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Abstract— Medical image classification is not only a complex 
task but also a challenging one due to the heterogeneous nature 
of medical data. Deep transfer learning has proven to be a viable 
technique for medical image classification throughout the years, 
mostly because it is able to leverage knowledge from pre-trained 
models learned from large-scale datasets, improved 
performance, minimal training and overcoming the 
disadvantage of small data sets. This paper offers a succinct 
review of the cutting-edge deep transfer learning optimization 
approaches for medical image classification. The paper begins 
with an overview of convolutional neural networks (CNN) and 
transfer learning techniques, such as relation-based, feature, 
parameter and instance-based transfer learning. Then, the 
study examines classical classifiers, such as Resnet, VGG, 
Alexnet, Googlenet, and Inception, and compare their 
performance on medical image classification tasks. The study 
also presents optimization techniques, including batch 
normalization, regularization, and weight initialization, data 
augmentation and the kernel mathematical formulations. 
Finally, the study unearths  various challenges that arise when 
using deep transfer learning for medical image classification as 
well as potential future approaches for this field. 

Keywords—Deep Transfer Learning, Optimization 
Techniques, Medical Images Classification 

I. INTRODUCTION 
Medical image classification is a rapidly growing field of 

research [1] that aims to develop computational methods and 
tools [17] that are capable of classifying medical images 
accurately and efficiently. Medical imaging is a crucial part 
of Computer-Aided Diagnosis (CAD), which has a growing 
concern of having fast and accurate annotations and or 
grading of medical images [18]. Several reasons are 
attributed to its success in healthcare, including: (i) early 
detection and diagnosis of disease [19], by analysis of 
patterns or abnormalities in medical images that are not 
visible to the naked eye. (ii) Personalized treatment [20] - 
enabling doctors to customize treatment plans based on 
patient’s specific conditions, reducing chances of side effects 
and (iii) Precision medicine [21] in which patients with 
unique healthcare needs are identified or those that respond 
to treatments differently. 

Artificial intelligence (AI) augments the innate 
intelligence of clinicians by using complex computation and 
inference to generate insights, allowing medical systems to 
reason and learn [21]. Deep learning has made significant 
impact in medical imaging due the many processing and 
preprocessing capabilities it has. Different levels of abstract 
features can be extracted from the original data and used for 
target detection and classification by combining multiple 

nonlinear processing layers [22] present in deep learning 
models. One of the advantages of deep learning in medical 
imaging classification is its ability to learn complex features 
from images without requiring explicit feature extraction 
[18]. This has been achieved through the use of convolutional 
neural networks (CNNs), which are specifically designed to 
handle image data. CNNs have been used in a wide range of 
medical imaging applications, including classification of 
brain tumors [24], breast cancer, and lung cancer [23]. In 
addition to improving accuracy, deep learning has also 
reduced the time required for medical image classification. 
This is because deep learning approaches can analyze entire 
images in a fraction of the time, making them well-suited for 
use in clinical settings. 

Despite its numerous advantages, there are a number of 
obstacles associated with the classification of medical 
imaging using deep learning. The requirement for vast 
amounts of labeled data is one of the primary obstacles [1]. 
Creating labeled datasets for medical images can be time-
consuming, costly and in some instances may not be possible 
[17]. 

Transfer learning, in comparison to other prevalent deep 
learning methods such as Convolutional Neural Networks, 
(CNN) is notable for being easy to implement, effective, and 
cheap to train, thus overcoming the limitations of small data 
sets that has been a big hurdle for researchers in this domain. 
Medical image analysis complements both scientific research 
and clinical diagnosis in significant ways. Classification of 
medical images is an important task for disease diagnosis, 
treatment planning, and monitoring [1]. However, the 
quantity and quality of medical images are frequently limited, 
making it difficult to train deep neural networks from scratch. 
Deep transfer learning is an effective technique for 
circumventing this limitation by leveraging pre-trained 
models that have been trained on large-scale datasets in order 
to get improved performance with little or less training data. 

This paper discusses the use of deep transfer learning 
optimization techniques for medical image classification. 
Specifically, the study explores the potential of transfer 
learning to improve the performance of deep learning 
classifiers in medical imaging applications. The study begins 
by providing an overview of transfer learning and medical 
imaging modalities. Then, the study discusses various deep 
transfer learning classifiers that have been proposed for 
medical image classification, followed by a review of deep 
transfer learning optimization techniques that can be used to 
further enhance the performance of these classifiers. 



The rest of this paper is organized as follows. In Section 
2, the paper provides an overview of deep transfer learning 
classifiers, including a discussion of commonly used 
architectures and their applications in medical imaging. In 
Section 3, the paper reviews deep transfer learning 
optimization techniques, including batch normalization, 
regularization, and weight initialization. The paper also 
discusses how these techniques can be combined to further 
improve performance. In Section 4, the paper provides a 
critical analysis of the current state of the field and highlight 
areas for future research. Finally, in Section 5, the paper 
concludes with a summary of the findings and discuss the 
potential impact of deep transfer learning optimization 
techniques on medical imaging classification. 

