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Abstract- This paper presents attitude control using the unit 

quaternion. Specifically, the orientation of a maneuvering fixed 

wing UAV is investigated through set point tracking. Two 

formulations are explored; the first, through quaternion error 

dynamics and the second, through quaternion logarithm. Both 

methods apply appropriate Lyapunov functions for the design 

and analysis of the closed stability of the control laws. The error 

dynamics are deduced from composite rotations between 

different frames of the UAV. Through the error dynamics, the 

orientation of the UAV’s wind frame is aligned to a desired 

orientation. Using this procedure, the desired equilibrium 

points of the closed system are guaranteed to converge and are 

asymptotically stable. The formulation and implementation of 

these two methods is simple and intuitive, and through 

simulations, their successful use and effectiveness is shown. 

Keywords— attitude control, quaternion, quaternion logarithm, 

orientation, fixed wing UAV  

I. INTRODUCTION  

The dynamic model of a conventional aircraft given in 
different literatures use the Byran procedure to derive the 
corresponding equations of motion. The aim is to realize the 
Newton’s second law of motion for the six degrees of 
freedom describing the motion and orientation of an aircraft 
at any given time [1]. A common challenge that the above 
method encounters with respect to representation of the 
attitude of an aircraft, is the gimbal lock. This effect arises 
due to transformation of angular velocities to Euler angles. 
The integration of the ensuing variables become 

indeterminate for 2θ π= ± , hence creating a singularity.  

A common way to circumvent this singularity is to use a 
single rotation about an eigen axis coupled with a principal 
angle of rotation to describe the orientation of a non-inertial 
frame relative to an inertial frame. This method is attributed 
to the Euler-Rodrigues quaternion formulation where the 
parameters in the Euler axis are used to define four 
parameters [2]. These four parameters are referred to as a 
quaternion, q  and can uniquely describe any orientation 

having three degrees of freedom. However, the description is 
not unique: = −q q represent the same orientation. The 

formulation is simple and free from singularities. However, 
the interpretation of a quaternion is less intuitive than the 
Euler angles and can be confusing especially for composite 
rotations. Using quaternion formulation and the Newton’s 
approach, the translational and rotational dynamics of any 
rigid body can be defined completely for a full flight 

envelope, that is , 2α β π≅ ± . For a maneuvering UAV, this 

nonlinear behavior would be difficult to capture using the 
conventional attitude kinematic representation. The unit 
quaternion can be used to represent such dynamics, velocities 
and orientation kinematics. Quaternions have since been used 
in satellites [3] and quadrotor UAVs [4] for attitude control. 
A kinematic control law formulation of rigid bodies using 
dual quaternions was discussed in [5] and [6], where unit 
quaternions were used and formulated using dual numbers.  
Quaternion logarithms have also been applied for nonlinear 
control of UAVs such as in [7].  

This paper exploits the advantages of quaternions and 
quaternion logarithm for the solution of the orientation 
control problem in a maneuvering fixed wing UAV. The 
paper is organized as follows. Section II introduces the 
quaternion and the related algebra while section III provides 
the dynamic and kinematics of a fixed wing UAV. Section IV 
discusses the controller design using quaternion and 
quaternion logarithm. Section V gives the simulation results 
and discussions and the conclusion is given in section VI. 

II. QUATERNION FORMULATION 

Quaternions are hyper complex numbers and they are 
represented by one, real and three, imaginary numbers as 

1 2 30q q i q j q k+ + +q �  where , ,i j k I∈ such that

2 2 2 1i j k ijk= = = = − . In vector form
0 1 2 3[ , , , ]

T
q q q q=q , 

or ( , )Ts=q v in compact form with a scalar s  and a vector
3∈v � . A rotation matrix denoted by 3 3 3{ }b

a

×∈ = ∈R R �S

rotates a vector from a frame a to a frame b . Angular 

velocity vector denoted by 
,

e

a cω represents the angular 

velocity of a frame c  relative to a frame a , referenced to a 

frame e . Angular velocities can be added such that

, , ,

b b b

a d a c c dω ω ω= + . The time derivative of a rotation matrix is 

found as:  

 ,
( )b b a

a a b a
ω=R R S&  (1) 

The cross product operator ( )⋅S  is such that for two vectors

[ ] 3

1 1 2 3 2 1 2 1 2 1 2 2 1, , , , ( ) , ( ) ( )
T

v v v v v v v v v vυ υ υ= ∈ = × = −S S S�

and 
1 2 1( ) 0Tv v v =S where: 

 
3 2

1 3 1

2 1

0

( ) 0

0

v v

v v v

v v

− 
 = −
 
− 

S  (2) 
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A rotation matrix can be parameterized using quaternions, 
where a quaternion can represent a rotation from a frame a

to a frame b ; 3 4

,: { : 1}b T

a b a= ∈ = ∈ =R q q q q�S such that

, ,

, , , ,, cos , sin
2 2

T

T b a b aT T

b a b a b a b a

ϑ ϑ
η ε

    
 = =      

     
q k .

