uniform network coded channel ( is uni-
form) the capacity region is specified by the inequality

The proof is found in Appendix D. Note that this rate region
is the same as that obtained for the uniform packet reordering
channel in Theorem 2.

C. Relating the Abstracted Broadcast Channel to Delay
Mitigating Codes

Having introduced the two abstracted broadcast channels
(Theorems 2 and 3), we now discuss capacity-achieving codes
for these channels, their associated fundamental limits, and
their connection with the problem of connection-oriented
transmission for multipath routed and network coded networks.

First, it is important to point out that Figs. 2 and 4 detail a
single use of the discrete memoryless channel under considera-
tion. A block code with block length for this discrete memo-
ryless channel would have codewords which individually are a
block of collections of packets ( packets all together),
labeled with . For the
permutation channel, the th receiver receives a sequence of
collections of packets

Due to the memoryless nature of the channel there are i.i.d.
permutations governing the arrival order of each of the
collections of packets

, through . Be-
cause this is clearly a discrete memoryless DBC, the capacity
region theorem can be applied, and a capacity region of
achievable rate vectors with signifying
the number of bits deliverable per channel use to receiver . The
collective amount of error-free information decoded by receiver

will be . Similarly, for the network coded channel, Fig. 4
details a single use of the associated discrete broadcast channel,
while a block code would code over multiple such channel uses.

Second, we emphasize that the capacity regions in The-
orems 2 and 3 hold under an assumed uniform distribution:
equally likely packet arrival orders (permutations) for The-
orem 2 and equally likely encoding matrices of each rank
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Fig. 4. Point-to-point network coded channel as a degraded broadcast channel.

for Theorem 3. A more general problem is to determine the
capacity of the channels under an arbitrary distribution on
permutations and encoding matrices, respectively, but still as-
suming the ordered arrival instants
are independent of the arrival order . An even more general
problem is to relax this assumption and allow dependence be-
tween the arrival order and the ordered arrival times. A uniform
distribution for and independence between and happen,
for instance, if the unordered arrival times, , are i.i.d.
This assumption is valid in a network with independent
paths through the network where each path has an identical
delay distribution. Naturally, we would like to understand with
some level of rigor this statistically symmetric case before
delving into the more complex, yet more realistic, irregular
cases.

We want to use a multipath network like this to provide a
constant bit rate connection between the source and destina-
tion, in the sense of providing a new frame containing a constant
number of bits every seconds, and we want these frames to
be played out in a specified order without any being omitted.
The reordering phenomenon caused by the random arrival order
makes this difficult to do without introducing extra delay if un-
coded transmission is to be used, because we must buffer the
received packets so we can play them out in order. Alterna-
tively, we can encode the contents of the transmitted packets.
This would correspond to a block code (as discussed above)
for the introduced abstracted degraded broadcast channel with
block length . The number of bits that can be guar-
anteed (with probability ) to be delivered by this block code
after packets have been received must yield a rate vector

lying inside the capacity region for the as-
sociated degraded broadcast channel. To see this (in spite of
the infinite block lengths used in the typical DBC capacity re-
gion proof), simply note we can make a block length code
with rate (per channel use) vector , by concatenating of our
block length codes end to end. Since we are only consid-
ering error-free block-length codes, this code cannot be any
better than the fundamental limits for reliable communication as

provided by the degraded discrete memoryless broad-
cast channel capacity theorems. For many discrete memoryless
DBCs, not all rate vectors may be achieved with a block length

, and thus forms a strict outer bound for the set of block
length code rate vectors that we are interested in. In these
cases, the calculus on the associated rate region to trade aggre-
gate bit rate for aggregate delay that we discuss in the next sec-
tion would yield bounds for the associated rate–delay tradeoff

which could not be reached with practical codes. However, as
we shall show in Section V, the channel we are studying has
nontrivial practical codes which achieve points on the boundary
of the capacity region with block length , and thus the
rate–delay tradeoffs we present are achievable with practical and
low-complexity decodable codes.