A. Transfer Learning 
In the realm of deep learning, transfer learning seeks to 

utilize the acquired knowledge and representations from a 
previously trained model and apply it to a different task. 
Broadly speaking, transfer learning is categorized either as 
homogenous or heterogeneous. Taxonomically, homogenous 
TL can be presented as scenario where,  and  
with the goal being to narrow the discrepancy in the data 
distributions between the source and target domains, i.e. 
address,  and/or  . 
Whereas,  in heterogeneous TL, the scenario is such that the 
source and target domains contain distinct feature spaces, 

 (generally non-overlapping) and/or , as the 
source and target domains may share no features and/or 
labels. There are four categories of homogeneous transfer 
learning methods: instance-based, feature-based, parameter-
based, and relation-based transfer learning. In (i) instance-
based transfer learning, the acquired knowledge from the 
source task is transferred directly to the target task in the form 
of individual instances or examples. Here, the actual data 
points or instances from the source task are used to augment 
the training data for the target task. For (ii) Feature-based 
transfer learning enhances the performance of a pre-trained 
model on a new task by keeping the pre-trained weights 
unchanged. In this method, the model learns features from the 
source task and transfers them to the target task. The model 
is trained on the source task to extract pertinent features, 
which are then employed to train the target model; for (iii) 
Parameter-based transfer learning involves transferring the 
acquired parameters of the source model to the target model. 
The source model is trained, and the weights of its layers 
serve as the initial point for training the target model. 
Through updating some or all of the pre-trained weights, 
parameter-based transfer learning fine-tunes the pre-trained 
model on the new task; in (iv) relation-based transfer 
learning, the objective is to learn the connection between the 
source and target domains and then transfer knowledge 
accordingly. The relationships between the source and target 
tasks are explicitly modeled, and the knowledge learned from 
the source task is transferred to the target task via this 
relationship. 

Convolutional neural networks (CNNs) are extensively 
used for medical image classification due to their capability 
to automatically learn hierarchical features [25]. A CNN's 
overall structure is made up of multiple convolutional layers, 
pooling layers, activation functions, and a softmax layer for 
classification. Convolutions enable the network to recognize 
local patterns, whereas pooling reduces the spatial 
dimensionality of the feature maps. The network is made 

nonlinear by activation functions, and the softmax layer 
outputs the probability distribution over the classes. 

Studies suggest that CNN-based methods employ a set of 
strategies that make them suitable for image classification 
and adoption in transfer learning [25]. One such strategy is 
data augmentation, used in [26] on an adversarial neural 
network together with a CNN for image classification. 
Authors in [27] used a CNN in transfer learning on ImageNet 
dataset, then chest X-ray 14 dataset and thereafter fine-tuned 
on COVID-19 dataset. They demonstrated that CNN-based 
methods are suitable choice for transfer learning because they 
can learn highly complex visual features from raw image data 
and generalize well to new datasets [28, 29]. 

Deep learning methods however suffer from two key 
challenges, high dependency on extensive labeled training 
data and higher training costs [31]. It is argued that when 
transfer learning in deep learning, called Deep Transfer 
Learning (DTL), is used, these dependencies are minimized 
and time required to train drastically reduced. Deep transfer 
learning involves the process of reducing learning costs by 
using knowledge gained from another task and dataset (even 
if it is not closely related to the source task or dataset) [31]. 

 

B. Medical Imaging Modalities 
Medical images are visual representations of the internal 

or external structures of the human body or other living 
organisms, produced through various imaging modalities. 
Multi-parametric Magnetic Resonance Imaging (mpMRI), 
Computer Tomography (CT), X-Rays and Ultrasound (US) 
are among the most frequently utilized medical imaging 
techniques. A CT scan produces high tissue resolution; 
however, they are heavily reliant on the skill of the doctor in 
addition to exposing a patient to ionizing radiation, increasing 
the risk of having cancer over time [30]. For initial medical 
examinations, X-Rays are a low-cost and convenient option, 
but like CT scans, they can be harmful to the body, limiting 
the number of times a patient can undergo this procedure. On 
the flip side, MRI’s do not use radiation and provide clear 
images of soft tissue making them more preferred for internal 
tissues medical examination [4]. However,  they are time-
consuming, and some patients may find it difficult to remain 
still for the entire process, especially if the patient uses 
metallic medical devices like a pacemaker. 

Deep transfer learning techniques have been widely 
employed to: (i) address medical image analysis issues, 
particularly in detecting and diagnosing diseases that affect 
the heart, kidney, breast, lungs, brain, and other organs [3]. 
As such, this naturally has led to more and more researchers 
in recent times to continue seeking opportunities for (ii) 
optimization of the classifiers to achieve better performance. 
Deep transfer learning has been applied in medical imaging 
classification and segmentation tasks [32].  

