
2023 IEEE AFRICON

979-8-3503-3621-4/23/$31.00 ©2023 IEEE

 Efficient Camera Trap Image Annotation Using

YOLOv5

Yuri Njathi

Centre for Data Science and Artificial

Intelligence (DSAIL)

Dedan Kimathi University of

Technology

Nyeri, Kenya

yuri.njathi@interns.dkut.ac.ke

Jason N. Kabi

Centre for Data Science and Artificial

Intelligence (DSAIL)

Dedan Kimathi University of

Technology

Nyeri, Kenya

jason.kabi@dkut.ac.ke

Lians Wanjiku

Centre for Data Science and Artificial

Intelligence (DSAIL)

Dedan Kimathi University of

Technology

Nyeri, Kenya

wanjiku.lians19@students.dkut.ac.ke

Gabriel Kiarie

Centre for Data Science and Artificial

Intelligence (DSAIL)

Dedan Kimathi University of

Technology

Nyeri, Kenya

gabriel.kiarie@dkut.ac.ke

Lorna Mugambi

Centre for Data Science and Artificial

Intelligence (DSAIL)

Dedan Kimathi University of

Technology

Nyeri, Kenya

lorna.mugambi@dkut.ac.ke

Ciira wa Maina

Centre for Data Science and Artificial

Intelligence (DSAIL)

Dedan Kimathi University of

Technology

Nyeri, Kenya

ciira.maina@dkut.ac.ke

Abstract— Using camera traps to acquire wildlife images is

becoming more common within conservancies. The information

provided by these camera traps enhances understanding of

wildlife behaviour and population patterns. The detection and

counting of animals present in each of the captured images is

valuable information as it can be used to guide conservation

efforts. Manual annotation of these wildlife images is a tedious

painful process. It is becoming more common to use tools that

either use AI to annotate camera trap datasets or use AI to aid

in annotation. These AI tools are usually trained on species

endemic to a particular region. The ability to fine-tune such

models to species endemic to one’s particular region is

important to save much of the time conservationists manually

look through the misclassified images. In this paper, we present

a case study where we used a YOLOv5 object detection model

trained to detect the presence and count the number of impala

and other animals from a dataset collected by researchers at the

Dedan Kimathi University of Technology Conservancy. We

analyze the results of the AI’s performance with respect to a

manually annotated dataset. The model was able to annotate

72% of the dataset at a human level of accuracy. The work here

shows promise with regard to time spent labelling camera trap

images by leveraging the presence of particular species to auto-

annotate a majority of the dataset.

Keywords— wildlife detection; camera traps; artificial

intelligence; conservation; YOLOv5;

I. INTRODUCTION

Camera traps have become useful tools in modern wildlife
conservation. They allow conservationists to monitor animals
in their natural state. Conservationists can understand how
animals live and survive in the wild, especially in large
protected habitats. Using camera traps can generate an
enormous amount of image data. This data is monitored daily,
weekly or monthly to understand the ecosystem interactions
in conservancies and answer important conservation
questions. Surveillance cameras are used in smaller
conservancies and zoos. This is mainly due to how easy it is
to power surveillance cameras when animals live in a
relatively small controlled area, looking through the
surveillance footage is manageable. In larger conservancies,
spanning hundreds or thousands of acres setting up
surveillance equipment would be a harder and more expensive
task. In larger conservancies, camera traps are used for image

and video collection. Camera traps have the following main
components:

1. A camera used to capture images and videos.

2. A power source such as batteries or solar panels.

3. A triggering device used to detect the presence of
animals and activate the camera. Common triggering
devices include infrared, laser or sound sensors.