IV. FUNDAMENTAL RATE–DELAY TRADEOFFS

In this section, the capacity regions obtained in Section III
are used to describe fundamental rate–delay tradeoffs in uni-
form multipath routed and network coded networks. Rate and
delay are defined in Section IV-A relative to a constant bit rate
source, along with the optimization problem whose solution is
the rate–delay tradeoff. This section (Section IV-A) is general,
and can be applied out of the scope of the limited uniform multi-
path routed and network coded cases. In Section IV-B, we iden-
tify the structural properties of this optimization problem in the
uniform cases, showing that it may be simplified to an integer
programming problem, amenable to exact exhaustive solution
for small . In order to make this problem more tractable
for large , Section IV-C introduces a variational relaxation
of the integer programming problem. Algebraic expressions for
the rate–delay tradeoff are obtained by solving this variational
calculus problem for some special packet arrival time statistics
in Section IV-D (constant inter arrival times) and Section IV-E
(exponential i.i.d. arrival times).

A. Rate–Delay Calculus Problem Formulation

Theorems 2 and 3 give the region describing the amounts
of new information available after each successive packet ar-
rival at the sink, provided the permutations and encoding ma-
trices, respectively, are selected uniformly. We can incorporate
the inter-arrival statistics with these results to determine the in-
formation transmission rate (in bits per second) and delay (in
seconds) associated with each point in the capacity region.
With the connection oriented context in mind, suppose that the
source decoder at the sink node needs to decode a new frame
every seconds. Then the overall rate at which data is decoded
at the source decoder at the sink is

(13)

bits per second. This means we are trying to decode
bits every seconds.
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We next define a class of delay metrics, parameterized by
, for each rate vector that penalizes the (random)

delay incurred by every frame, according to the expression

(14)

where and

(15)

Here, is the number of packets that must be received be-
fore the sink can decode the first frames of the source. The
delay is a random variable as it is a function of the arrival in-
stants . Note that the assumed functional form (14) allows
a wide variety of delay metrics, reflecting the fact that the overall
delay will be likely to be a function of the delay
of th frame, which is the difference between the time it is to
be played out, and the (random) time it is guaranteed to be avail-
able . Due to properties of the norms, the family of func-
tionals (14) can thus be stretched all the way from being propor-
tional to the sum of the frame delays, to being proportional to
the worst frame delay by using larger and larger powers .

At the heart of the idea of rate–delay calculus is the intent of
finding the point in the coding achievable rate region which
maximizes the overall rate among all codes with
expected delay less than or equal to some
bound . The optimal rate–delay tradeoff is

(16)

B. Structural Properties of the Rate–Delay Tradeoff in
Uniform Case

Because the rate regions in Theorems 2 and 3 are the same,
calculating the rate–delay tradeoffs for these two channels
amounts to the same calculus problem. Thus, for the remainder
of this paper, we handle these two cases simultaneously, fo-
cussing entirely on the uniform cases. The next theorem shows
that in these uniform cases, the rate–delay tradeoff, although
correctly posed as a continuous optimization, is found as the
solution to an integer programming problem (with a finite set
of feasible solutions).

Theorem 4 (Structural Properties of Rate–Delay Tradeoff):
When the channel selects the permutation uniformly from the
set of all permutations, the optimal rate–delay tradeoff (16) may
be obtained by solving the optimization problem

(17)
over the decoding deadlines
which are nondecreasing integer-valued functions mapping

. Here indicates the number of
packets that must be received before decoding the first frames,

is the number of distinct values of is the th
distinct value of , and is the number of frame indices
associated with the th distinct level of . Finally,
equals as defined in (14) but with in (15)
for each .

The proof is found in Appendix E. This structural transfor-
mation to an integer programming problem over allows direct
calculation of the rate–delay tradeoffs by explicit enumeration
over all nondecreasing sequences satisfying the delay bound.

C. Variational Approximation Based Rate–Delay Tradeoff for
Large

For large , the solution by explicit enumeration in The-
orem 4 is computationally infeasible, necessitating an approx-
imate solution. We obtain an approximation by transforming
the integer programming problem into a variational calculus
problem over a family of nondecreasing continuous functions,
whose solution, via Lagrangian techniques, can be found as a
solution to an algebraic equation. In order to avoid unbounded
rates and delays as grow large, we first normalize the rate
and delay metrics to lie in between and .

