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Abstract—We present a variational Bayesian algorithm for joint
speech enhancement and speaker identification that makes use
of speaker dependent speech priors. Our work is built on the
intuition that speaker dependent priors would work better than
priors that attempt to capture global speech properties. We derive
an iterative algorithm that exchanges information between the
speech enhancement and speaker identification tasks. With cleaner
speech we are able to make better identification decisions and
with the speaker dependent priors we are able to improve speech
enhancement performance. We present experimental results
using the TIMIT data set which confirm the speech enhancement
performance of the algorithm by measuring signal-to-noise (SNR)
ratio improvement and perceptual quality improvement via the
Perceptual Evaluation of Speech Quality (PESQ) score. We also
demonstrate the ability of the algorithm to perform voice activity
detection (VAD). The experimental results also demonstrate that
speaker identification accuracy is improved.

Index Terms—Speech enhancement, speaker identification, vari-
ational Bayesian inference.

I. INTRODUCTION

R OBUST speaker recognition remains an important
problem in statistical signal processing. Current ap-

proaches to speaker recognition mainly rely on directly mod-
eling the speech feature vectors of the speakers to be identified
and using clean speech to learn the parameters of these models.
This approach makes these methods sensitive to noise and these
systems do not perform well in real acoustic environments
where noise is unavoidable. As a result the problem of robust
speaker recognition continues to attract research interest (for
example see [2]). Approaches include the use of robust features
[3], [4] and feature compensation where speaker recognition
features are post-processed to mitigate channel effects and
noise [5]. Examples of this approach include cepstral mean
subraction (CMS) and RASTA speech processing [6]. Another
approach involves the use of speech enhancement algorithms
where the speech signal captured at the microphone is first
enhanced to reduce the effects of noise and reverberation before
speaker identification is performed.
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Speech enhancement remains an active area of research (see
[7] for a recent review). Speech enhancement algorithms can
be broadly classified as spectral-subtractive, subspace or statis-
tical-model based [7]. In spectral subtractive algorithms, an es-
timate of the noise spectrum is subtracted from the observed
speech spectrum to obtain an estimate of the clean speech spec-
trum [8], [9]. Spectral subtractive algorithms are plagued by a
number of drawbacks the most severe of which is the intro-
duction of “musical” noise. Subspace algorithms rely on the
decomposition of the noisy signal vector space into a speech
signal subspace and a noise subspace and enhancing the ob-
served signal by projecting it onto the speech signal subspace
[10]. Similar ideas are present in the speaker recognition liter-
ature. For example in recent work by Kenny et al. [11], [12]
the idea of eigen-voices is introduced which relies on the de-
composition of the feature space into a subspace over which
speaker variability is present and its orthogonal complement.
Statistical-model based algorithms employ probabilistic models
for both the speech and noise. The Ephraim–Malah enhance-
ment algorithm [13] and its extensions [14], [15] provide ex-
cellent examples of statistical-model based algorithms. Here,
the discrete Fourier transform (DFT) coefficients of the clean
speech and noise are assumed to be Gaussian distributed and a
MMSE estimator for the spectral amplitude is derived. A major
advantage of the Ephraim–Malah enhancement algorithm is that
it does not suffer from the “musical noise” artifact [16]. In [17],
the author derives a MMSE estimator for the spectral ampli-
tude using the assumption that the spectral coefficients have
super-Gaussian priors. In [18], the author proposes alternatives
to the squared error distortion to derive perceptually motivated
Bayesian estimators for the spectral amplitude starting with the
assumption that the spectral coefficients of the clean speech
are Gaussian distributed. In the papers discussed so far, exact
Bayesian inference is possible due to the assumption that cer-
tain parameters such as noise variances are known. Since these
quantities are unknown in practice, speech enhancement would
benefit from a full Bayesian treatment where these quantities
are treated as unknown. For example, in this work we are able
to infer SNR level from the observations making the algorithm
robust to changes in noise level during the utterance.

A number of authors have presented speech enhancement al-
gorithms which employ prior source models and approximate
Bayesian methods (for example see [19] and [20]). The Algo-
nquin speech enhancement algorithm [21], [22] and some ex-
tensions [23]–[26] apply a variational inference technique to
enhance noisy reverberant speech using a speaker independent
mixture of Gaussians speech prior in the log spectral domain.
Our approach to robust speaker recognition is to use speaker
dependent speech priors and to employ a Bayesian framework
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to estimate the clean speech and speaker identity jointly given
an observed signal contaminated by additive noise [1], [27].