4. A removable memory card is used to store the images
captured by the camera traps.

5. A protective housing is used to protect the camera trap
from being tampered with by animals or people.

Researchers usually deploy camera traps in a variety of
ways. Camera traps can be placed in fixed locations or can be
periodically moved around an area. They are placed in areas
identified to have high levels of animal activity such as animal
trails, water sources or feeding areas. When deploying camera
traps, researchers typically use a large number of cameras in
order to maximize the amount of data collected. Once camera
traps are set up, researchers check them every few weeks in
order to retrieve the memory cards. The memory cards are
usually brought back to the lab where they are analyzed and
the data is stored. The data is used to make informed decisions
about conservation management such as developing strategies
for protecting endangered species or identifying areas where
more resources are needed. Camera trap data is used to inform
policy decisions. A typical camera trap looks like the one in
Figure 1 [1].

 Examples of camera trap use cases are Mugambi et al [1]
where 4 camera traps were used to collect 8524 images of
wildlife at the Dedan Kimathi University of Technology
Conservancy from June to December 2021 [1]. Another
example is Palmer et al [2] where 225 camera traps were used
over an area of 1125 km2 capturing 938,596 images from July
2010 to December 2013[2].

 There are 1.5 million species of lifeforms on earth [3] with
different conservation statuses per the IUCN Red List of
threatened species [4]. This can be used to inform
conservation strategies and help prevent the occurrence of
endangered species [5]. The end goal of monitoring any

20
23

 IE
EE

 A
FR

IC
O

N
 |

 9
79

-8
-3

50
3-

36
21

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
AF

RI
CO

N
55

91
0.

20
23

.1
02

93
72

4

Authorized licensed use limited to: Dedan Kimathi University of Technology. Downloaded on November 30,2023 at 07:51:51 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE AFRICON

species in an area is to understand the trend of increase or
decrease that it follows. Camera traps provide a cheap solution
for the temporal collection of images, which can inform
conservationists on key questions over a broad span of time.
With the help of AI, conservation questions can quickly and
accurately be answered by the processing of the vast volumes
of images taken by camera traps, especially if done over
regular periods of time.

Figure 1 Camera Trap Deployed at Dedan Kimathi Conservancy

[1]

II. BACKGROUND AND RELATED WORK

Data: The work we embarked on centred on the DSAIL-
Porini dataset [1]. This dataset consists of 8524 images from
four camera traps and 6 main species of animals [1].

AI-related annotation: The use of deep learning and object
detection models to annotate animal datasets has been done
and is not a novel concept [6][7]. Zakria et al [6] used
YOLOv3 on an animal dataset consisting of six species
endemic to Ethiopia. Their dataset consisted of 3068 images
with each animal being present in at least 415 images. They
used augmentation, to close the gap between training and
testing images. In their study, they were able to detect
Ethiopian endemic animal species. A study by Norouzzadeh
et al [7] used deep neural networks to annotate a dataset
containing 48 species in the 3.2 million image Snapshot
Serengeti dataset. The deep neural network used classification
to identify, count and describe species beha
vior [7]. The behaviour harnessed was movement, resting or
eating. Their deep neural networks automatically identified
animals with a 93.8% accuracy.

 Norouzzadeh et al [7] produced a model that saved over 8
years of human labelling effort showing the gains possible
when using deep learning along with camera traps. They
concluded that although their deep neural network performed
well on the Snapshot Serengeti dataset, performance worsened
for rare classes. Their work is evidence that annotation on a
large scale, millions of images, is possible. Image
classification faces difficulty in counting and detecting the
behaviour of species as seen in Norouzzadeh et al [7]. The
application of deep neural networks in object detection may
prove more useful as seen in Zakria et al [6].

Object Detection Algorithms: The three commonly used
algorithms for object detection are You Only Look Once

(YOLO) [8], Single Shot Detector (SSD)[9] and Region-
based Convolutional Neural Network (R-CNN)[10]. YOLO
uses regression to literally only looks once at an image to
predict what objects are present and where they are [8]. A
single CNN simultaneously predicts multiple bounding boxes
and class probabilities assigned to those boxes. YOLO runs at
about 45 frames per second [8][11]. YOLO divides each
image into an SxS grid, with each grid predicting N boxes.
From those SxSxN boxes, it classifies each box for every class
and picks the highest-class probability as seen in Redmon et
al [8].