Since it follows that in (13) and hence
in (17) is upper-bounded by . The normalized rate is

then

(18)

The normalized delay is obtained by noting that our delay metric
is monotone nondecreasing in , and thus the greatest delay
is obtained when the decoding deadlines are for each

. Thus, to obtain a normalized delay lying in be-
tween and , we need only to divide the expected nonnormal-
ized random delay metric by its expected value at the extreme
decoding deadlines

In order to approximate the solution to the integer program-
ming problem by the solution to a variational calculus problem,
first define a zero-order hold piecewise continuous function

such that

The normalized rate may be expressed in terms of as the
functional according to

The normalized delay is then approximated by a functional
of as well
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(19)

for large.
The rate–delay tradeoff for large is obtained by solving

the calculus of variations [42], [43] problem for a normalized
delay bound

(20)

Here, is no longer constrained to be a piecewise constant func-
tion, and, in fact, is now considered among the class of con-
tinuously differentiable nondecreasing functions. For large
(where explicit enumeration of is too difficult), the intervals
on which was to be piecewise constant should be very small, so
one would expect to get a good approximation for these cases.
Using monotonicity of the function , the problem (20) may be
cast in standard variational calculus form

(21)

The following theorem gives a general form for the optimal de-
coding deadline function under an even more general family
of delay metrics than (19).

Theorem 5 (Variational Approximation to Rate–Delay
Tradeoff_: Suppose the normalized delay function may be
written as an integral of a function , i.e.,

(22)

Then, for those such that , the optimal decoding
deadline function to solve (20) is the solution to the equation

with selected so that . The rate–delay tradeoff
is then given by .

Proof: The Lagrangian is

where is the Lagrange multiplier on the constraint
at , for each . The solution to the variational problem
(20) must satisfy the algebraic equation obtained by differenti-
ating at each

for each , with such that and
selected so as to make constant on intervals where it

is constant (and thus it is not necessary to actually solve for it).

Note the family of functionals (19) is a particularly useful
form of the more general class of functionals (22). We next

specialize Theorem 5 to the special cases of constant packet
inter-arrival times (Section IV-D) and i.i.d. packet inter-arrival
times (Section IV-E).

D. Rate–Delay Tradeoffs for Constant Packet Inter-Arrival
Times

Consider the case when and , so that
time is slotted on packet arrivals and the only remaining random
element in the system is the uniform permutation selection. The
normalized delay functional becomes

(23)

(24)

Theorem 6 below specializes Theorem 5 to the case of con-
stant packet inter-arrival times, yielding approximate but accu-
rate closed form rate–delay tradeoffs for large .

Theorem 6 (Approximate Rate–Delay Tradeoff for Constant
Inter Packet Arrival Times): The approximate (asymptotically
accurate) rate–delay tradeoff solving (20) for a normalized delay
bound is given by

Alternatively, the rate–delay tradeoff for a normalized rate re-
quirement is given by

The optimal decoding deadline function takes the form

with .

The proof is found in Appendix F. The approximate and exact
rate–delay tradeoffs are plotted together in Fig. 5.

E. Trading Rate for Average Sum Delay With i.i.d. Arrival
Times

The second special case we consider is that of i.i.d. packet
arrival times with density , cumulative distri-
bution , and inverse function to the cumulative distribution

. The asymptotic theory of order statistics ([44, The-
orem 10.3, p. 288]) asserts that has an
asymptotic normal distribution as . That is, provided

(an easily satisfied condition), then

(25)
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Fig. 5. Exact and approximate rate–delay tradeoffs when the (reordered)
packets arrive in a constant periodic manner.

It follows that for large for each
, and that the random variable is increasingly

concentrated around its mean, and therefore

This implies that the large approximate form of the delay
functional for the mean sum delay metric, i.e., in (19), is

(26)

Here, the denominator may also be approximated through the
asymptotic distribution of the extreme values ([44, Ch. 11]),
which after scaling can take only one of three forms.

To get a closed-form expression for the rate–delay tradeoff,
we now specialize to the case where the arrival times

are i.i.d. exponential random variables with
parameter . Symmetry suggests that the permutation distri-
bution will be uniform, thereby selecting the capacity region
solved in Theorem 2. We first develop an expression for the
expected sum delay for fixed decoding deadlines , i.e., the
expected value of (14) for and i.i.d. exponentials. We
then develop an approximation for the normalized expected
sum-delay expressed (19) in terms of the functional appro-
priate for large .

