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Abstract— Using camera traps to acquire wildlife images is 

becoming more common within conservancies. The information 

provided by these camera traps enhances understanding of 

wildlife behaviour and population patterns. The detection and 

counting of animals present in each of the captured images is 

valuable information as it can be used to guide conservation 

efforts. Manual annotation of these wildlife images is a tedious 

painful process. It is becoming more common to use tools that 

either use AI to annotate camera trap datasets or use AI to aid 

in annotation. These AI tools are usually trained on species 

endemic to a particular region.  The ability to fine-tune such 

models to species endemic to one’s particular region is 

important to save much of the time conservationists manually 

look through the misclassified images.  In this paper, we present 

a case study where we used a YOLOv5 object detection model 

trained to detect the presence and count the number of impala 

and other animals from a dataset collected by researchers at the 

Dedan Kimathi University of Technology Conservancy. We 

analyze the results of the AI’s performance with respect to a 

manually annotated dataset. The model was able to annotate 

72% of the dataset at a human level of accuracy. The work here 

shows promise with regard to time spent labelling camera trap 

images by leveraging the presence of particular species to auto-

annotate a majority of the dataset.  

Keywords— wildlife detection; camera traps; artificial 

intelligence; conservation; YOLOv5; 

I. INTRODUCTION 

Camera traps have become useful tools in modern wildlife 
conservation. They allow conservationists to monitor animals 
in their natural state. Conservationists can understand how 
animals live and survive in the wild, especially in large 
protected habitats. Using camera traps can generate an 
enormous amount of image data. This data is monitored daily, 
weekly or monthly to understand the ecosystem interactions 
in conservancies and answer important conservation 
questions. Surveillance cameras are used in smaller 
conservancies and zoos. This is mainly due to how easy it is 
to power surveillance cameras when animals live in a 
relatively small controlled area, looking through the 
surveillance footage is manageable. In larger conservancies, 
spanning hundreds or thousands of acres setting up 
surveillance equipment would be a harder and more expensive 
task. In larger conservancies, camera traps are used for image 

and video collection. Camera traps have the following main 
components: 

1. A camera used to capture images and videos.  

2. A power source such as batteries or solar panels. 

3. A triggering device used to detect the presence of 
animals and activate the camera. Common triggering 
devices include infrared, laser or sound sensors. 

4. A removable memory card is used to store the images 
captured by the camera traps.  

5. A protective housing is used to protect the camera trap 
from being tampered with by animals or people. 

Researchers usually deploy camera traps in a variety of 
ways. Camera traps can be placed in fixed locations or can be 
periodically moved around an area. They are placed in areas 
identified to have high levels of animal activity such as animal 
trails, water sources or feeding areas. When deploying camera 
traps, researchers typically use a large number of cameras in 
order to maximize the amount of data collected. Once camera 
traps are set up, researchers check them every few weeks in 
order to retrieve the memory cards. The memory cards are 
usually brought back to the lab where they are analyzed and 
the data is stored. The data is used to make informed decisions 
about conservation management such as developing strategies 
for protecting endangered species or identifying areas where 
more resources are needed. Camera trap data is used to inform 
policy decisions. A typical camera trap looks like the one in 
Figure 1  [1]. 

 Examples of camera trap use cases are Mugambi et al [1] 
where 4 camera traps were used to collect 8524 images of 
wildlife at the Dedan Kimathi University of Technology 
Conservancy from June to December 2021 [1].  Another 
example is Palmer et al [2] where 225 camera traps were used 
over an area of 1125 km2 capturing 938,596 images from July 
2010 to December 2013[2]. 

 There are 1.5 million species of lifeforms on earth [3] with 
different conservation statuses per the IUCN Red List of 
threatened species [4]. This can be used to inform 
conservation strategies and help prevent the occurrence of 
endangered species [5]. The end goal of monitoring any 
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species in an area is to understand the trend of increase or 
decrease that it follows. Camera traps provide a cheap solution 
for the temporal collection of images, which can inform 
conservationists on key questions over a broad span of time. 
With the help of AI, conservation questions can quickly and 
accurately be answered by the processing of the vast volumes 
of images taken by camera traps, especially if done over 
regular periods of time. 

 

Figure 1 Camera Trap Deployed at Dedan Kimathi Conservancy 

[1]   

II. BACKGROUND AND RELATED WORK 

Data: The work we embarked on centred on the DSAIL-
Porini dataset [1]. This dataset consists of 8524 images from 
four camera traps and 6 main species of animals [1].   