Single Shot Detectors (SSD) are similar to YOLO
detectors. SSDs also use a single deep neural network. Unlike
YOLO, they use feature maps of each convolutional layer to
predict the bounding boxes. These feature maps have different
resolutions and can handle objects of various sizes. SSD is a
simpler a method, it encapsulates all computation into a single
network. SSDs run a 3x3 convolutional kernel on them to
predict bounding boxes and classification probability. The
most common SSD is RetinaNet [9][11].

R-CNNs approach pixels by classifying the pixels that
make up the object in the identified bounding box. It employs
a two-stage approach, using a region-based network to
propose potential locations of objects, followed by a second
neural network to classify and detect these objects, with a
pixel mask to provide precise outlines for the objects in
question [10][11].

Comparison of different object detection algorithms:

YOLO is fast and uses little processing memory but
struggles where multiple objects are in a single grid or where
objects are very small.

 SSDs have trouble recognizing small objects [11]. SSDs
match default boxes to the ground truth boxes.

 R-CNN is the most accurate though it requires more
resources in terms of storage and processing power for
detection. R-CNN operates at a lower frame rate than YOLO
and SSD. YOLO may be the better option if accuracy is not a
priority or if the images have simple objects in black-and-
white or on a clear background. If the images are complex and
accuracy is of utmost importance, R-CNN is the better choice.

III. OBJECTIVES

Main Objective

 The main objective of our work is to design a

customizable system that can annotate a majority of the

dataset with species, species count and species localization in

the images for the animals in the dataset , thus, freeing up

more time for conservationists to concentrate their efforts on

more threatened species without losing track of the

population numbers in less threatened species or of less

interesting.

IV. METHODOLOGY

A. Data Collection and analysis

 Wildlife images were obtained from the DSAIL-Porini
dataset [1]. These images were collected at the Dedan Kimathi
University of Technology Conservancy and a data paper by
Mugambi et al [1] includes information on the species count
and the motion-sensor cameras traps for data collection. The

Authorized licensed use limited to: Dedan Kimathi University of Technology. Downloaded on November 30,2023 at 07:51:51 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE AFRICON

images from the raspberry Pi 2 and Raspberry Pi Zero have an
image size of 1280 x 720 pixels while images from the
OpenMV Cam H7 have an image size of 640 x 480 pixels. All
in JPG format. The dataset contains six main species, the
impala, bushbuck, Sykes’ monkey, defassa waterbuck,
common warthog and Burchell’s zebra.

Figure 2 The six main species in the DSAIL-Porini dataset;

Waterbuck, Sykes’ Monkey, Warthog, Bushbuck, Zebra and Impala

Table 1 Unique species per Image

Unique
species

Number of images
containing species

Percentage of
images containing
species

Impala 5250 61.6

Monkey 48 0.6

Impala,
Monkey

4 0.0

Bushbuck 312 3.7

Waterbuck 594 7.0

Warthog 1358 15.9

Zebra 422 5.0

Impala,
Warthog

207 2.4

Zebra, Impala 22 0.3

Can’t tell 140 1.6

Waterbuck,
Impala

12 0.1

Bushbuck,
can’t tell

1 0.0

Impala, Zebra 154 1.8

Total 8524 100

The key takeaways from Table 1:

1. 61.6 % of all images have at least one impala. An
impala detector would eliminate the need to
manually annotate 61.6% of the images.

2. 87% of all the images contain Impala, Zebra and
Warthog.

We trained our model on “Impala” class and “Other” class.
Where “Other” class was a combination of all non-Impala
species into a single class.

B. Review of YOLOv1 and YOLOv5 Detection

Algorithms

 We used the YOLOv5 model to understand how its layers

are structured and the theory behind its performance. We look

at the layers that made up the first YOLO model and look at

the improvements made to have the YOLOv5 model. In

Redmon et al [8], YOLO struggles with objects that appear in

groups such as a flock of birds. The YOLOv1 model learns

to predict bounding boxes from data, it struggles to generalize

to objects in new or unusual aspect ratios or configurations.

We saw this when we saw a bushbuck in a new environment,

see Figure 13.