Medical images differ significantly from natural images 
in datasets such as ImageNet [43]. Medical images in a 
specific field often have standardized views, with relevant 
task features typically having limited texture variations or 
small patches rather than high-level semantic features [43]. 
High-resolution is typically important, and images are often 
grayscale, such as X-ray images. Thus, though transfer 
learning seems a better option in analyzing and classifying 

 



such images, models have to be optimized to ensure that they 
best fit the scenario at hand [44]. 

II. DEEP TRANSFER LEARNING CLASSIFIERS 
Deep transfer learning has evolved into a powerful tool 

for developing classifiers in a variety of machine learning 
applications. This section looks at the following common [33, 
34] deep transfer learning classifiers (i) ResNet, (ii) VGGNet, 
(iii) AlexNet, and (iv) Inception. These classifiers utilize a 
pre-trained deep neural network as a foundation for a new 
task [34], allowing them to benefit from the pre-trained 
network's feature extraction abilities. This essentially results 
in a classifier that requires fewer training samples and 
exhibits faster convergence [5]. The discussion below on 
these classifiers brings a sense of the current state-of-the-art 
approaches in the field of deep transfer learning in image 
classification, setting up a framework for later discussion of 
deep transfer learning optimization techniques. 

These deep transfer learning classifiers have been shown 
to achieve high accuracy in a variety of medical imaging 
applications, including lung nodule detection [35,36], breast 
cancer detection [37], and brain tumour segmentation [38]. 
However, the effectiveness of these classifiers can be affected 
by factors such as the size and quality of the medical image 
dataset, the specific architecture used, and the optimization 
techniques employed during training [1]. 

 

A. ResNet 
Residual Network (Resnet),originally introduced by 

Kaiming et al., in 2015 [13] are special type of neural network 
that has won numerous machine learning competitions. Since 
then, ResNet has had many variants, namely implemented as 
V1 or V2 with 50, 101, or 152 layers. To tackle complex 
problems, researchers often incorporate additional layers into 
deep neural networks to enhance accuracy and performance. 
The rationale behind adding more layers is that these layers 
gradually learn more intricate features. For instance, in image 
recognition, the first layer may learn to recognize edges, the 
second layer may identify textures, and the third layer may 
detect objects, and so on. However, it has been observed that 
the traditional Convolutional Neural Network model has a 
maximum depth limit. This means that adding more layers to 
a network may diminish its performance. This issue may be 
due to the optimization function, network initialization, and, 
notably, the vanishing gradient problem. 

Sarwinda et al., [39] used ResNet for image classification 
in order to detect colorectal cancer. They trained ResNet-18 
and ResNet-50 models on colon glands images to distinguish 
between benign and malignant cancer. The prototypes were 
assessed on three different testing data sets. The performance 
of the models was evaluated based on accuracy, sensitivity, 
and specificity values. The results showed that ResNet-50 
provided the most reliable performance compared to ResNet-
18 in all three testing data sets. The authors also maintained 
skip connections inherent in ResNet as a method to optimize 
this model. 

Showcat et al., [40] used a transfer learning approach on 
ResNet to classify pneumonia cases in CXR images by 
freezing first few layers of the original ResNet. The model 
achieved an accuracy of 95% on a GPU accelerated machine. 
The authors also used batch normalization in robust training, 

which [41] concludes that it is a prerequisite for achieving 
convergence and whose overall effect is faster training [42]. 

 

B. VGGNet 
The Visual Geometry Group Network (VGGNet) is a 

CNN architecture that was introduced by Karen et al. [2] at 
the University of Oxford in 2014. Its primary purpose was to 
explore the impact of CNN depth on the accuracy of deep 
learning models. The VGGNet is renowned for its simplicity, 
featuring a consistent design consisting of recurring blocks of 
convolutional layers with pooling layers, as well as several 
fully connected layers. This simplicity has made it a popular 
choice for various transfer learning applications, including 
object detection, image classification, and semantic 
segmentation. The VGG architecture is available in two main 
versions: VGG16 and VGG19. The VGG16 architecture 
includes 13 convolutional layers and 3 fully connected layers, 
while the VGG19 architecture includes 19 weight layers with 
16 convolutional layers and 3 fully connected layers. Both 
versions of the VGGNet contain two fully connected layers 
with 4096 channels each, followed by another fully 
connected layer with 1000 channels to predict 1000 labels. 
Finally, the architecture's last fully connected layer employs 
the softmax layer for classification purposes. 

 

C. AlexNet 
In 2012, the architecture of AlexNet, a neural network, 

won the ImageNet Large Scale Visual Recognition 
Challenge. Developed by researchers at the University of 
Toronto,  AlexNet was the first deep neural network to 
achieve significant improvement in image classification tasks 
when compared to traditional machine learning 
techniques.  It has 8 CNN layers with an image input size of 
227-by-227 and ability to classify images into 1000 objective 
categories. AlexNet is characterized by its use of 
convolutional layers, pooling layers, and dropout 
regularization to prevent overfitting, making it popular for 
transfer learning applications such as medical image 
classification and object detection in various studies. 