For finite , the ordered packet arrival times
are order statistics, having marginal distributions

for and .
Under frame decoding deadline constraints , the expected

decoding delay of frame is then given by applying the defi-

nition of expectation with respect to this distribution, making a
change of variables, and integrating by parts to get

for . Summing these expected decoding delays
over each frame yields an expected overall delay under of

The optimal rate-delay tradeoff for small or moderate
can be determined by search over all decoding deadline se-
quences as in Theorem 4. Fig. 6 plots some sample normalized
rate–delay tradeoffs.

For the exponential cumulative distribution function (CDF)
, the inverse CDF is

. Substituting this inverse CDF into (26) yields

(27)

which may be used to obtain the following rate–delay tradeoff.

Theorem 7 (Rate–Delay Tradeoff for i.i.d. Exponential Packet
Arrival Times): The approximate (asymptotically accurate)
rate–delay tradeoff solving (20) for a normalized delay bound

is given by

when and

when . Here in both cases
is the Euler–Mascheroni constant. The associated optimal de-
coding deadline function takes the form

with

.
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Fig. 6. Exact normalized rate–delay tradeoffs for some small ��� for the
i.i.d. exponential arrival time case for� � � � �� �� �, and the approximated
rate–delay tradeoff via the calculus of variations for � � � � ��� �����.

The proof is found in Appendix G. Fig. 6 shows some ex-
ample approximate rate–delay tradeoffs by plotting these ex-
pressions. The figure illustrates that significant reductions in
normalized delay are achievable with only small or moderate
reductions in normalized rate.

V. PRACTICAL DELAY MITIGATING CODES

This paper has addressed rate–delay tradeoffs for multipath
routed channels and random linear network coded channels. For
multipath routed channels we have focused on the case where
the packet reordering permutation is uniform over the set of all
permutations. For random linear network coded channels we
have focused on the case where the encoding matrices are se-
lected uniformly over all matrices of a given rank. The rele-
vant abstracted DBC capacity region for both cases is presented
in Section III, where we show the capacity regions of the two
channels to be the same. This region is characterized by one
linear constraint, and thus all capacity-achieving strategies may
be formed by time sharing (across “users” of the DBC) codes
which transmit to only one of the users at maximal rate for that
user. In particular, we may time-share codes with rate vectors

bits per channel use, with the th column of the
identity matrix to get any rate vector in the capacity region of
the uniform permutation channel or the uniform network coded
channel. Capacity-achieving codes with rate vectors
exist for finite block lengths and appropriate , and have the
property in the multipath routed case that they encode packets
of source bits to form at total of encoded bits, from any
subset of -bit packets of which the original source bits can be
determined. Such codes and are called MDS erasure codes. Al-
ternatively, in the uniform network coded case, codes with rate
vectors bits per channel use encode source bits
into packets of encoded bits, is such a way that the source
bits can be determined from any rank linear combination of the

packets. Such codes are called rank metric MDS codes [16].
The act of time sharing such MDS codes is commonly referred

to as PET after [8], [33], and their rank metric counterparts have
recently been investigated [9], [16]. Thus, in the uniform case
studied in detail in this paper, codes exist which achieve the in-
troduced rate–delay tradeoff, and they are PET codes in the per-
mutation channel case, and rank metric PET codes in the net-
work coded case. In the PET construction, it is left up to the user
what rates the component MDS codes should have, so that the
PET name is given to any construction which time-shares MDS
codes, regardless of the component rates. This paper provides
the necessary analysis for an end user who needs a particular
bounded delay to determine the component code rates of a time
shared collection of MDS codes in order to satisfy this delay.
Because the PET construction in [8] is slightly different from
the one presented here, namely, in that it allows the number of
packets to be dictated by other problem variables, while
is fixed here, and we allow the number of bits per packet to
be dictated by other problem variables, we will provide a brief
discussion of how to construct practical PET codes in this sec-
tion.

In particular, let us discuss how to obtain a code achieving
a point on the rate–delay tradeoff. Suppose we have selected a
delay bound , and the rate vector bits per channel use for the
degraded broadcast channel attains the maximal bit rate for this
delay, as in (1) and (2). First, we encode the (temporally) first

bits of the source data into bits with an MDS
code. These bits are then divided up into equally sized con-
tiguous consecutive blocks of length , and one such block
is placed at the beginning of each of the packets. Second,
we encode the next bits of the source data into
encoded bits using an MDS code. These bits are then divided
up equally (and contiguously and consecutively) into blocks of
size bits and one such block is placed in each of the
packets. The construction continues, i.e., at the th step, the next

bits of source data are encoded into encoded bits
using an MDS code, and these are broken up into contiguous
blocks of bits, with one such block placed in one of each
of the packets.