 YOLO combines separate components of object detection

into a single neural network. It uses features from the entire

image to predict each bounding box. YOLO divides an input

image into an S x S grid. If the center of an object falls into a

grid cell, that grid cell is responsible for detecting that object.

Each grid cell predicts B bounding boxes and confidence

scores for those boxes. The YOLO model is designed as a

convolutional neural network. The initial convolutional

layers extract features while the fully connected layers predict

the output probabilities and coordinates. It is inspired by

GoogLeNet by Szegedy et al [12]. It has 24 convolutional

layers followed by 2 fully connected layers. Unlike

GoogLeNet which uses inception modules after its

convolutional layers, YOLO uses 1 x 1 reduction layers

followed by 3 x 3 convolutional layers similar to Lin et al

[13]. The final output is a 7 x 7 x 30 tensor of predictions.

YOLOv5 was proposed in 2020 [14]. The core features of

the YOLOv5 model are:

1. Automated data augmentation where a combination of

data augmentation techniques is used to improve the

accuracy of its predictions.

2. Efficient neural network design that reduce the

number of parameters and improve the accuracy of its

predictions

3. Cross-Stage Partial (CSP) connections to allow in

information to move from one layer to another.

4. Multi-Scale training helps the model learn features at

different scales this helps the model to detect objects

of different sizes in an image.

5. Faster training due to the above features.

YOLOv5 improved on YOLOv1 by adding a Focus

module, CBL module, CSP module, SPP module, Concat

module and Upsample module, these modules refine and

merge image features to overcome the problem of missed and

mischeck in multi-scale feature target detection. There are 5

YOLOv5 models [14], they are YOLOv5n, YOLOv5s,

YOLOv5m, YOLOv5l and YOLOv5x. Their internal

structures are the same, except for the depth_multiple and

width_multiple that control the depth of the models and the

number of convolution cores.

 We used YOLOv5s in our work whose architecture

incorporates 2 kinds of CSP modules. The Leaky ReLU

activation function is used in its 2 CSP modules, the first CSP

structure is the backbone network while the other strengthens

the integration ability of future networks. The SPP is to

extract image features at a deeper level while keeping the size

of the input and output unchanged.

Authorized licensed use limited to: Dedan Kimathi University of Technology. Downloaded on November 30,2023 at 07:51:51 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE AFRICON

 A leaky Rectified Linear Unit is a type of activation

function based on a ReLU but instead of a flat negative slope,

it has a small non-zero gradient when the unit is not active.

This prevents dead neurons from occurring due to zero

gradients. Leaky ReLUs help speed up training, improve

generalization performance and can lead to higher accuracy

in deep networks.

C. Model Evaluation Metrics

To evaluate the YOLOv5 model we checked their mean

Average Precision (mAP) and Intersection over Union

measures. The Mean Average Precision is calculated by first

calculating the Average Precision (AP) for each class in the

dataset. AP is calculated by taking the area under the

Precision-Recall curve for each class.

𝐴𝑃 =
∆𝑟𝑒𝑐𝑎𝑙𝑙

𝑁
(∑ 𝑚𝑎𝑥(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎𝑡𝑟𝑒𝑐𝑎𝑙𝑙))

N is the number of data points in the Precision-Recall curve

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

mAP is calculated as the average of all the class APs

𝑚𝐴𝑃 =
∑ 𝐴𝑃ₙ𝐶

𝑛=1

𝐶

C is the number of classes in the dataset and AP is the

Average Precision per class. An mAP of 1 is expected for an

ideal model.

D. Data Pre-processing and data labelling

Before we could use the dataset for object (animal)
detection, it was necessary to label a portion of the dataset
according to the YOLO format using the publicly available
LabelImg annotation tool the process is seen in Figure 3. In
the YOLO labelling format, a text file with the same name is
created for each image file in the same folder. Each text file
contains annotations for the corresponding image file,
including its object class, object coordinates, height and width.
For each object, a new line is created as in Figure 4.