The Bayesian framework allows us to handle both parameter
and model uncertainty in a principled way. Here, the parame-
ters and the observations are treated as random variables
with a joint distribution . Given a particular joint distri-
bution, we would like to compute the posterior distribution of
the parameters given the observations in order to allow infer-
ence. Unfortunately, for most models of interest, including the
model used in this paper, this posterior is intractable and we are
forced to use approximations.

Variational inference methods have emerged as a powerful
class of approximate inference techniques. In this approach, in-
ference is viewed as an optimization problem where an appro-
priate cost function is minimized [28]. Variational Bayesian in-
ference [29] and modifications of belief propagation (BP) such
as expectation propagation (EP) [30] fall in this category. The
use of graphical models allows a powerful interpretation of vari-
ational techniques as message passing algorithms [31]. That is,
the inference step consists of messages being passed between
nodes in the graph with each node performing local computa-
tions. This allows the global inference problem to be decom-
posed into local computations [32].

Recently, variational Bayesian methods have been success-
fully applied to several signal processing problems such as
source separation [33] and parameter estimation [34] and to
speech and language processing problems [35]–[37]. This pro-
vides motivation for the work presented here where variational
Bayesian techniques are used to improve speaker recogni-
tion performance in noisy environments. In previous work
we have considered the application of Markov chain Monte
Carlo (MCMC) inference to the problem of joint enhancement
and identification [27] and EP to joint source separation and
identification [38]. The variational Bayesian approach offers
advantages over both MCMC and EP. MCMC is computation-
ally more expensive than VB making it less suitable for speech
applications. Also, VB offers convergence guarantees that are
lacking in EP.

The rest of the paper is organized as follows. In Section II,
we present the problem formulation and characterize the joint
distribution of the parameters and observations in our model. In
Section III, we give a brief introduction to variational Bayesian
inference and derive the joint speech enhancement and speaker
identification algorithm by applying a variational approxima-
tion to the true posterior. Experimental results are presented
in Section IV. These results show that the proposed algorithm
performs well in both speech enhancement and speaker identi-
fication. The algorithm outperforms the Ephraim–Malah algo-
rithm [13], a standard baseline which has been found to outper-
form several speech enhancement algorithms in the literature [7,
chapter 11], in both SNR improvement and perceptual quality as
measured using the PESQ score. The ablity of the algorithm to
perform VAD is also experimentally verified. Section V presents
a discussion and concludes the paper.

II. PROBLEM FORMULATION

In this paper, we use a source prior that takes into account the
temporal correlation and nongaussianity of speech. Using single

channel observations of the noisy speech, the aim is to perform
speech enhancement and speaker identification jointly.

We model speech as a time varying autoregressive (AR)
process of order . For a given block of speech samples

we have (the speech signal is divided into
segments)

(1)

where , and

. The signal observed at the micro-
phone is given by

(2)

where is additive white Gaussian

noise with precision (inverse variance) .
From (1) we have

(3)

From (2) we can write . If

is the block of noisy observations corresponding
to the source samples the data likelihood is

(4)
To complete the probabilistic formulation we require priors

over , , and . The speaker dependence is introduced by
the prior over . We model the prior over for speaker as a
Gaussian mixture model (GMM)

(5)

where with being the library of
known speakers. The parameters for the dis-
tribution are obtained in advance from a corpus of clean
speech.

We find it analytically convenient to introduce an indicator
variable that is a random binary vector that cap-
tures both the identity of the speaker and the mixture coefficient
“active” over a given frame. We have

(6)

The precisions and are assumed to have Gamma priors,
that is
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The analytical forms of the Gaussian and Gamma distributions
are presented in Appendix A.

Now that we have the priors for all the random variables in our
model we can write the joint distribution of the observations and
parameters. We assume the joint distribution factors as shown in
(7). We use the notation to denote the set :

(7)

The prior is assumed to factor as follows:

(8)

This allows us to take into account the fact that adjacent speech
blocks are likely to originate from the same speaker. In order to
completely characterize (8) we need to know the speaker tran-
sition matrix with , where

is the speaker responsible for the th block and the mixture
coefficients for all the speakers in the
library. The distribution is then characterized by
the matrix given by

... (9)

where is the th row of , is a vector of all ones,
and represents the Kronecker product. We can now write

(10)

where . For compactness we represent all the parame-
ters and latent variables as

Fig. 1 shows a Bayesian network that captures the conditional
dependencies between the random variables in our model.

