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Abstract—Anomaly detection is crucial in various applica-
tions (e.g., cybersecurity, manufacturing, finance, IoT), and an
automatic and reliable anomaly detection tool is necessary for
accurate prediction. The proposed method in this paper focuses
on using deep LSTM Autoencoder on time-series data from IoT
water level sensors deployed on a water catchment. The method
uses unsupervised anomaly detection with deviation methods,
which involves lower-dimensional embeddings and reconstruction
error. The LSTM Autoencoder model includes feature selection
by keeping vital features, and learns the time series’ encoded
representation. The LSTM model is trained for prediction with
three hidden layers based on the encoder’s latent layer output.
Afterwards, given the output from the prediction model if the
reconstruction loss of a data point is greater than reconstruction
error threshold the value will be labeled anomaly. We also
propose and compare an unconventional method of calculating
reconstruction error of each sequence with an aim of reducing
false positives and false negatives then compare it with frequently
used method. The results show that the LSTM Autoencoder
performs well on noisy and real-world datasets for detecting
anomalies and also the proposed unconventional method of
calculating reconstruction loss increases the models accuracy in
identifying anomalies.

Index Terms—Anomaly detection, Internet of Things (IoT),
LSTM, Autoencoder, Time Series, Environmental Sustainability.

I. INTRODUCTION

Anomalies are an inherent component of practically every
system in the modern world, which is surrounded by a vast
number of Internet of Things (IoT) that are creating enormous
amounts of data. Anomaly detection [1] is the identification
of data that does not fit to the distribution of normal data, i.e.
does not conform to the normal appearance, semantic content,
quality, or expected behavior. IoT devices are physical objects
that are embedded with electronics, sensors, and network
connectivity or other communication networks that enable
them to collect and exchange data across systems and devices.
They are increasingly prevalent in various industries and have
the potential to revolutionize how we interact with the world
around us. In this instance the data is a sequence of data points
collected over an interval of time thus referred to as time series
[2].

There are different types of anomalies that can occur in data,
and they are typically categorized based on their characteristics

and underlying causes. Here are some common types of
anomalies:

1) Point anomalies: These are data points that are signif-
icantly different from the rest of the data points in the
same dataset. For example, a sudden spike or drop in a
time series signal could be a point anomaly [3].

2) Contextual anomalies: These observations or se-
quences that do not follow the expected patterns within
a time series. However, if these observations are con-
sidered individually, they may fall within the expected
range of values for that particular signal [4].

3) Collective anomalies: These are groups of data points
that are collectively unusual when compared to the rest
of the data. The individual data instances in a collective
anomaly may not be anomalies by themselves, but their
occurrence together as a collection is anomalous For
example, a group of servers that are experiencing a
sudden increase in traffic could be a collective anomaly.
[5]

4) Temporal anomalies: These are data points that are
unusual over time. For example, a gradual increase in
the temperature of a machine over a period of time could
be a temporal anomaly.

5) Spatial anomalies: These are data points that are un-
usual in a specific location or region. For example, a
sudden increase in air pollution in a specific area could
be a spatial anomaly.

Identifying and detecting anomalies in data is important in
various fields, such as finance, healthcare, and cybersecurity, as
it can help to prevent potential problems and improve decision-
making.

The focus of the study is the application of anomaly detec-
tion in the IoT sensors deployed physically in the environment
to monitor water level height of water catchment, particularly
the upper Ewaso Nyiro at Ol-Pejeta conservancy which is also
home to a Wildlife Techlab which was setup to develop and
test conservation technology. This is because it is one of the
major rivers in Kenya and needs to be conserved as a natural
resource to protect the global ecosystem and ensure the health
and well-being of individuals. Since some of the decisions
that impact the environment such as human encroachment into
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water catchment areas are not felt immediately thus the need
to make data driven decisions to protect such vital resources.

Our deployed IoT sensors are advanced river water level
data acquisition systems developed by our team [6]. They
improve on the effectiveness, size, deployment design and data
transmission capabilities of systems being utilized. The main
component of the system is a river water level sensor node.
The node is based on the MultiTech mDot – an ARM-Mbed
programmable, low power RF module – interfaced with an
ultrasonic sensor for data acquisition. The data is transmitted
via LoRaWAN and stored on servers.

The decision to study and make data driven decisions
resulted in the designing and deployment of an IoT sensor
system on the river with the aim to capture the water level of
the river. This made it possible to share information in a non-
intrusive and efficient way. The data collected by the sensors
must be sent via communication networks under challenging
operating conditions, hence data corruption is a common
occurrence. The usefulness of the data for real-time appli-
cations might be greatly impacted by undetected inaccuracies
during transmission. [7] suggests there is a need for automated
quality assurance and control (QA/QC) of data, which can be
accomplished via real-time detection of anomalous data.