Figure 3 labelImg bounding box annotation

Figure 4 YOLO labelling format

E. Object Detection Model Training

 For training and evaluation, 550 training images were used,

256 images had at least one impala. 176 validation images

were used with 88 images having at least one impala. Some

images had impalas and other species. Trained on over 500

epochs on Google Colab’s Nvidia T4 GPU, with a GPU

memory of 16GB and 1.59 GHz GPU memory clock taking

3 hours 20 minutes to complete training.
Table 2 Training and Validation metric scores

State Precision Recall mAP

Training 0.851 0.674 0.746

Validation 0.839 0.707 0.795

F. Object Detection Model Testing and

evaluation

 The trained YOLOv5 model was inferenced on a NVIDIA

2GB Jetson Nano, with a 128-core Maxwell GPU. It took 1

hour, 34 minutes and 38 seconds on all 8524 images. 2582

images had no detections representing 30% of the dataset.

From investigation, images that had no detections had the

following characteristics:

1. Had no animals,

2. The animals were very far away and couldn’t be

spotted even by human eyes

3. The images were too close up

4. The images had lens flare.

These characteristics can be seen in the images in Figures 5-

8. Some images had no detections but should have had at

least one or two, example Figure 7.

Figure 5 Seemingly-empty images with no detections

Authorized licensed use limited to: Dedan Kimathi University of Technology. Downloaded on November 30,2023 at 07:51:51 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE AFRICON

Figure 6 close up images with no detections

Figure 7 Lens Flare images with no detections

Figure 8 No detections but Impala should have been detected

V. RESULTS

 A visual qualitative approach was taken on the images

generated in the prediction phase. This required looking at a

subset of the predicted images.

Figure 9 Impala detection example

Manual Annotation: 4 Impalas, AI annotation: 3 Impalas

Figure 10 Warthog (Other) detection example

Manual Annotation: 1 Other (Warthog), AI annotation: 1

Other

Figure 11 Multiple Warthog (Other) detections

Manual Annotation: 6 Others (Warthogs), AI annotation: 5

Others

Figure 12 Multiple Sykes' Monkey (Other) detections

Manual Annotation: 2 Others (Monkeys), AI annotation: 2

Others

Figure 13 The YOLO model’s detections in a new environment

Authorized licensed use limited to: Dedan Kimathi University of Technology. Downloaded on November 30,2023 at 07:51:51 UTC from IEEE Xplore. Restrictions apply.

2023 IEEE AFRICON

Figure 14 Zebra detections

Manual Annotation: 2 Others (Zebras), AI annotation: 2

Others

 We compared the performance of the object detector with

that of a human annotator [1] and obtained a mean absolute

error (MAE) of 0.9387 for all species. 72% of all 5432 images

had be classified as well as a human would.

VI. DISCUSSION

From the results, it was clearly seen that the model

generalized to different species and was able to detect impala

and other species in the test images as in Figure 9-14. The

model took about 670ms per image. False-triggered images

were accurately observed by the model. As stated YOLO

struggles with generalization to new environments and new

camera configurations. Figure 13 was taken by a Nikon

DSLR camera in an entirely different environment with

respect to the environment in the DSAIL-Porini dataset.

YOLOv5 was expected to struggle with small objects but

performed better than expected as seen in Figure 9-11.

YOLOv5 struggled with animals that had obstructed each

other, Figure 9.

Despite reviewing YOLOv5’s potential disadvantages, we

saw that the model performed quite well, even when trained

on a small amount of data. The errors are a consequence of

data collection issues mentioned by Mugambi et al [1] or

YOLO’s intrinsic disadvantages mentioned by Redmon et al

[8].

VII. CONCLUSIONS

We were able to annotate 72% of the dataset at a human

level of annotation, taking 670 ms per input image. It took 2

weeks to annotate 8524 images, taking 2 minutes and 21

seconds per input image. The model is easily customizable as

we only used 550 images to achieve such results. The mean

absolute error has one less animal count states that on average

the AI count error is 1 individual animal. Which is relatively

sound.