Given the noisy observations, we would like to compute the
posterior in order to determine the identity of the
speaker responsible for generating the observed speech and the
posterior in order to estimate the clean speech.
However due to the intractability of these posteriors we employ
approximate Bayesian inference techniques to compute them.
The intractability results from the fact that we cannot compute
expectations with respect to these posteriors.

III. VARIATIONAL BAYESIAN INFERENCE

In variational Bayesian inference, we seek an approxima-
tion to the intractable posterior which mini-
mizes the Kullback–Leibler (KL) divergence between and

Fig. 1. Bayesian network showing the conditional dependencies between the
random variables in our model.

with constrained to lie within a tractable ap-
proximating family. The KL divergence is a measure
of the distance between two distributions and is defined by [39]

To ensure tractability we assume that the posterior can be
written as a product of factors depending on disjoint subsets
of [29], [40]. Assuming that each factor
depends on a single element of then

(11)

It can be shown that the optimal form of denoted by
that minimizes is given by [40]

(12)

We use the notation to denote the approximate posterior
of all the elements of except . We obtain a set of coupled
equations relating the optimal form of a given factor to the other
factors. To solve these equations, we initialize all the factors and
iteratively refine them one at a time using (12).

A. Approximate Posterior

Returning to the context of our joint speech enhancement and
speaker ID model, we assume an approximate posterior
that factorizes as follows:

The dependence of the posterior on the observations is
implicit. Using (12) we obtain expressions for the optimal form
of the factors. We obtain (see Appendixes B and C for details).

1)

(13)

with
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2)

(14)

with

is the trace of the matrix argument.
3)

(15)

where

and

Recall that are the elements of the matrix introduced
in Section II.

4)

(16)

with

5) Turning to we have

(17)

As discussed in Appendix B, , and
can be computed using a Kalman smoother

[41].
The forms of the expressions (13)–(16) are typical in

Bayesian computations. They include a contribution from the
prior and one from the data. The nature of the prior determines
the relative contribution of the data component to the posterior.
When the prior is uninformative, the posterior largely depends
on the data.

B. The VB Algorithm

Armed with closed form expressions for the approximate
forms of the posteriors for the parameters , , , and
and a means to compute the source statistics, we can now
present the VB algorithm. The VB algorithm is similar to the
expectation maximization (EM) algorithm. It consists of a step
similar to the E-step where the current source estimates are de-
termined using a Kalman smoother using the current estimates
of the posterior parameters. In the VB-M step, the current
source statistic estimates are used to update the parameters of
the posterior distributions.

To run the algorithm, the noisy utterance is divided into
segments of samples each. The posterior parameters for each
block are initialized and updated at each iteration. See Algo-
rithm 1.

Algorithm 1: VB algorithm.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results that verify
the performance of the algorithm. For the simulations we use
the TIMIT database which contains recordings of 630 speakers
drawn from eight dialect regions across the USA with each
speaker recording ten sentences [42]. The sampling frequency
of the utterances is 16 kHz with 16-bit resolution. For our ini-
tial experiment a randomly generated library of four speakers
was used. In order to train the speaker models we used eight
sentences and used the other two for testing. We assume an AR
order of eight with ten mixture coefficients. To obtain training
data for the AR models we divide the speech into 32-ms frames
and compute the AR coefficients corresponding to these frames
using the Levinson–Durbin algorithm. We then use the EM al-
gorithm to determine the GMM parameters. The EM algorithm
is run until the relative change in model likelihood is less than

. One hundred expectation–maximization (EM) iterations
are found to be sufficient. We also train speaker models using
Mel frequency cepstral coefficients (MFCCs) to allow us to
compare the performance of our algorithm with that obtained
using MFCCs. Here we use 13 coefficients obtained from 32-ms
frames with 50% overlap. Speaker GMMs are trained using the
EM algorithm with the number of mixtures set at 32.
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Fig. 2. SNR improvement �SNR � SNR � after the final iteration of the
algorithm versus number of iterations.