 

D. Inception 
Prior to the discovery of Inception and as observed above, 

many neural networks only exploited the technique of 
stacking convolutional layers deeper and deeper in the hope 
of improving the performance of the network. The Inception 
neural network architectures were created by Google 
researchers and consist of several versions, including 
Inception-v1 or GoogleNet, as well as Inception-v2, 
Inception-v3, and Inception-v4. The original variant, 
Inception-v1, is considered a deep network with a total of 22 
layers, including the pooling layers. It uses global average 
pooling at the end of the network. The evolutions relied on 
the original GoogLeNet architecture and incorporated 
additional features such as batch normalization, factorized 
convolution, and residual connections to create versions 2,3 
and 4. To this day, Inception-v3 and Inception-v4 are 
considered as some of the most efficient neural network 
architectures in terms of performance on the ImageNet 
dataset, and they have become the go-to models for many 
transfer learning tasks. 



III. DEEP TRANSFER LEARNING OPTIMIZATION TECHNIQUES 
Optimization is one the most important phenomena in 

machine learning with a goal state of building models that 
perform better than those that exist. Medical Image 
Classification is no exception as deep transfer learning 
classifiers require careful optimization to achieve optimal 
performance [16]. During optimization, a model is trained 
iteratively and the results compared  in every iteration 
through Maxima and Minima functions. This is achieved by 
changing the hyperparameters in each step until the optimum 
results are achieved [7]. Optimization techniques such as data 
augmentation and transfer learning with fine-tuning can be 
useful in medical imaging classification tasks. Data 
augmentation can help to increase the size and diversity of 
the training dataset, which is particularly useful when the 
dataset is limited. Transfer learning with fine-tuning can be 
used to adapt pre-trained models to specific medical imaging 
tasks, which can improve the performance of the model.  

Batch normalization has been shown to improve the 
convergence and stability of deep neural networks, which is 
particularly useful in medical imaging classification tasks 
where the dataset is often limited and the images may have 
varying brightness and contrast levels. For example, in a 
study by Wang et al., [47] on the classification of breast 
cancer histopathology images using transfer learning, batch 
normalization was used to improve the performance of the 
model [47]. 

Regularization techniques such as L1 and L2 
regularization and dropout can also be useful in medical 
imaging classification tasks to prevent overfitting and 
improve generalization performance. In a study by Kim et al. 
on the classification of breast ultrasound images using 
transfer learning, dropout regularization was used to improve 
the performance of the model [48]. 

In this section, the study introduces the most popular and 
best-fit optimization techniques [46] for the task of medical 
image classification using deep learning [45]. As outlined 
below, these techniques aim to enhance the accuracy of 
neural networks while also facilitating faster and easier 
training [8]. 

 

A. Batch Normalization Techniques 
Sergey Ioffe and Christian Szegedy [14] discovered Batch 

normalization as a technique to solve the problem of internal 
covariate shift. In pursuit of tuning and optimization 
opportunities in a neural network, researchers go deeper and 
deeper into the structure of the network which causes internal 
covariate shift. This occurs when there's a change in the 
distribution of the input to a layer that takes place while the 
network is being trained. This leads to two main issues. 
Firstly, the upper layers of the network have to frequently 
adjust to keep up with the variations in the input network, 
which causes the activation function to enter the gradient 
saturation zone, hindering the speed of network convergence. 

Let us assume that we have a batch of input data for a 
specific layer in a neural network 

	 	 (1) 

From the above  means a sample and  means batch 
size. First, we can compute the average value of the elements 
in the mini-batch using the following formula, 

   (2) 

Then, we determine the variance of the mini-batch as 
shown below, 

	 	 (3) 

From the mini batch above, we can then perform 
normalization on each element,  

	 	 	 (4) 

Finally, in order to account for the non-linear properties 
of the network, we can apply a scaling and shifting operation 
to the original output, 

	 	 	 (5) 

The normalization of the input to each layer of the 
network is an essential part of the batch normalization 
technique. This normalization is carried out across a smaller 
batch of examples, which assists in lowering the impact of the 
data's noise as shown above. After normalization, the output 
is scaled and shifted by learned parameters, which allows the 
network to learn non-linear transformations of the input.  

The merits of batch normalization lie in the following 
benefits: 

1) Fast Network Convergence:  Batch normalization can 
speed up the convergence of the training process, especially 
for networks that exploit transfer learning. This is because it 
reduces the internal covariate shift, which can cause the 
gradients to vanish or explode.  

2) Introduction of Normalization Range: Batch 
normalization can act as a regularization technique, which 
helps to reduce overfitting. This is because it adds noise to 
the input, which makes the network more robust to variations 
in the input. 