IoT devices provide massive amounts of real-time data
that might be challenging to manually evaluate and analyze
thus need for unsupervised anomaly detection techniques. IoT
devices are frequently used in remote or inaccessible places,
making it challenging to do human inspections or maintenance.
These techniques can automatically discover anomalies in this
data without the need for physical inspection, saving time
and effort. Anomalies in IoT time series data may be signs
of possible problems or system failures since unsupervised
anomaly detection techniques can identify anomalies in real-
time, it enables prompt action to be taken. Early detection of
anomalies can assist stop additional harm or failures to the
IoT devices, improving the performance and reliability of the
IoT system and the data being collected.

There are several types of unsupervised anomaly detection
techniques that have been used for time series data include
statistical methods [8] which model the time series data
using statistical distributions and detect anomalies by iden-
tifying data points that fall outside the expected distribution.
Clustering-based anomaly detection techniques group similar
time series data points into clusters and detect anomalies as
data points that do not belong to any cluster or belong to
a sparsely populated cluster such as k-means clustering [10]
and density-based clustering [11]. [9] proposes the use of
deep learning-based methods to overcome challenges when
it comes to anomaly detection for time series data such as
complexity of data and lack of labels. These methods use deep
neural networks, such as Long Short-Term Memory (LSTM)
networks, to model the time series data and detect anomalies
by comparing the prediction error with a threshold value.

Time series data points are not independent but it is expected
that the most recent data points in the sequence have an
impact on the timestamps of the data points that follow them,

as suggested by [15]. In recent years, deep learning has
frequently become popular and has been applied in various
anomaly detection algorithms. Deep anomaly detection (DAD)
techniques can automatically learn and extract features without
developing manual features by domain experts [12].

Unsupervised learning has gained more attention because
collecting labels in an imbalance dataset has many difficulties.
The dataset is imbalanced if anomaly behavior happens rarely,
and most of the records are normal. The purpose of this study
is to review a structured and comprehensive state of the art
anomaly detection technique, the LSTM Autoencoder is an
implementation of an autoencoder for sequential data using an
Encoder-Decoder LSTM architecture. By using this model, we
can have the benefits of both the LSTM and the autoencoder
model. The paper also compares approaches of calculating
the reconstruction / test loss using both the traditional and
an unconventional way with an aim of detecting anomalies
autonomously.

II. OBJECTIVES

A. General Objectives

This paper’s principal goal is to develop an advanced deep
learning model to detect environmental sensor time series data
anomalies using LSTM Autoencoder.

B. Specific Objectives

1) To annotate and prepare the Data
2) To build the LSTM Autoencoder Model
3) To reconstruct inputs using the LSTM Autoencoder

Model
4) To get the Reconstruction error and threshold to flag

anomalies
5) Evaluation Metrics of our model.

III. METHODOLOGY

In this paper, the focus will be on the application of anomaly
detection in IoT water level sensors particularly using Deep
LSTM-Autoencoder. We propose an unconventional method of
calculating the reconstruction errors of the model and compare
performance with the traditional method with aim of recuing
occurence of false positives and false negatives.

A. Time Series and Deep LSTM

The application of Deep Neural Network (DNN) archi-
tectures have resulted in significant achievements in many
areas [13], especially in time-series modeling. This success is
mainly attributed to these networks’ stacked architecture that
allows a complex task to be partially solved in each layer.
One variation of DNNs is the Recurrent Neural Networks
(RNNs) when unfolded in time. The primary function of
the layers in RNNs is to offer some memory rather than a
hierarchical processing setting, which is seen in deep neural
networks. An important class of RNNs are LSTM networks
that are suitable to represent sequential data. They address the
vanishing gradient problem, seen in vanilla RNNs, through
multiplicative gated units. LSTM networks have been applied
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widely in areas such as time-series analysis [15]. Dense DNNs,
a temporal hierarchy of the sequential data is best preserved
when hidden layers are stacked to build deeper recurrent
networks. The original LSTM model consists of a single
hidden LSTM layer followed by a standard feedforward output
layer. The Stacked LSTM is an extension to this model that
has multiple hidden LSTM layers where each layer contains
multiple memory cells. Moreover, stacked LSTM networks can
be organized to form an autoencoder that can perform anomaly
detection once trained on somewhat “clean” data.