The preceding discussion glosses over the quantization of
rates that must occur and the selection of an appropriate packet
length . If we are using Reed–Solomon codes over GF
with as the MDS codes, for instance, then the number of
source bits must equal for some integer ,
and the number of encoded bits must equal

[45]. Furthermore, must be an integer multiple of ,
so that the blocks of information to go into the different packets
break up at boundaries between different elements of the finite
field. One can always select the packet length , and the
field size to obey these conditions and arbitrarily closely
approximate the rate–delay tradeoff. In particular, due to the
form of the rate regions of the degraded broadcast channels
(6)–(8), choosing a different for the same delay constraint
simply scales the optimal rate vector associated with this delay
to , and thus the total rate .
Thus, first select any point on the normalized rate–delay tradeoff
curve, e.g., by taking the associated to be . Take the
rate vector associated with this (or a sufficiently close approx-
imation to it that has all elements as rational numbers if some
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of its elements are not rational numbers), and scale it to ,
with a natural number selected so that the th element of
the vector is a natural number divisible by . For in-
stance, given a rational it suffices (but is not necessary) to take

where is the least common multiple of the de-
nominators of the rational numbers to achieve this. Then, for the
th component code with specified rate , select to be

This will give a normalized rate and delay arbitrarily close to the
one originally selected as gets large, as well as an associated
rate vector that is in the achievable rate region for any .

Finally, it is important to note that, for some other, nonuni-
form cases, the rate regions of the degraded broadcast chan-
nels introduced in this paper are different, and PET codes do
not achieve the rate–delay tradeoffs, because they are not ca-
pacity-achieving strategies for these degraded broadcast chan-
nels. The rate–delay tradeoff framework in this paper, however,
still provides an upper bound on the achievable bit rate given a
delay in these cases.

VI. INCORPORATING FEEDBACK AND PACKET LOSS

This paper has employed forward erasure correction based
delay mitigation. However, many modern communications net-
works are bidirectional. One could then ask if better rate–delay
tradeoffs could be achieved by the use of automatic response
request (ARQ)-like schemes incorporating feedback. Surpris-
ingly, the rate–delay tradeoffs presented are the same, even if
feedback is used. Fundamentally, this is because feedback does
not change the capacity region of the discrete memoryless DBC
[46]. Applying this fact to our case, feedback could only af-
fect the rate–delay tradeoffs through the associated abstracted
DBC’s capacity region. Thus, while the codes we have dis-
cussed have been forward erasure correction based, a scheme
incorporating feedback is subject to the same rate–delay trade-
offs.

An additional natural extension points out the fact that real
networks also exhibit (nonnegligible) packet loss in addition to
packet reorderings and delays. Packet losses could be incorpo-
rated in the present model by simply having any lost packets
arrive at a very large time . A small delay bound would
generate rate–delay tradeoff that would simply not require all
packets to be received before all of the source frames can be
decoded. Indeed, even without incorporating such large delays
into the model directly, they happen in the i.i.d. case in
the limit as (which is the limit we investigated) due
to the growth of the maximal order statistic. The optimal de-
coding deadlines found via the calculus of variations continous
approximation in this case already do not require all of the en-
coded packets to arrive before all of the source frames may be
decoded (effectively already handling packet loss).

An alternative approach at including packet loss by incorpo-
rating random numbers of packet losses would allow for an op-
portunity to discuss a more classic information-theoretic way
of studying rate–delay tradeoffs: through error exponents. Note
that for the abstracted degraded broadcast channels presented

in this paper, the error exponents are infinite (more precisely:
after a critical block length of one channel use it is possible
to create capacity-achieving codes that have zero probability of
error), and thus a classic study of rate–delay tradeoffs through
the use of error exponents would not have made sense. However,
as we have seen, even with infinite error exponents for the asso-
ciated abstracted degraded broadcast channel, there is still a rig-
orous and important notion of a rate–delay tradeoff. If random
numbers of packet losses were incorporated, the error exponents
would no longer be infinite, and a rate–delay tradeoff analysis
through error exponents should become feasible. It would be
interesting to see how the present results could be melded into
such a setup, and is part of our plans for future work.