To improve on our work, we will train our model on the

whole dataset and annotate newly obtained data from the

same conservancy. There is a possible roadmap to replicating

these positive results in terms of time taken and accuracy

towards annotating newer wildlife camera trap images taken

from the Kenyan conservancy and providing a good proof of

concept for future work with other conservancies on camera

trap imagery. We plan on adding all the classes to the train

dataset.

ACKNOWLEDGMENT

We would like to thank Data Science Africa for support
through the Affiliated Centre Program and NVIDIA
Corporation for a hardware grant to the Centre for Data
Science and Artificial Intelligence (DSAIL).

REFERENCES

[1] Mugambi, L., Kabi, J. N., Kiarie, G., & Maina, C. wa. (2023). DSAIL-

Porini: Annotated camera trap image data of wildlife species from a
conservancy in Kenya. Data in Brief, 46, 108863.
https://doi.org/10.1016/J.DIB.2022.108863

[2] Palmer MS, Packer C (2018) Giraffe bed and breakfast: Camera traps
reveal Tanzanian yellow-billed oxpeckers roosting on their large
mammalian hosts. Afr J Ecol.

[3] About Species | WWF. (n.d.). Retrieved February 8,2023, from
https://wwf.panda.org/discover/our_focus/wildlife_practice/about_spe
cies/

[4] Mace, G. M., Collar, N. J., Gaston, K. J., Hilton-Taylor, C., Akçakaya,
H. R., Leader-Williams, N., Milner-Gulland, E. J., & Stuart, S. N.
(2008). Quantification of Extinction Risk: IUCN’s System for
Classifying Threatened Species. Conservation Biology, 22(6), 1424–
1442. https://doi.org/10.1111/j.1523-1739.2008.01044.x

[5] IUCN Red List: https://www.iucnredlist.org/about/influence-on-
conservation

[6] Endris, A., Zakria, Deng, J., Ahmednasir, M., Mohammed, J., &
Kewyu, N. (2021). Towards automatic ethiopian endemic animals
detection on android using deep learning. 2021 4th International
Conference on Pattern Recognition and Artificial Intelligence, PRAI
2021, 463–468. https://doi.org/10.1109/PRAI53619.2021.9550798

[7] Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer,
M. S., Packer, C., & Clune, J. (2018). Automatically identifying,
counting, and describing wild animals in camera-trap images with deep
learning. Proceedings of the National Academy of Sciences of the
United States of America, 115(25), E5716–E5725.
https://doi.org/10.1073/PNAS.1719367115/SUPPL_FILE/PNAS.171
9367115.SAPP.PDF

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788,
2016, doi: 10.1109/CVPR.2016.91

[9] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, G. Cheng-Yang
& A. Berg, “SSD: Single Shot MultiBox Detector” In: Leibe, B., Matas,
J., Sebe, N., Welling, M. (eds) Computer Vision – ECCV 2016. ECCV
2016. Lecture Notes in Computer Science(), vol 9905. Springer, Cham.
https://doi.org/10.1007/978-3-319-46448-0_2

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 580–587. IEEE, 2014.

[11] H. Devanathan, “The Basics of Object Detection: Yolo, SSD, R-CNN,”
Medium, 11-Oct-2022. [Online]. Available:
https://towardsdatascience.com/the-basics-of-object-detection-yolo-
ssd-r-cnn-6def60f51c0b. [Accessed: 22-Feb-2023].

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with
convolutions. CoRR, abs/1409.4842, 2014.

[13] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR,
abs/1312.4400, 2013

[14] L. Ting, Z. Baijun, Z. Yongsheng and Y. Shun, "Ship Detection
Algorithm based on Improved YOLO V5," 2021 6th International
Conference on Automation, Control and Robotics Engineering
(CACRE), Dalian, China, 2021, pp. 483-487, doi:
10.1109/CACRE52464.2021.9501331.

Authorized licensed use limited to: Dedan Kimathi University of Technology. Downloaded on November 30,2023 at 07:51:51 UTC from IEEE Xplore. Restrictions apply.