3) Improved Generalization: Batch normalization helps 
to enhance the network's generalization performance by 
decreasing its sensitivity to weight initialization, which in 
turn makes the network more adaptable to different 
parameters. Additionally, it increases the stability of the 
learning process in the network.  
 

Xu et al., [52] used a U-Net network to perform image 
segmentation on MRI scan images, with the goal of 
improving physiological evaluation of the heart. The authors 
note that while deep learning-based models have improved 
segmentation accuracy compared to traditional methods, they 
still face challenges in fully differentiating the left and right 
ventricles from the myocardium, and training can be 
complex. To address these challenges, the authors adopted an 
improved U-Net network in a fully convolutional neural 
network to perform cardiac segmentation. 

In addition, the authors used batch normalization (BN) 
and different loss functions to enhance the performance of the 
neural network. Batch normalization can help to reduce 



internal covariate shift and improve the stability and 
generalization of the network [53]. The authors also used a 
combination weighted loss function, which assigns different 
weights to different regions of the heart based on their 
importance in the segmentation task. 

B. Regularization Techniques 
In addition to drop out techniques, deep transfer learning 

classifiers can be optimized using regularization techniques. 
Regularization is a technique that is frequently utilized in 
deep learning models to avoid overfitting. When a model 
memorizes the training data instead of discovering the 
fundamental patterns in the data, overfitting occurs. 
Regularization adds a penalty to the loss function with an aim 
of reducing the complexity of the model [2]. Because of this 
penalty, the model is prevented from learning complex 
functions that provide an overly precise fit to the training 
data. 

Deep learning makes use of the following regularization 
methods, L1 Regularization and L2 Regularization. Other 
methods to overcome overfitting include data augmentation, 
early stopping, and others. 

1) L1 Regularization: In L1 regularization, a penalty term 
is added to the loss function. The L1 regularization term is 
directly proportional to the absolute value of the weights, and 
it is added to the loss function during training. This 
encourages the model to learn sparse weights, which can 
improve the model's interpretability. 

 (6) 

The first component is the usual Mean Squared Error 
(MSE) formula while the second component is the Lasso 
regression normally referred to as L1 regularization. To 
calculate the regularization term, the absolute values of the 
slopes are summed up and multiplied by a constant lambda. 
Increasing lambda leads to a higher regularization term, 
which in turn increases the mean squared error. As a result, 
the slopes become smaller as the error term becomes larger. 
This approach encourages sparsity in the model, which can 
enhance interpretability.  

2) L2 Regularization: A penalty term that is proportional 
to the square of the weights is added to the loss function as 
part of the L2 regularization procedure. This encourages the 
model to learn small weights, which can prevent overfitting. 

  (7) 
 

We begin by adding the square of each slope, then multiply 
that total by the lambda. In the same way as with L1 
regularization, selecting a higher lambda value will result in 
a higher MSE, which in turn will cause slopes to flatten. 
Additionally, if the values of the slopes are higher, then the 
MSE will be higher which means a higher penalty will be 
applied. However, because it takes the square of the slopes, 
the slope values can never be zero. As a result, the model will 
suffer no loss in the algorithmic contribution of the features. 

The contributions of regularization lie in the following 
benefits: 

a) Improved Model Generalization: Regularization 
can improve the generalization performance of the model by 
reducing overfitting 

b) Improved Model Inter-predictability: 
Regularization can improve the interpretability of the model 
by encouraging sparse or small weight. 

c) Model Robustness: Regularization can make the 
model more robust to variations in the input by encouraging 
the network to learn redundant representations of the input. 

Regularization is an important technique in medical 
image analysis using deep learning because it helps to prevent 
overfitting, which is a common problem when working with 
large and complex datasets [54]. Overfitting occurs when a 
model is too complex and fits the training data too closely, 
resulting in poor generalization performance when presented 
with new, unseen data. Regularization methods impose 
constraints on the model to prevent it from becoming too 
complex, which can improve its ability to generalize to new 
data [54]. 

Limited datasets in medical imaging often leads to lack of 
the ability for a model to generalize well to new and unseen 
data [54]. To address this challenge, the proposed approach 
in [54] leverages variational encoding to learn a compact and 
representative feature space that captures the shared 
information among medical data from different domains. 
Additionally, a novel linear-dependency regularization term 
is introduced to ensure that the learned feature space is more 
discriminative and generalizable. The experiments conducted 
on two challenging medical imaging classification tasks 
demonstrate that the proposed approach outperforms state-of-
the-art baselines in terms of cross-domain generalization 
capability. This suggests that the learned feature space is 
more effective in capturing the underlying structure and 
variability of medical images [56], allowing the model to 
generalize better to new and unseen data. 

C. Dropout Techniques 
Dropout is a method used in transfer learning to address 

the issue of overfitting. When a model is too complex, it may 
fit too closely to the training data, leading to poor 
performance when applied to new, unseen data. Dropout 
helps to mitigate this problem.  