,b aη is a 

scalar, 3

,b aε ∈ �  a vector, 
,c ak is the axis of rotation and

,c aϑ  

is the principal angle of rotation. From this organization, a 
rotation matrix can be reconstructed as: 

 2

, , ,2 ( ) 2 ( )b

a b a b a b aη ε ε= + +R I S S  (3) 

The product of two quaternions 
1 2
,q q  is expressed as

1 2 1 2 1 2 1 2 2 1 1 2: , ( )
T

Tη η ε ε η ε η ε ε ε ⊗ = − + + q q S . Composite 

rotations using the quaternion product are given as: 

 , , , , ,( )b e b a a e b a a e= ⊗ =q q q T q q  (4) 

where , , , ,( ) , ( )
T

T

b a b a c a b aε η ε = − + T q I S ensures the resultant 

quaternion is of unit length. The quaternion kinematics of a 
composite rotation is written as:   

 , , , , ,

1 1
0, ( )

2 2

T
a a

b a b a b a b a b aω ω   = ⊗ =   q q T q&  (5) 

The logarithm of a quaternion in compact form is

log( ) log , arccos 0,
2

T

Tε η ϑ

ε

    
= =          

q q k
q

. For a 

rotation from a frame a  to a frame b the logarithm is given 

as
,

, ,
log( ) 0,

2

T

b a T

b a b a

ϑ 
=  
 

q k and the time derivative as in: 

  
,

, ,log( ) 0,
2

T

b a T

b a b a

d

dt

ϑ 
=  
  

q k
&

 (6) 

The orientation of a body frame with respect to an inertia 
frame in a rigid body can be described using a unit quaternion 

according to [ ] [ ][ ]2 2
n

b
R I η ε ε ε= + × + × × where 

cos ( 2)η ϑ=   and sin( 2) Tε ϑ= k . This relation is easily 

converted to a form using quaternions, 0 1 2 3, , ,q q q q [8] as

2 2 2 2

0 1 3 2 1 2 0 3 1 3 0 2
2 2 2 2

1 2 0 3 0 2 3 1 2 3 0 1
2 2 2 2

1 3 0 2 2 3 0 1 0 3 2 1

2( ) 2( )

2( ) 2( ) .

2( ) 2( )

n

b

q q q q q q q q q q q q

R q q q q q q q q q q q q

q q q q q q q q q q q q

 + − − − +
 = + + − − − 

− + + − −  

 

III. DYNAMICS AND KINEMATICS 

UAV dynamics can be categorized into translational 
dynamics and rotational dynamics. Superscript denotes 

reference frame of a vector, where b  is body frame, w  is 

wind frame, n  is inertial frame and d  is a desired frame. 

A. Translational Dynamics 

The translational dynamics of a fixed wing UAV are 
defined using (7) and (8), 

 n n b

bv=p R&  (7) 

 b b b n

r n windv v v= − R  (8) 

[ ]: , ,
Tn x y z=p is the position of the UAV in the NED frame, 

n

bR is the rotation matrix from body to the NED frame, 
b

v is 

the velocity of the UAV relative to the Earth and 

[ ]: , ,
Tb

r
v u v w= is the velocity relative to the surrounding air, 

n

windv is the velocity vector of the wind. The total velocity, 
a

V  

is related to 
b

r
v through: 

 [ ]: , 0, 0
Tb b b

a r r w aV v v V=  = R  (9) 

with

cos( )cos( ) sin( ) sin( )cos( )

cos( )sin( ) cos( ) sin( )sin( )

sin( ) 0 cos( )

w

b

α β β α β
α β β α β

α α

 
 = − −
 − 

R  being 

the rotation matrix from the body frame to the wind frame. 

( )1
tan w uα −=  and ( )1

sin av Vβ −= . The acceleration in a 

UAV is expressed as:  

 ( ) ,

1
( )b b b w b n b b

r thrust w aero n g n b r
f f f v

m
ω= + + −v R R S&  (10) 

where m is the mass of the vehicle, [ ], 0, 0
Tb

thrustf T= is the 

thrust vector which is assumed to be aligned with the 
b

x axis, 

[ ]0, 0,
Tn

gf g= is gravitational acceleration vector. The 

aerodynamic relations relating to forces are given by the 
expressions in (11) and (12). 

 [ ]21
, ,

2

Tw

aero a D Y Lf SV C C Cρ= − −  (11) 

 

0

0

0

2

2

q e

p r a r

q e

D D D D D e

a

Y Y Y Y Y Y a Y r

L L L L L e

a

c
C C C C q C

V

C C C bC p bC r C C

c
C C C C q C

V

α δ

β δ δ

α δ

α δ

β δ δ

α δ

= + + +

= + + + + +

= + + +

% %  (12) 

ρ is the air density, S the wing area, b the wing span, c the 

mean aerodynamic chord, ( )C ⋅ represents the control and 

stability derivatives, and / 2
a

b b V=% . The aerodynamics are 

linear in the angle of attack and sideslip angle. This model is 
valid for small angles of attack. 