We found it necessary to augment the speaker library with a
silence model to avoid erroneous classification of silent speech
blocks. In our formulation, we treat “silence” as an additional
speaker therefore increasing the library size by one. The silence
model consists of a single Gaussian with zero mean and small
covariance. An added benefit of this is that we can now use
the algorithm to perform voice activity detection (VAD) [43],
[44]. We present experimental results comparing the VB algo-
rithm’s performance to that obtained using the ITU-G.729 stan-
dard [45]. We also need to define the speaker transition matrix

. We assume is defined so that the speaker states have a
large self transition probability. Also we assume that speaker
changes can occur only after a silent state. That is (silence is
considered the fifth speaker)

(18)

The experiments were performed using additive white
Gaussian noise as the source of contamination. To run the
algorithm, the noisy utterance was divided into 32-ms segments

. The hyperparameters of the gamma distributions
were . Thus, the prior over the noise variance is
uninformative and the noise variance for a particular segment is
inferred from the observation. This makes the algorithm robust
to changes in noise level from segment to segment. As with
any iterative algorithm, initialization is very important and it
affects the quality of the final solution. In our experiments,
the following initialization scheme was found to work well:
we initialize the posterior mean of the AR coefficients to the
AR coefficients obtained from the noisy speech blocks. The
posterior covariance of the AR coeficients was initialized as
the identity matrix. and are initialized to one for all
blocks. is initialized to the variance of the AR prediction

error determined using the noisy speech block and is initial-
ized at one. Finally we initialize the parameters of as

. The parameters of the transition matrix were
set to . These values were determined by com-
puting the transition probabilities between silence and speech
states for several files from the TIMIT data set. The silence and
speech states were determined using an energy detector.

Since we update the posterior parameters one at a time, we
need to specify a parameter update schedule. The parameter up-
date schedule is as follows:

1) Update the parameters of .
2) Update the parameters of .
3) Update the parameters of .
4) Update the parameters of .

This schedule was observed in simulation to be numerically
stable.

To quantify the algorithm’s enhancement performance we
measure the input and output SNR. If , and denote the
clean, noisy and enhanced signals respectively, then the input
and output SNRs are defined as

SNR

SNR

In order to determine the appropriate number of iterations, we
compute the average SNR improvement SNR SNR after
the final iteration of the algorithm for all the test utterances in
the library for various values of number of iterations. Fig. 2
shows a plot of SNR improvement versus number of iterations
for two values of input SNR: 5 and 10 dB. We see that there
is minimal SNR improvement after ten iterations. However, we
set the number of iterations at 30 since this is observed to im-
prove speaker identification performance. Fig. 3 shows the spec-
trograms and speech waveforms corresponding to the utterance
“The shot reverberated in diminishing whiplashes of sound”
when corrupted by additive white Gaussian noise at 10 dB and
enhanced using the algorithm. Using a C implementation of the
algorithm we can process a 3-s utterance in approximately 10
s when the algorithm is run for ten iterations. A C implemen-
tation of the Ephraim–Malah enhancement algorithm processes
the same utterance in less than one second.

To measure the identification performance of the algorithm
the posterior speaker probabilities are computed from the
approximate posterior . The posterior probability that a
given block was generated by a given speaker is

for . For each block, the most likely speaker is determined
via the maximum a posteriori (MAP) criterion using the poste-
rior distribution . That is
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Fig. 3. Spectrograms and speech waveforms corresponding to the utterance
“The shot reverberated in diminishing whiplashes of sound.” (a) Clean. (b)
Noisy at 10 dB. (c) Enhanced to 14.3 dB.

In order to assign a speaker to the entire utterance we compute

We now present enhancement and recognition results for
all the test utterances in a library averaged over 100 random
libraries of four speakers drawn from the TIMIT database.
We performed experiments to investigate the average SNR
improvement and speaker recognition rates as a function of
input SNR. The algorithm was run for 30 iterations. Fig. 4(a)
shows a plot of the SNR improvement versus input SNR while
Fig. 4(b) shows the recognition rates averaged over 100 random
sets of four speakers each. We compare the SNR improvement
of the algorithm to the SNR improvement obtained using
the Ephraim–Malah enhancement algorithm [13] and using a
Kalman smoother when the true AR coefficients are assumed
known. That is, we obtain the AR coefficients from the clean
speech and use these ARs to enhance the noisy speech using
a Kalman smoother. The latter provides an upper bound to
the performance of the algorithm since we employ a Kalman
smoother in the VB E-step to enhance the noisy speech using the
current estimate of the AR coefficients. Since we are working
with an estimate of the AR coefficients obtained from noisy
observations, we can not outperform the SNR improvement
obtained by a Kalman smoother using the true AR coefficients.
We also compare the recognition rates of the algorithm to those
obtained when 1) AR coeffcients are obtained directly from the
noisy signals, 2) MFCCs are obtained from the noisy signal,
3) MFCCs are obtained from the VB enhanced signal, and
4) MFCCs are obtained from the Ephraim–Malah enhanced
signal.