This technique works by randomly dropping out (set to 
zero) a fraction of the neurons in a layer during each training 
iteration. This compels the remaining neurons to learn how to 
represent the input data without relying on the dropped-out 
neurons. Dropout can be seen as an ensemble of miniature 
neural networks, which are trained on distinct subsets of the 
original training data. By combining the outcomes of these 
smaller networks, a final prediction can be made. 

 Hence, the primary advantage of using dropout is to 
reduce the correlation among nodes in the hidden layers, 
penalize influential neurons, and decrease the reliance of the 
network on those influential neurons that have been 
penalized. This helps to prevent overfitting by reducing the 
co-adaptation of neurons and increasing the generalization 
performance of the network [2]. However, this has a 
drawback on increased training time since each training 
iteration requires dropping out neurons and scaling the output 
of the remaining neurons. 

 

D. Weight Initialization Techniques 
Weight initialization is a technique employed to establish 

the initial values for the weights employed in a neural 



network. In deep transfer learning, the starting weights can 
greatly impact the network's performance. Notably, 
Inadequate weight initialization can cause the network to 
become deeply entrenched in the local optima, 
which ultimately results into poor performance [8]. 

There are several weight initialization techniques that are 
commonly used in deep learning namely: Orthogonal, 
Positive Unitball Initialization, Lecun Initialization, 
Truncated Normal, Random Uniform, Zeros & Constant, 
Random Normal, Identity, Xavier Initialization and He 
Initialization.  

1) Orthogonal: Gradient propagation in deep nonlinear 
networks benefits from initializing weights with orthogonal 
matrices. Due to the fact that orthogonal matrices preserve 
the norm, the input norm is constant over the whole network. 
Consequently, it assists in addressing the problem of either 
exploding or vanishing gradients [16]. Another feature of an 
orthogonal matrix that facilitates the learning of different 
input information by the weights is that its columns are 
mutually perpendicular. 
 

2) Random Normal: Random initialization sets the 
weights of a neural network to arbitrary values. These 
weights are then assigned values that are randomly chosen 
through the process of random initialization. However, there 
are two potential issues that may arise when weights are 
initialized with random values: vanishing gradients and 
exploding gradients. If weights are initially set to a small 
random value, the model may work effectively for a while, 
but as time passes, the gradient approaches zero during 
propagation, which may lead to slow learning and vanishing 
gradients. On the other hand, if weights are initially set to a 
large random number, this can cause a problem referred to as 
the exploding gradient during training. 

 
3) Truncated Normal: A significant overlap exists 

between random normal initialization and truncated normal 
initialization. The primary difference is that any values that 
are more than two standard deviations away from the mean 
are removed and redistributed among other categories. By 
using the truncated normal distribution, the neurons' 
saturation can be avoided, which is a common issue.  
With a truncated normal distribution, the weights are drawn 
from a normal distribution with a fixed mean,  and variance, 

.They lie within the interval , such that 

    (8) 
The probability density function  can be expressed as 

 (9) 
Here: 

   (10) 
Is the description of the probability density function of the 
standard normal distribution and below is the cumulative 
distribution function 

   (11) 

Error function, donated by erf(x), is defined by 

     (12) 
For instance, when a sigmoid activation function is 
employed, the input values that are too small or too large 
may result in the activation values that are too small or too 
large, which can lead to saturation of the neuron. When 
neurons reach the saturation zone, they cease to function 
and do not update themselves. 
Random Uniform: With random uniform initialization, 
weight values are drawn at random from a uniform 
distribution within a given interval. All numbers within the 
range have an equal probability of being chosen. The 
probability density function at the two boundaries a and b 
is given by, 

  (13) 
 
The cumulative distribution function is given by, 

    (14) 
4) Zeros & Constant: The simplest initialization method 

is Zeros and Constants, where all weight parameters are 
initialized to either 0 or a constant value. However, this 
results in all neurons in the network learning the same 
features. This is because, no matter how many iterations of 
feed-forward propagation and backpropagation are 
conducted, the weight values between any two connected 
hidden layers remain identical and symmetrical. This is not a 
good initialization technique because it can cause the neurons 
to learn identical representations of the input, which can slow 
down the training process. 

5) Lecun Initialization: To allow the network to learn the 
linear portion of the mapping and prevent disappearing or 
exploding back-propagated gradients, it is crucial to ensure 
that the weights fall within the linear region of the sigmoid. 
This is done to avoid hindering learning and impeding the 
network's progress. Lecun et al. achieved this by 
standardizing the training set and ensuring that each layer had 
a constant activation variance of one [15].  
The weights are initialized by randomly selecting values from 
a distribution with a mean of zero and a standard deviation is 
calculated. This was accomplished by Lecun et al. by 
standardizing the training set and mandating that each layer 
have a constant of . The weights are then set to values 
that are randomly chosen from a distribution with a mean of 
zero and a standard deviation as follows, s, with  the size 
of layer i, 

     (15) 
Weights in a Lecun initialization that uses a uniform 
distribution are drawn as follows, with  the size of layer i, 

    (16) 
6) Identity: To initialize the weight values, identity 

matrices are used, which are square tensors with 0's 
everywhere except for 1's along the diagonal. The identity 
matrix can be scaled by a multiplicative factor. This method 
is only used for producing two-dimensional square tensors. 