AI-related annotation: The use of deep learning and object 
detection models to annotate animal datasets has been done 
and is not a novel concept [6][7]. Zakria et al [6] used 
YOLOv3 on an animal dataset consisting of six species 
endemic to Ethiopia. Their dataset consisted of 3068 images 
with each animal being present in at least 415 images. They 
used augmentation, to close the gap between training and 
testing images. In their study, they were able to detect 
Ethiopian endemic animal species. A study by Norouzzadeh 
et al [7] used deep neural networks to annotate a dataset 
containing 48 species in the 3.2 million image Snapshot 
Serengeti dataset. The deep neural network used classification 
to identify, count and describe species beha 
vior [7]. The behaviour harnessed was movement, resting or 
eating. Their deep neural networks automatically identified 
animals with a 93.8% accuracy.  

 Norouzzadeh et al [7] produced a model that saved over 8 
years of human labelling effort showing the gains possible 
when using deep learning along with camera traps. They 
concluded that although their deep neural network performed 
well on the Snapshot Serengeti dataset, performance worsened 
for rare classes. Their work is evidence that annotation on a 
large scale, millions of images, is possible. Image 
classification faces difficulty in counting and detecting the 
behaviour of species as seen in Norouzzadeh et al [7]. The 
application of deep neural networks in object detection may 
prove more useful as seen in Zakria et al [6]. 

Object Detection Algorithms: The three commonly used 
algorithms for object detection are You Only Look Once 

(YOLO) [8], Single Shot Detector (SSD)[9] and Region-
based Convolutional Neural Network (R-CNN)[10]. YOLO 
uses regression to literally only looks once at an image to 
predict what objects are present and where they are [8]. A 
single CNN simultaneously predicts multiple bounding boxes 
and class probabilities assigned to those boxes. YOLO runs at 
about 45 frames per second [8][11]. YOLO divides each 
image into an SxS grid, with each grid predicting N boxes. 
From those SxSxN boxes, it classifies each box for every class 
and picks the highest-class probability as seen in Redmon et 
al [8].   

Single Shot Detectors (SSD) are similar to YOLO 
detectors. SSDs also use a single deep neural network. Unlike 
YOLO, they use feature maps of each convolutional layer to 
predict the bounding boxes. These feature maps have different 
resolutions and can handle objects of various sizes. SSD is a 
simpler a method, it encapsulates all computation into a single 
network. SSDs run a 3x3 convolutional kernel on them to 
predict bounding boxes and classification probability. The 
most common SSD is RetinaNet [9][11].  

R-CNNs approach pixels by classifying the pixels that 
make up the object in the identified bounding box. It employs 
a two-stage approach, using a region-based network to 
propose potential locations of objects, followed by a second 
neural network to classify and detect these objects, with a 
pixel mask to provide precise outlines for the objects in 
question [10][11].  

Comparison of different object detection algorithms: 

YOLO is fast and uses little processing memory but 
struggles where multiple objects are in a single grid or where 
objects are very small.  

 SSDs have trouble recognizing small objects [11]. SSDs 
match default boxes to the ground truth boxes.  

 R-CNN is the most accurate though it requires more 
resources in terms of storage and processing power for 
detection. R-CNN operates at a lower frame rate than YOLO 
and SSD. YOLO may be the better option if accuracy is not a 
priority or if the images have simple objects in black-and-
white or on a clear background. If the images are complex and 
accuracy is of utmost importance, R-CNN is the better choice. 

III. OBJECTIVES 

Main Objective 

       The main objective of our work is to design a 

customizable system that can annotate a majority of the 

dataset with species, species count and species localization in 

the images for the animals in the dataset , thus, freeing up 

more time for conservationists to concentrate their efforts on 

more threatened species without losing track of the 

population numbers in less threatened species or of less 

interesting. 

 

IV. METHODOLOGY 

A. Data Collection and analysis 

 Wildlife images were obtained from the DSAIL-Porini 
dataset [1]. These images were collected at the Dedan Kimathi 
University of Technology Conservancy and a data paper by 
Mugambi et al [1] includes information on the species count 
and the motion-sensor cameras traps for data collection. The 
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images from the raspberry Pi 2 and Raspberry Pi Zero have an 
image size of 1280 x 720 pixels while images from the 
OpenMV Cam H7 have an image size of 640 x 480 pixels. All 
in JPG format. The dataset contains six main species, the 
impala, bushbuck, Sykes’ monkey, defassa waterbuck, 
common warthog and Burchell’s zebra. 

 

Figure 2 The six main species in the DSAIL-Porini dataset; 

Waterbuck, Sykes’ Monkey, Warthog, Bushbuck, Zebra and Impala 

Table 1 Unique species per Image 

Unique 
species 

Number of images 
containing species  

Percentage of 
images containing 
species  

Impala 5250  61.6 

Monkey 48  0.6 

Impala, 
Monkey 

4  0.0 

Bushbuck 312  3.7 

Waterbuck 594  7.0 

Warthog 1358  15.9 

Zebra 422  5.0 

Impala, 
Warthog 

207 2.4 

Zebra, Impala 22 0.3 

Can’t tell 140 1.6 

Waterbuck, 
Impala 

12 0.1 

Bushbuck, 
can’t tell 

1 0.0 

Impala, Zebra 154 1.8 

Total 8524 100 

 

The key takeaways from Table 1: 

1. 61.6 % of all images have at least one impala. An 
impala detector would eliminate the need to 
manually annotate 61.6% of the images. 