From these results, we see that significant SNR improvement
is obtained by the algorithm with a maximum SNR improve-
ment of approximately 10 dB obtained when the input SNR
is dB. The VB algorithm outperforms Ephraim–Malah
when the input SNR is between 5 and 7.5 dB. When the
input SNR is between 5 dB and 5 dB, the SNR impovement
obtained by the VB algorithm is within 1 dB of the perfor-
mance obtained when the true AR coefficients are known (the
upper bound since we have to estimate the AR coefficients
and cannot outperform a method in which these coefficients
are known). Turning to speaker identification results, we see
that the VB algorithm which relies on AR coefficients achieves
performance comparable to MFCCs obtained directly from
the noisy speech. We see that the best identification rates are
obtained when MFCCs obtained using the enhanced speech
are used. The MFCCs obtained from speech enhanced using
the VB algorithm outperform MFCCs from speech enhanced
using the Ephraim–Malah algorithm by up to approximately
5%. This shows that the improved performance of the VB
algorithm in speech enhancement allows for improved speaker
identification.

We are also interested in the perceptual quality of the speech
enhanced using our algorithm. To this end we evaluate the Per-
ceptual Evaluation of Speech Quality (PESQ) score of the en-
hanced utterances. The PESQ score is highly correlated to the
mean opinion score (MOS) which is a subjective measure of
speech quality [46]. To evaluate the MOS, listeners are asked
to rate speech quality on a scale ranging from 1 to 5 with 1
being the worst and 5 the best [7]. In our experiments, 80 files
corrupted at input SNRs ranging from 0–10 dB were enhanced
using both our algorithm and Ephraim–Malah. For each file we
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Fig. 4. SNR improvement versus (a) input SNR and (b) recognition performance for 4-speaker library.

Fig. 5. Comparison of perceptual quality performance between the VB algo-
rithm and Ephraim–Malah.

compute both the input and output PESQ score. Fig. 5 shows
the PESQ scores for both the VB algorithm and Ephraim–Malah
and the best-fit lines. We see that the VB algorithm outperforms
the Ephraim–Malah algorithm in terms of perceptual quality.

In order to evaluate the performance of the VB algorithm
in more realistic noisy conditions, experiments were performed
using the NOIZEUS data set [7]. This data set contains 30 IEEE
sentences corrupted by real world noises at various SNRs. The
SNR improvement obtained by the VB algorithm is compared
to that obtained using the Ephraim–Malah algorithm. Table I
presents the average SNR improvement for all 30 sentences in
the data set at input SNRs ranging from 0 dB to 15 dB. From the
experimental results we see that the VB algorithm outperforms
the Ephraim–Malah algorithm in the input SNR range 5 dB to
15 dB. However at 15 dB, both algorithms introduce distortion
leading to degradation of the signal.

We now present experimental results that demonstrate the al-
gorithm’s performance in voice activity detection (VAD). All
blocks assigned to the “silence” speaker are classified as silence

TABLE I
SNR IMPROVEMENT FOR THE NOIZEUS DATA SET

while blocks assigned to other speakers in the library are col-
lectively classified as “speech.” Figs. 6 and 7 show the VAD
decisions obtained by the VB algorithm and the ITU-G.729 al-
gorithm [45] when the speech is corrupted by additive white
Gaussian noise at 10 dB and 5 dB. We compare the VAD deci-
sions to the ground truth. To obtain the ground truth we perform
energy thresholding on the clean speech. Any blocks with en-
ergy 20 dB lower than the maximum energy are classified as
silence. To quantify VAD performance, we compare the per-
centage of speech samples correctly identified as either silence
or speech by the VB algorithm and the ITU-G.729 algorithm.
Table II presents the experimental results when 80 speech files
were processed at SNRs ranging from 5 dB to 10 dB by the
two algorithms. We see that the VB algorithm outperforms the
ITU-G.729 algorithm at all input SNRs considered.