By adding ones to the diagonal, identity weight tensors break 
the symmetry of the weight vector, which can lead to better 
performance compared to zero and constant initialization. 
However, when each layer is activated by a linear function, 
the activation values will exponentially decrease or increase 
with the number of layers in the network, resulting in 
vanishing or exploding gradients [16]. This happens as a 
result of the activation values being inversely proportional to 
the network's layer count. 

7) Xavier Initialisation: Xavier Normal Initialization 
aims to ensure that information flows effectively during 
forward-propagation by keeping the deviations of the output 
of every two connected layers consistent. This method was 
developed based on several assumptions, including using a 
symmetric activation function with a unit derivation of 0, 
independently initializing weights, maintaining the same 
input feature variances, and being in a linear regime during 
initialization. The final initialization distribution of Xavier 
can be obtained as follows, with  the size of layer i, 

   (17) 
Xavier initialization following normal distribution borrows 
heavily from truncated normal distribution discussed above 

centered on 0 with standard deviation  where  
 is the total number of input units in the weight and   is 

the number of output units in the weight. 

     (18) 
8) He Initialization: Xavier initialization assumes that a 

linear activation function is used in the model, which is not 
accurate for ReLU activation function [16]. When ReLU is 
used as the activation function, networks initialized with 
simple normal distribution or Xavier initialization struggle to 
converge as the depth of the network increases. To address 
this issue, He and his team developed a new initialization 
method that works well with ReLU activation function [9]. 
When compared to a model that uses Xavier initialization, a 
model that uses He initialization increases the rate of 
convergence; however, there is no obvious distinction 
between the two models in terms of accuracy. In this 
approach, the values of the weights are distributed according 
to a zero-mean normal distribution, and the standard 
deviation is calculated as follows with  the size of layer i; 

     (19) 
Furthermore, He initialization also uses uniform 
distribution to acquire weight values, with the size of the 
input layer being the only factor to be taken into account. 

     (20) 
Where  is the size of layer i 

 
The table below shows a summary of the weight 
initialization techniques.  

E. Data Augmentation Techniques 
Data augmentation is a useful technique to overcome 

model overfitting, as it helps to expand and diversify the 
training dataset without collecting additional data [50]. Data 
augmentation techniques have become increasingly 

important in computer-aided medical classification, as they 
help to address the limitations of small and imbalanced 
datasets commonly found in the medical domain.  

In medical image analysis, data augmentation is widely 
used to enhance the quality and diversity of images, including 
X-rays, MRIs, CT scans, and ultrasound images[43]. 
Techniques such as rotation, flipping, scaling, cropping, and 
elastic transformations are applied to create new variations of 
the existing images, effectively increasing the size of the 
dataset. These augmented images help the model to learn 
more robust and invariant features, making it less sensitive to 
slight changes in image orientation, position, or scale that can 
occur in real-world clinical settings. Moreover, data 
augmentation can also be beneficial in addressing class 
imbalance issues, as generating more samples of 
underrepresented classes can help to mitigate the bias towards 
majority classes[52]. 

Memetic algorithms and Generative Adversarial 
Networks (GANs) are two distinct approaches to 
optimization and learning within the field of artificial 
intelligence. Memetic algorithms are a class of optimization 
algorithms inspired by both genetic algorithms and the 
concept of memes (cultural units of information). These 
algorithms combine the global search capabilities of genetic 
algorithms with local search techniques to explore the 
solution space more effectively. Memetic algorithms 
typically consist of three main components namely 
Population-based search, Local Search and Evolutionary 
Operators. 

They are particularly useful for solving complex 
optimization problems, such as combinatorial or multi-
objective optimization tasks, where traditional search 
methods might struggle to find high-quality solutions 
efficiently [56]. 

TABLE I.  WEIGHT INITIALIZATION TECHNIQUES 
Technique Normal 

Distribution 
Uniform 

Distribution 
Random 

Initialization 
Orthogonal	 No  No  Yes  
Positive	 Unitball	
Initialization	 Possible  Possible Yes  

Lecun	Initialization Possible Possible Yes  

Truncated	Normal Yes  No  Yes  

Random	Uniform No  Yes  Yes  

Zeros	&	Constant No  No  No  
Random	Normal Yes  No  Yes 

Identity No  No  No  
Xavier	Initialization	 Possible  Possible  Yes 
He	Initialization	 Possible Possible Yes  

 

The suitability of each technique can depend on the 
architecture of the network and the characteristics of the data, 
and experimentation is often needed to determine the best 
choice for a particular task [49]. Some weight initialization 
techniques may work better for deep neural networks with a 
large number of layers, while others may work better for 
networks with fewer layers [50]. Similarly, some techniques 
may work better for networks with specific activation 



functions or regularization techniques. The characteristics of 
the data can also impact the suitability of a weight 
initialization technique. For instance, if the data has a high 
degree of variability or complexity, a weight initialization 
technique that allows for greater variability in the initial 
weights may be more effective [50]. 