2. 87% of all the images contain Impala, Zebra and 
Warthog. 

We trained our model on “Impala” class and “Other” class. 
Where “Other” class was a combination of all non-Impala 
species into a single class.  

B. Review of YOLOv1 and YOLOv5 Detection 

Algorithms 

     We used the YOLOv5 model to understand how its layers 

are structured and the theory behind its performance. We look 

at the layers that made up the first YOLO model and look at 

the improvements made to have the YOLOv5 model. In 

Redmon et al [8], YOLO struggles with objects that appear in 

groups such as a flock of birds. The YOLOv1 model learns 

to predict bounding boxes from data, it struggles to generalize 

to objects in new or unusual aspect ratios or configurations. 

We saw this when we saw a bushbuck in a new environment, 

see Figure 13. 

     YOLO combines separate components of object detection 

into a single neural network. It uses features from the entire 

image to predict each bounding box. YOLO divides an input 

image into an S x S grid. If the center of an object falls into a 

grid cell, that grid cell is responsible for detecting that object. 

Each grid cell predicts B bounding boxes and confidence 

scores for those boxes. The YOLO model is designed as a 

convolutional neural network. The initial convolutional 

layers extract features while the fully connected layers predict 

the output probabilities and coordinates. It is inspired by  

GoogLeNet by Szegedy et al [12]. It has 24 convolutional 

layers followed by 2 fully connected layers. Unlike 

GoogLeNet which uses inception modules after its 

convolutional layers, YOLO uses 1 x 1 reduction layers 

followed by 3 x 3 convolutional layers similar to Lin et al 

[13]. The final output is a 7 x 7 x 30 tensor of predictions. 

 

YOLOv5 was proposed in 2020 [14]. The core features of 

the YOLOv5 model are: 

1. Automated data augmentation where a combination of 

data augmentation techniques is used to improve the 

accuracy of its predictions. 

2. Efficient neural network design that reduce the 

number of parameters and improve the accuracy of its 

predictions 

3. Cross-Stage Partial (CSP) connections to allow in 

information to move from one layer to another. 

4. Multi-Scale training helps the model learn features at 

different scales this helps the model to detect objects 

of different sizes in an image.  

5. Faster training due to the above features. 

 

YOLOv5 improved on YOLOv1 by adding a Focus 

module, CBL module, CSP module, SPP module, Concat 

module and Upsample module, these modules refine and 

merge image features to overcome the problem of missed and 

mischeck in multi-scale feature target detection. There are 5 

YOLOv5 models [14], they are YOLOv5n, YOLOv5s, 

YOLOv5m, YOLOv5l and YOLOv5x. Their internal 

structures are the same, except for the depth_multiple and 

width_multiple that control the depth of the models and the 

number of convolution cores. 

     We used YOLOv5s in our work whose architecture 

incorporates 2 kinds of CSP modules. The Leaky ReLU 

activation function is used in its 2 CSP modules, the first CSP 

structure is the backbone network while the other strengthens 

the integration ability of future networks. The SPP is to 

extract image features at a deeper level while keeping the size 

of the input and output unchanged.  
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    A leaky Rectified Linear Unit is a type of activation 

function based on a ReLU but instead of a flat negative slope, 

it has a small non-zero gradient when the unit is not active. 

This prevents dead neurons from occurring due to zero 

gradients. Leaky ReLUs help speed up training, improve 

generalization performance and can lead to higher accuracy 

in deep networks. 

 

C. Model Evaluation Metrics 

To evaluate the YOLOv5 model we checked their mean 

Average Precision (mAP) and Intersection over Union 

measures. The Mean Average Precision is calculated by first 

calculating the Average Precision (AP) for each class in the 

dataset. AP is calculated by taking the area under the 

Precision-Recall curve for each class. 

 

𝐴𝑃 =
∆𝑟𝑒𝑐𝑎𝑙𝑙

𝑁
(∑ 𝑚𝑎𝑥(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎𝑡𝑟𝑒𝑐𝑎𝑙𝑙)) 

 

N is the number of data points in the Precision-Recall curve 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

mAP is calculated as the average of all the class APs 

 

𝑚𝐴𝑃 =  
∑ 𝐴𝑃ₙ𝐶

𝑛=1

𝐶
 

 

C is the number of classes in the dataset and AP is the 

Average Precision per class. An mAP of 1 is expected for an 

ideal model. 