VII. CONCLUSION

This paper has addressed the optimal rate–delay tradeoff in
multipath routed and network coded networks. In both cases,
we have focused on the uniform distribution case: uniformly se-
lected packet reordering for multipath routed networks, and uni-
formly selected encoding matrices for network coded networks.
Both cases are modeled as an abstracted DBC, their capacity
regions are shown to be the same, and the region is specified
by a single linear inequality. The rate–delay tradeoff is formu-
lated as a nonlinear continuous optimization problem, but we
demonstrate the problem is in fact equivalent to an integer op-
timization problem, suitable for solution via enumeration for
moderate . For large we propose an approximate so-
lution using the calculus of variations. We solve this variational
problem and obtain explicit expressions for rate–delay trade-
offs for the two special cases of constant packet inter-arrival
times and i.i.d. exponentially distributed arrival times. We pro-
pose the time-shared use of practical finite block-length capacity
achieving codes: PET codes for multipath routed networks, and
rank-metric MDS component codes for linear network coded
networks. The rates of these codes are dictated by the funda-
mental rate–delay tradeoffs we present, and are determined by
the specified delay bound.

APPENDIX A
MATHEMATICAL NOTATION

See Table I on top of the following page.

APPENDIX B
PROOF OF PROPOSITION 1

We begin with the general expression for receiver

(28)

(29)

(30)

(31)
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TABLE I
MATHEMATICAL NOTATION

(32)

Here, (28) substitutes in the definition of and (29) is the def-
inition of condition mutual information together with the fact
that form a Markov chain. Next, (30)
expresses a joint entropy as a marginal entropy plus a condi-
tional entropy (e.g., ). The process
selecting the random reordering variables ,
which comes from the discrete memoryless channel, has nothing
to do with the contents of the input block of packets or the mes-
sage random variables, so these are independent of one another,
giving equation (31). Substituting in the definition of condi-
tional entropy and recognizing that the contents of the received
packets only depend on the arrival order through their index then
gives the desired expression (32). We emphasize the distinction
in the last step between the random variables and a particular
realization (permutation) , for the set of permutations
of the numbers . The equivalences for the other two
inequalities (6) and (8) follow from essentially the same chain
of arguments.

APPENDIX C
PROOF OF THEOREM 2: UNIFORM PERMUTATION CHANNEL

CAPACITY REGION

Han’s inequality ([47, Theorem 17.6.1, p. 668], citing [48])
states

(33)

for random variables and for each
and where is shorthand for . Proposition 3 spe-
cializes Han’s inequality to the uniform permutation channel.

Proposition 3: For the uniform permutation channel

(34)

for each .
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Consider the left-hand side of (34). By assumption, the
distribution on the permutations is uniform: for
each . There are different permutations, and hence

. However, the entropy depends only upon the
unordered set of the first elements of each permutation,

. Define to be the set of all subsets from
of size . We may then group together all with

a common unordered set of first elements. There are
distinct such sets, and thus each group of terms has
elements. This allows

Repeating this procedure for (with the entropy still con-
ditioned on , as above) gives

The proposition follows by Han’s inequality (33).

Proposition 4: For the uniform permutation channel

(35)

(36)

for .

The proof is by induction on . The base case is true
by (6) in Proposition 1

(37)

Suppose the proposition is true for

The proposition follows by successive application of the induc-
tion hypothesis, (7) in Propositions 1 and 3:

This proves Proposition 4. The converse in Theorem 2 follows
from Proposition 4 by setting and by noting that

and that . The remainder of the
proof must show that these rates are achievable, i.e., that the in-
equality is tight. This may be established by noting that the ca-
pacity region is described by a single inequality. Furthermore,
the corner points of this single inequality described
rate region can be achieved using capacity-achieving codes for
the point-to-point channel between the source and the th re-
ciever alone. These codes may then be time shared to yield all
points on the boundary of the capacity region. The code for the
th receiver alone (which has rate point ) exists by

the standard proof of the channel capacity for a discrete memo-
ryless point-to-point channel, e.g., by employing random codes
and jointly typical sequence decoding.