V. DISCUSSION AND CONCLUSION

Experimental results reported in the previous section verify
that the proposed VB algorithm does indeed perform joint
speech enhancement and speaker identification. The significant
SNR improvement of up to 10 dB obtained by the VB algorithm
over a wide range of input SNRs shows that speech enhance-
ment is achieved. Furthermore, when the input SNR is between

5 dB and 5 dB, the SNR improvement obtained by the VB
algorithm is within 1 dB of the upper bound obtained when the
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Fig. 6. Voice activity detection results at 10 dB. Ground truth (top), VB de-
cision with 93% of samples correctly identified (middle) and ITU-G.729 algo-
rithm decision with 70.5% of samples correctly identified (bottom).

Fig. 7. Voice activity detection results at �5 dB. Ground truth (top), VB de-
cision with 77% of samples correctly identified (middle) and ITU-G.729 algo-
rithm decision with 42% of samples correctly identified (bottom).

TABLE II
% OF SPEECH SAMPLES CORRECTLY IDENTIFIED AS

EITHER SPEECH OR SILENCE

true AR coefficients are known. The enhancement performance
is also confirmed by observing the time domain speech plots
and spectrograms in Fig. 3 and by informal listening tests. Also,
the VB algorithm outperforms the Ephraim–Malah algorithm,
a standard baseline which has been found to outperform several
speech enhancement algorithms in the literature [7, chapter

11], in terms of SNR improvement and perceptual quality
as measured using the PESQ score. This result suggests that
the full Bayesian treatment employed in the VB algorithm
improves speech enhancement performance when compared
to an algorithm in which some parameters are assumed known
as is the case with the Ephraim–Malah algorithm. In the iden-
tification experiments, MFCCs from speech enhanced using
the VB algorithm outperform MFCCs from speech enhanced
using the Ephraim–Malah algorithm in the input SNR range of

5 dB to 10 dB. As an added benefit, the VB algorithm allows
us to perform VAD. From the experimental results, we see that
the VB algorithm outperforms the ITU-G.729 algorithm [45].

In this paper, we have presented a variational Bayesian algo-
rithm that performs speech enlacement and speaker identifica-
tion jointly. We demonstrate the power of approximate Bayesian
methods when applied to complex inference problems. The im-
portance of considering speech enhancement and speaker iden-
tification jointly within a Bayesian framework is that we can use
rich speaker dependent speech priors to mitigate the effects of
noise and therefore improve speaker identification in noisy en-
vironments. The experimental results provided verify the per-
formance of the algorithm.

APPENDIX A
STANDARD DISTRIBUTIONS

For an -dimensional Gaussian random vector, we have

where is the -dimensional mean vector and is the
covariance matrix.

The Gamma distribution over a positive random variable is
given by

APPENDIX B
APPROXIMATE POSTERIOR DERIVATIONS

In this Appendix, we derive the optimal factors of the approx-
imate posterior presented in Section III-A. Starting with the op-
timal form of we have
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(19)

From (19) we obtain (13)

with

For we have

(20)

From (20) we obtain (14)

with

Turning to we have

(21)

From (21) we obtain (15)

where

and

Considering we have
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(22)

Equation (22) is quadratic in and we can write

(23)

From (23) we obtain (16)

with

Turning to we have

(24)

Expanding the terms in (24) and evaluating the expectations
yields (17).

To arrive at the conclusion that , and
can be computed using a Kalman smoother

consider the following state space model where

(25)

(26)

with

(27)

(28)

where

...
. . .

...
(29)

(30)

and

(31)

Also

(32)
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Consider the sequence of observations and the
corresponding states . The joint distribution for
the state space model is

The posterior

and

(33)

From (25) to (28) we can write

And evaluating (33) we obtain

(34)

Comparing (17) and (34) we see that the two expres-
sions are equivalent and we conclude that we can com-
pute , and using a Kalman
smoother if we assume that the observations are generated
by the state space model described by (25)–(28). We have

and the quantity
is obtained from the posterior means computed by the Kalman
smoother. Also .

is obtained from the Kalman smoother and the
second order moments are obtained as follows:

Similarly, .
is obtained from the Kalman smoother and

is obtained from the first row of .

APPENDIX C
REQUIRED EXPECTATIONS

To characterize the parameters of the posterior distributions
derived in Appendix B we need to compute the following ex-
pectations:

1)

The first- and second-order moments , and
are computed using a Kalman smoother as

discussed in Appendix B.
2)

3)

4)

5)
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