B. Autoencoder

Autoencoder is an unsupervised neural network that aims
to learn the best encoding-decoding scheme from data. In
general, it consists of an input layer, an output layer, an
encoder neural network, a decoder neural network, and a
latent space. When the data is fed to the network, the encoder
compresses them into the latent space, whereas the decoder
decompresses the encoded representation into the output layer.
The encoded-decoded output is then compared with the initial
data and the error is back propagated through the architecture
to update the weights of the network. The model architecture
of the autoencoder is as shown in 1. The main purpose of the
autoencoder is not simply to copy the input to the output. By
constraining the latent space to have a smaller dimension than
the input, the autoencoder is forced to learn the most salient
features of the training data. In other words, an important
feature in the design of an autoencoder is that it reduces
data dimensions while keeping the major information of data
structure.

Fig. 1. Conceptual example of an autoencoder

C. LSTM Autoencoder

Several types of autoencoders have been proposed in pre-
vious literature, such as vanilla autoencoder, convolutional
autoencoder, regularized autoencoder, and LSTM autoencoder.
Among these types, LSTM autoencoder refers to the au-
toencoder that both the encoder and the decoder are in the
LSTM network. The ability of LSTM to learn patterns in
data over long sequences makes them suitable for time series

forecasting or anomaly detection. That is, the use of the
LSTM cell is to capture temporal dependencies in multivariate
data. The encoder-decoder model learns using only the normal
sequences and can be used for detecting anomalies in time-
series. The encoder-decoder has only seen normal instances
during training and learned to reconstruct them. When it is fed
with an anomalous sequence, it may not be reconstructed well,
leading to higher errors. This has a practical meaning since
anomalous data are not always available or it is impossible to
cover all the types of these data. Many advantages of using the
autoencoder approach have been discussed in [16]. The use of
LSTM autoencoders for anomaly detection on time series data
can be seen in recent studies, for example, [17] and [18].

D. LSTM Autoencoder Reconstruction Error

A time series with a total timesteps of T is noted as X =
{Xt, t = 1, 2, . . . , T,Xt ∈ Rn}. The reconstruction model
takes the original time series data X as input, and outputs a
time series data, X̂ = {X̂t, t = 1, 2, . . . , T, X̂t ∈ Rn}, which
is the reconstructed X . The input to the LSTM Autoencoder
model is X , the model tries to reconstruct the same input
as the output X̂ and the result is also referred to as the
reconstructed input. The difference between the input and
reconstructed input is the reconstructed error. Through many
observations of data, LSTM autoencoders learn to minimize
reconstruction error between the input and output. When train-
ing is complete, any similar data fed to autoencoders produces
a reasonably small reconstruction error. The reconstruction
error is derived from the equation below:

ϵt = ∥Xt − X̂t∥ (1)

Where t = 1.....T . However, if the new data is statistically
different from what is seen during the training process, autoen-
coders fail to reconstruct it properly at the output, resulting
in a large error. It is this residual error, ϵ that indicates the
presence of an anomaly [14]. We propose finding the mean
absolute error loss on the training data, then the max MAE
loss value in the training data is used as the reconstruction
error threshold. If the reconstruction loss for a data point in
the test set is greater than this reconstruction error threshold
value then we will label this data point as an anomaly.

1) Timesteps
The number of timesteps / sliding window size used in the

input is referred to as the sequence length, and it determines
the memory that the model has about the past values in the
time series. A larger sequence length will allow the model to
capture longer term patterns, while a smaller sequence length
will capture more short-term patterns.

We aim to reconstruct the sequence in blocks of size B
where B ≪ T thus form a matrix of individual segments
sliding through the time series data X with a displacement of
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one as forming an input matrix 2.

X =



x1 x2 x3 · · · xB

x2 x3 x4

... xB+1

x3 x4
. . .

...
...

...
... · · · · · ·

...
xT−B+1 · · · · · · xT−1 xT


(2)

The reconstructed output matrix 3 as:

X̂ =



x̂1 x̂2 x̂3 · · · x̂B

x̂2 x̂3 x̂4

... x̂B+1

x̂3 x̂4
. . .

...
...

...
... · · · · · ·

...
x̂T−B+1 · · · · · · x̂T−1 x̂T


(3)

A snippet of what our proposed algorithm does assuming X =
{x1, x2, .....x6} is our time series collected data. The next step
involves reconstruction of the sequence in blocks of size 4
forming a matrix of individual segments sliding through the
time series data X with a displacement of one thus forming
an input matrix as Equation 4 and reconstructed output as
Equation 5.

X =

x1 x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6

 (4)

X̂ =

x̂11 x̂12 x̂13 x̂14

x̂21 x̂22 x̂23 x̂24

x̂31 x̂32 x̂33 x̂34

 (5)

When using an LSTM Autoencoder for anomaly detection
in time series data, the goal is to reconstruct the original
sequence as accurately as possible. However, it is possible for
the autoencoder to produce false positives or false negatives
when determining if a sample is an anomaly or not. False
positives occur when the autoencoder flags a normal sample as
an anomaly, while false negatives occur when the autoencoder
fails to flag an anomalous sample.