D. Data Pre-processing and data labelling 

Before we could use the dataset for object (animal) 
detection, it was necessary to label a portion of the dataset 
according to the YOLO format using the publicly available 
LabelImg annotation tool the process is seen in Figure 3. In 
the YOLO labelling format, a text file with the same name is 
created for each image file in the same folder. Each text file 
contains annotations for the corresponding image file, 
including its object class, object coordinates, height and width. 
For each object, a new line is created as in Figure 4. 

 

 

Figure 3 labelImg bounding box annotation  

 

Figure 4 YOLO labelling format 

E. Object Detection Model Training 

    For training and evaluation, 550 training images were used, 

256 images had at least one impala. 176 validation images 

were used with 88 images having at least one impala. Some 

images had impalas and other species. Trained on over 500 

epochs on Google Colab’s Nvidia T4 GPU, with a GPU 

memory of 16GB and 1.59 GHz GPU memory clock taking 

3 hours 20 minutes to complete training.  
Table 2 Training and Validation metric scores 

State Precision Recall mAP 

Training 0.851 0.674 0.746 

Validation 0.839 0.707 0.795 

F. Object Detection Model Testing and 

evaluation 

    The trained YOLOv5 model was inferenced on a NVIDIA 

2GB Jetson Nano, with a 128-core Maxwell GPU. It took 1 

hour, 34 minutes and 38 seconds on all 8524 images. 2582 

images had no detections representing 30% of the dataset. 

From investigation, images that had no detections had the 

following characteristics: 

1.  Had no animals, 

2.  The animals were very far away and couldn’t be 

spotted even by human eyes 

3. The images were too close up  

4. The images had lens flare. 

 

These characteristics can be seen in the images in Figures 5-

8. Some images had no detections but should have had at 

least one or two, example Figure 7. 

 
Figure 5 Seemingly-empty images with no detections 
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Figure 6 close up images with no detections 

 
Figure 7 Lens Flare images with no detections 

 
Figure 8 No detections but Impala should have been detected 

V. RESULTS 

      A visual qualitative approach was taken on the images 

generated in the prediction phase. This required looking at a 

subset of the predicted images. 

 
Figure 9 Impala detection example 

Manual Annotation: 4 Impalas, AI annotation: 3 Impalas 

 
Figure 10 Warthog (Other) detection example 

Manual Annotation: 1 Other (Warthog), AI annotation: 1 

Other 

 
Figure 11 Multiple Warthog (Other) detections 

Manual Annotation: 6 Others (Warthogs), AI annotation: 5 

Others 

 

 
Figure 12 Multiple Sykes' Monkey (Other) detections 

Manual Annotation: 2 Others (Monkeys), AI annotation: 2 

Others  

 
Figure 13 The YOLO model’s detections in a new environment 
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Figure 14 Zebra detections 

Manual Annotation: 2 Others (Zebras), AI annotation: 2 

Others  

 

   We compared the performance of the object detector with 

that of a human annotator [1] and obtained a mean absolute 

error (MAE) of 0.9387 for all species. 72% of all 5432 images 

had be classified as well as a human would. 

VI. DISCUSSION 

From the results, it was clearly seen that the model 

generalized to different species and was able to detect impala 

and other species in the test images as in Figure 9-14. The 

model took about 670ms per image. False-triggered images 

were accurately observed by the model. As stated YOLO 

struggles with generalization to new environments and new 

camera configurations. Figure 13 was taken by a Nikon 

DSLR camera in an entirely different environment with 

respect to the environment in the DSAIL-Porini dataset. 

YOLOv5 was expected to struggle with small objects but 

performed better than expected as seen in Figure 9-11. 

YOLOv5 struggled with animals that had obstructed each 

other, Figure 9.   

Despite reviewing YOLOv5’s potential disadvantages, we 

saw that the model performed quite well, even when trained 

on a small amount of data. The errors are a consequence of 

data collection issues mentioned by Mugambi et al [1] or 

YOLO’s intrinsic disadvantages mentioned by Redmon et al 

[8]. 

VII. CONCLUSIONS 

We were able to annotate 72% of the dataset at a human 

level of annotation, taking 670 ms per input image. It took 2 

weeks to annotate 8524 images, taking 2 minutes and 21 

seconds per input image. The model is easily customizable as 

we only used 550 images to achieve such results.  The mean 

absolute error has one less animal count states that on average 

the AI count error is 1 individual animal. Which is relatively 

sound. 

To improve on our work, we will train our model on the 

whole dataset and annotate newly obtained data from the 

same conservancy. There is a possible roadmap to replicating 

these positive results in terms of time taken and accuracy 

towards annotating newer wildlife camera trap images taken 

from the Kenyan conservancy and providing a good proof of 

concept for future work with other conservancies on camera 

trap imagery. We plan on adding all the classes to the train 

dataset. 
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