APPENDIX D
PROOF OF THEOREM 3: UNIFORM NETWORK CODED CHANNEL

CAPACITY REGION

The proof of the theorem depends upon the following propo-
sition. Note that all matrices discussed below have elements in
the finite field GF .

Proposition 5: For the uniform network coded DBC

(38)

for .

Consider the left-hand side of (38). We decompose as
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By the uniform assumption for each
. Substitution and exchanging the order of summation yields

The conditional distribution is the probability of
randomly selecting (up to a row reordering) the sub-
matrix from the matrix

else.
(39)

This allows

The inner sum over all is the same as
summing over all subsets of of size and selecting
the corresponding rows from . That is, define to be
the rows from with indices in , where
and . This yields

Finally, for each and define the random variables
and the corresponding subset formed by

selecting elements from with indices in . This allows

Performing the same sequence of steps for (still condi-
tioning on , as above) gives

Applying Han’s inequality (33) for each completes the
proof.

Proposition 6: For the uniform network coded DBC

(40)
for .

The proof is by induction on and is identical to the proof
of Proposition 4 (mutatis mutandis), but is included here for
completeness. The base case is true by (10)

(41)

Suppose the proposition is true for , then the proposition
follows by successive application of the induction hypothesis,
(11), and Proposition 5

This proves Proposition 6. The converse in Theorem 3 follows
from Proposition 6 by setting and by noting that

and that . The
proof of achievability is exactly the same as the achievability
proof found at the end of Appendix C.

APPENDIX E
PROOF OF THEOREM 4: STRUCTURAL PROPERTIES OF RATE

DELAY TRADEOFF

The decoding deadline sequence
is the minimum number of packets, say , that must be received
before the receiver is guaranteed to be able to decode the first
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frames. Thus, maps frame
indices to packet reception counts (deadlines). The deadlines
are by necessity nondecreasing: . Because the
delay metric depends on only through , we can
break the optimization of up into two coupled optimization
problems, so that the optimal rate vector is the solution to

(42)

We rearrange the definition of (15) using the definition
of (13) as

We can see that depends only on the magnitude
of , while depends only on the direction in which
points. The constraint (9), on the other hand, depends on both its
magnitude and direction. This observation motivates a change
of variables from to and such that

and . In particular, set

(43)

The constraints and expressed in terms of
become

for . The inner maximization in (44) expressed
in terms of becomes

(44)

For fixed , the optimal in (44) is

(45)

Note that we may undo the change of variables via

(46)

Each decoding constraint can be decomposed into a pair of
equations

for all . Applying this decomposition and substi-
tuting the optimal transforms the inner maximization in (42)
to a minimization of

(47)

In the absence of any decoding constraints, the objective
is minimized over all nonnegative summing to one

by setting for , and . The
optimal solution is thus to make each as small as possible
while obeying the decoding constraints . To handle these
decoding constraints it is convenient to define several quantities
associated with

In words, is the number of distinct deadlines, is the vector
of distinct deadlines, is the last frame index associated
with each deadline is the vector of last frame indices
for each deadline augmented with , and is the vector
of differences between the elements in . These quantities are
illustrated in Fig. 7. Note that for all . To
minimize subject to decoding constraints, the optimal
choice for is to set

(48)

and set all other to zero. This assignment satisfies the de-
coding constraints while delaying assigning the mass in to as
high an index as possible. Note that this assignment satisfies the
constraint that and the sum to one constraint

(49)
Further, the objective in (47) becomes

(50)

where the last expression makes explicit that are each
computed from the decoding deadlines . The associated max-
imum sum rate under is then



MACLAREN WALSH et al.: OPTIMAL RATE–DELAY TRADEOFFS AND DELAY MITIGATING CODES 5507

Fig. 7. Illustration of the decoding deadline sequence��� � ������ � � � � �����,
where ���� is the number of packets that must be received to guar-
antee that frame � may be decoded for the case � � �� frames
and � � � packets. Using the notation �� ���� ����� introduced in the
proof of the theorem, there are � � 	 distinct deadlines, namely,
��� � �� � � � � � � � � �
� �� 	� �� ��, and the last frame indices associated
with each deadline are ��� � �� � � � � � � � � ���
� 
� �� �� ���. The duration
of each deadline is given as � � �� � � � � �� � � �
��� 
� 
� 
�.