In order to reduce the occurrence of false positives and
false negatives, we look into calculating the reconstruction
error of each individual time step in the sequence, rather
than the reconstruction error of the entire sequence. This is
because an anomalous sample at one time step may affect the
reconstruction error of the entire sequence, leading to a false
positive or negative.
From the matrix 5 individual reconstructed inputs can be
calculated by:-

x̂1 = x̂11 (6)

x̂2 =
x̂12 + x̂21

2
(7)

x̂3 =
x̂13 + x̂23 + x̂33

3
(8)

From the equation 6, 7, 8 we conclude that the of individual
reconstructed inputs X̂t from the model is given by the sum

of values xij where i+ j = t+ 1 divided by p where p is the
number of elements as seen in Equation 9.

X̂t =
1

p

∑
ij:i+j=t+1

x̂ij (9)

Summing and obtaining the means of the diagonals of the
reconstructed output matrix values as shown in 9 reduces
False positives and False negatives by obtaining individual
reconstructed means instead of reconstructed means of an
array containing sequences of data points. This represents the
the reconstruction error of each time step. By obtaining the
individual reconstructed means instead of the reconstructed
mean of the entire sequence, one is able to more accurately
detect anomalous samples and reduce the occurrence of false
positives and false negatives.
The reconstructed error and test loss are obtained by differ-
encing the original height of the water level input at each
individual sample index with the individual reconstructed
means calculated above at the same respective sample index
as shown by Equation 10 below. Where t is the sample index.

|Xt − X̂t| (10)

If the reconstruction loss for a data point in the test set is
greater than this reconstruction error threshold value obtained
from the mean of training reconstruction error derived from
Equation 1 then it is flagged as an anomaly.

IV. RESULTS

A. Data Preparation

The raw data set received from the sensors consists of
two columns time and water level height thus just has one
feature. The data set is manually annotated with the aim
of evaluation metrics for model performance for anomaly
detection, An extra column is added which is named as label,
where anomalies are labeled as anomaly and normal data
points as normal. Anomalies are also manually removed from
70% of the data of which is the training set and the remaining
30% is the test set. Figure 2 shows the visualization of the
entire manually labeled dataset where the blue data points are
normal water level points received from the sensors and the
red data points are the anomalies in the data set received with
respect to time.

B. Determining Anomalies

This section deals with results from the built LSTM Au-
toencoder model which is trained on normal data points and
reconstructs the inputs as outputs as shown in Figure 4. The
encoder-decoder model learns using only the normal sequences
of the training data. The encoder-decoder only sees normal
instances during training and learns to reconstruct them. When
it is fed with an anomalous sequence of the test data, it may
not be reconstructed well, leading to higher errors. In Order
to determine the anomalies we find the Mean Absolute Error
(MAE) of the training data and make the maximum MAE loss
value as the Reconstruction Error Threshold. The model is fed
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Fig. 2. Water Level Plot

on the test data and since the sequence contains anomalous
data points it is expected not to reconstruct well and thus
have high reconstruction loss at anomalous data points. Figure
3 shows the reconstruction loss of the test loss and the static
reconstruction threshold from the train loss.

Fig. 3. Test vs Reconstructed Test

Any value of the reconstruction test loss greater than recon-
struction error threshold is tagged as anomaly. Figure 5 shows
the overview of the detected anomalies.

C. Model Performance Evaluation

To obtain the performance of our model for anomaly detec-
tion, we compare ground truth labels of the data set versus the
LSTM Autoencoders labels. For an ideal model, the ground
truth labels should be the same as the LSTM Autoencoders
labels. A confusion matrix as shown in 6 and 7, is used to
represent the matrix of the predicted labels and each prediction
can have either of the four outcomes showing labels before
and after use of proposed methodology to identify anomalies.

Fig. 4. Test Loss vs Reconstruction Threshold

Fig. 5. Detected Anomalies Plot

The results can either be True Positive (TP): Predicted True
and True in reality, True Negative (TN): Predicted False and
False in reality, False Positive (FP): Predicted True and False
in reality and False Negative (FN): Predicted False and True
in reality.

The confusion matrix later helps in evaluating accuracy,
precision, recall and the F1 Score. Table I displays the re-
sults of the evaluation metrics. The F1 score metric in this
case is preferred rather than accuracy as data distribution is
unbalanced, as the quantity of anomalies class is significantly
outnumbered by those found in the normal class.

From the results, we clearly conclude that our proposed
unconventional methodology for reducing false positives and
false negatives outperformed the traditional methodology as it
was able to reduce false positives and negatives.
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Fig. 6. Confusion Matrix

Fig. 7. Confusion Matrix
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