Different weight initialization techniques can impact the 
convergence speed and final accuracy of the model [49]. This 
means that experimentation is often needed to determine the 
best choice for a particular task, which involves testing the 
performance of the model with different weight initialization 
techniques and selecting the one that achieves the best results. 

The following table shows various selected studies with 
an optimization technique used in each, and the performance 
achieved after its application. 

TABLE II.  PERFORMANCE ANALYSIS OF OPTIMIZATION TECHNIQUES  
Study Purpose Technique Performance 

Xiao	 et	
al.,	[53]	

Medical	 Image	
segmentation	
(CT	 and	 MRI	
images)	

Batch	
Normalization	

91.48%	

Xu	 et	 al.,	
[52]	

Physiological	
Heart	
evaluation	
from	 medical	
images	 (MRI	
images)	

Batch	
Normalization	

Dice	 index	 of	
96.5%	

Selman	
et	 al.,	
[54]	

Domain	
Generalization	
for	 Medical	
Imaging	
Classification	
with	 Linear-
Dependency	
Regularization	

Linear	dependency	
Regularization	

69.78%	

Wang	 et	
al.,	[55]	

Deep	 virtual	
adversarial	
self-training	
with	
consistency	
regularization	
for	 semi-
supervised	
medical	 image	
classification	

Consistency	
regularization	 loss	
(L1	regularization)	

89.3%	

You	et	al.,	
[57]	

SimCVD:	
Simple	
Contrastive	
Voxel-Wise	
Representation	
Distillation	 for	
Semi-
Supervised	
Medical	 Image	
Segmentation	

Dropout	 Dice	 score	 of	
90.85%	

Abbas	 et	
al.,	[58]	

A	 hybrid	
transfer	
learning-based	
architecture	
for	 recognition	
of	 medical	
imaging	
modalities	 for	
healthcare	
experts	

Dropout	 99%	

Sharmay	
et	 al.,	
[59]	

Understanding	
Transfer	
Learning	for	
Histopathology	

Weight	
initialization	

90.3%	AUC	

 

IV. DISCUSSION 
Medical image analysis tasks are still regarded as NP hard 

problems in computer science [51]. Even with the immense 
research that has gone into comouter aided image analysis, 
there are still some challenges and difficulties 
researchers face, despite the encouraging results that deep 
transfer learning has produced. One of the main obstacles to 
overcome in deep transfer learning is the domain shift 
problem. This issue arises due to the differences in 
distributions between the source domain and the target 
domain. Deep transfer learning assumes that the source and 
target domains have similar statistical characteristics, but this 
assumption may not hold true for medical imaging. 

 Again, there is lack of labeled data in medical imaging, 
which limits the ability of deep transfer learning to learn 
complex representations from limited data. The 
heterogeneity of medical images, which includes differences 
in imaging modalities, resolutions, and acquisition protocols, 
is another factor that can be problematic for deep transfer 
learning. 

Several approaches have been suggested as possible 
solutions to these issues in recent times. The aim of domain 
adaptation methods is to align the source and target domain 
distributions. This is accomplished by learning a mapping 
function that can transform the data in the source domain into 
the format required by the target domain. The objective of 
semi-supervised learning techniques is to enhance the 
effectiveness of deep transfer learning by incorporating both 
labeled and unlabeled data in the learning process. On the 
other hand, meta-learning techniques aim to gain transferable 
knowledge that can be applied across various domains and 
tasks, thereby enhancing the generalization ability of deep 
transfer learning. 

V. CONCLUSION 
Deep transfer learning has demonstrated some exemplary 

results in medical image classification tasks, particularly in 
situations where there is a shortage of labeled data. This  
paper has presented a condensed review of the deep transfer 
learning optimization techniques that have been developed 
for medical image classification. The study went over the 
fundamental architecture of CNNs, along with some 
optimization strategies like batch normalization, 
regularization, weight initialization and data augmentation 
techniques. In addition, the study discussed some potential 
solutions to the challenges that arise when applying deep 
transfer learning to medical imaging tasks. To sum up, the 
study has shown that deep transfer learning will maintain its 
significance in medical image analysis. Nonetheless, further 
investigation is required to investigate how novel meta 
learning techniques like few shot learning, one shot learning 
and zero shot learning can be used to reduce the learning 
curve of deep transfer learning model. 
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