(51)

Finally, the rate–delay tradeoff (16) expressed in terms of the
decoding deadlines is

(52)

The remaining optimization is solved by exhaustive enumera-
tion over all decoding constraints that satisfy the delay con-
straint . We have thus shown that the rate–delay tradeoff, al-
though correctly posed as a continuous optimization, can be
found as the solution to an integer programming problem in the
decoding deadlines in the uniform case.

APPENDIX F
PROOF OF THEOREM 6: CONSTANT INTER-ARRIVAL TIME

APPROXIMATE RATE–DELAY TRADEOFF

The calculus of variations problem (21) for normalized delay
bound and in (19) may be written as

where is the set of differentiable obeying

Note that the objective function is monotone decreasing in ,
and if , the delay does not change by changing it to

. This allows

The Lagrangian is

(53)

where is the Lagrange multiplier on the constraint
at and is the multiplier on the constraint at , for
each . The solution to the variational problem (53)
must satisfy the algebraic equation, obtained by differentiating
(53) with respect to at each

for . Here and are defined to be nonzero
when the slope of is zero or , respectively. These
constraints dictate the values of and , although it is
not necessary to solve for them explicitly. Solving this for ,
we see that a necessary condition for to be an extremal for
the constrained optimization is

for each . From this equation it follows that will
be a piecewise function that is either constant or increasing at
unit slope, i.e., . Furthermore, the inverse rate objective
function is decreased more by having the constant portion of the
function for small . Thus, the optimal takes the form

for some . This gives a normalized rate of

and a normalized delay of

Since , the approximate (asymptotically accurate)

rate–delay tradeoff for delay bound and rate bound is

(54)

(55)
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APPENDIX G
PROOF OF THEOREM 7: I.I.D. EXPONENTIAL ARRIVAL TIME

APPROXIMATE RATE–DELAY TRADEOFF

The fundamental rate–delay tradeoff (21) for i.i.d. exponen-
tial arrival times with parameter and with approximate nor-
malized delay functional (27) is

(56)

where is the set of differentiable
obeying

(57)

and

is the denominator in (19) (for ) and is independent of
the functional . Since the inverse rate (which we want to min-
imize) is monotone decreasing in for all , and the
delay is insensitive to any increase in when

, it suffices to consider only those such that
. We parameterize this set of as

with , so that

This allows us to express (56) in terms of the functional

(58)

where is the set of differentiable
obeying

The Lagrangian is

(59)

where is the Lagrange multiplier on the constraint
at and is the multiplier on the constraint at ,
for each . The solution to the variational problem (58)
must satisfy the algebraic equation, obtained by differentiating
(59) with respect to at each

(60)

for . Here and are defined to be nonzero
when the slope of is or , respectively.
These constraints dictate the values of and , although
it is not necessary to solve for them explicitly. From this equa-
tion it follows that will be a piecewise function that is ei-
ther decreasing at slope or is equal to zero. To see this,
note that if both inequality constraints and

are inactive for some interval , so that the
only nonzero Lagrange multiplier is , we find that
must be a constant on this interval, since (60) in this case could
be rewritten as

but this implies , which is a contradiction be-
cause this constraint was assumed inactive. Thus, one of the two
constraints and is always active, and
this dictates the form of . Thus, the optimal takes the form

(61)

for some . The delay constraint dictates the optimal
value of

Further, the optimal takes the form

(62)

The corresponding inverse normalized rate is

(63)

It remains to approximate . To do this, we first find the
limiting distribution of a normalization of to be a Gumbel
distribution. In the limit, is increasingly concentrated
around its mean because its variance does not scale with
while its mean does. This allows us to approximate the delay
by replacing by its mean for very large . In more detail,
following [44, pp. 299–300], we find that
has a Gumbel distribution with cumulative distribution function

. Because the mean of this distribution is
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the Euler–Mascheroni constant
as , it follows that for large

. The asymptotic variances are and thus
. The fact that the mean of grows

unbounded in while the asymptotic variance of is
independent of allows us to approximate the expectation

Integrating this over yields

(64)

(65)

(66)

We may then substitute this into (63) to obtain the rate–delay
tradeoff for large given by

when and

when .
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