B.  Rotational Dynamics 

Using quaternions, the rotational kinematics and 
dynamics can be expressed as in (13) and (14). 

 , , , , ,

1 1
0, ( )

2 2

T
b b

n b n b n b n b n b
ω ω = ⊗ = q q T q&  (13) 

 
, , , ,

( ) ( ) ( ) ( )
n b b n b b

n b n b n b n b
I I f x D x G x uω ω ω ω= − + + +S&  (14) 
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,n bq represents the orientation of the body frame relative to 

the NED frame, [ ],
 , ,

Tb

n b
p q rω = is the angular velocity,  

3 3nI ×∈� is the inertia matrix, [ ], ,
T

a
x V α β= and 

[ ], ,
T

a e r
u δ δ δ= form the UAV control deflections. The 

breakdown of components listed in (14) is in: 

 
0

0

2

( )
1

( ) ( )
2

( )

l l

a m m

n n

b C C

f x SV c C C

b C C

β

α

β

β

ρ α

β

 +
 

= + 
 +
 

 (15) 

 

2 2

2
2

2 2

0
2 2

1
( ) 0 0

2 2

0
2 2

p r

q

p r

l l

a a

a m

a

n n

a a

b b
C C

V V

c
D x SV C

V

b b
C C

V V

ρ

 
 
 
 

=  
 
 
 
 

 (16) 

 
2

0
1

( ) 0 0 .
2

0

a r

e

a r

l l

a m

n n

bC bC

G x SV cC

bC bC

δ δ

δ

δ δ

ρ

 
 

=  
 
 

 (17) 

Equations (15), (16) and (17) represent partitions of the 
aerodynamic moments. With the aid these dynamics, a set of 
control deflections u can be designed to achieve a desired 

orientation and trajectory.  

IV. CONTROLLER DESIGN 

A. Quaternion Control  

The control problem is to design a control law to point the 

UAV wind frame to a desired orientation. Let 
, , ,

, ,
d d

n d n d n d
ω ωq &  

be the desired orientation, angular velocity and acceleration 
respectively. The attitude error of the wind frame relative to 
the desired frame using composite quaternion rotations is 
given as in: 

 
, , , ,d w d n n b b w= ⊗ ⊗q q q q  (18) 

3 3

, [ 1, ]d

w d wI × ∞= ⇔ = ±R q 0  is the equilibria, and has two 

solutions states which represent the same orientation, but 
algebraically different. The error in orientation becomes: 

 , , , ,: [1 , ]
T T

q d w d w d w d wη ε∞

± = − =e q q m  (19) 

where 1q± ≠e . The error kinematics are expressed as in:  

 ,( )
w b

q eq q b d wω± ±=e T e R&  (20) 

where , , ,, ( )
T

T

eq d w d w d wε η ε = + T I S .  

Lemma 1 The following inequality holds for this purpose

1
( ) ( )

8

T T T

q eq q eq q q q q± ± ± ± ± ±≥e T e T e e e e . The proof of this 

relation can be found in [10]. 

The angular velocity between the relative frames is given 

in (21). ,

b

d wω  is the angular velocity in w frame relative to d  

frame, referenced to the b frame.  The angular velocity of the 

w  frame relative to the b  frame is given as 

, sin( ), cos( ),
T

w

b wω α β α β β = − − 
&& & [9].  

 
, , , ,

b b b d b w

d w n b d n d w b w
ω ω ω ω= − +R R  (21) 

The control goal is to make ,
( , ) ( , )b

q d w
ω± →e 0 0 such that 

the UAV aligns with the desired orientation and angular 
velocity. A sliding surface controller is designed using the 
above formulation and following the procedure given in [11] 
to design the control deflections as in: 

 

1

, , , ,( )( ( ) ( )

( ) )

n b b b n b

n r n r n b n b

b T

s q w eq q

u x I D x I

x k s k

ω ω ω ω−= − +

− − −

G S

f R T e

&

 (22) 

From (22), 
, ,

b b

n b n r
s ω ω= −  is the designed sliding surface and

, , ,

b b d b w b T

n r d n d w b w w eq q
ω ω ω= − − ΛR R R T e is an angular velocity 

relative to n frame and whose derivative is expressed as: 

 
, , , , ,

, ,

( )

1
( )

2

b b d b b d b w

n r d n d n b d n d w b w

b w T b

w b w eq q w d w

ω ω ω ω ω

ω ε

= − −

−Λ − Λ

R S R R

R T e R

& & &

&

 (23) 

1, 0 R
q s

k k > ∈ and 0
TΛ = Λ > assures that the closed loop 

system is uniformly exponentially stable. As ( , ) ( ,0)
q

s± →e 0  

then from (21) 
,

0
b

d w
ω → asymptotically as t → ∞ .  

The two equilibrium states from (18) arise due to the fact 
that ⇔ −q q in quaternions represent the same orientation 

matrix however, one is rotated by 2π relative to the other. 

Therefore, under the control law (22), ,n b
q  in the closed loop 

system will converge to ( 1, )T T− 0 if the initial state is near

( 1, )T T− 0  or vice versa, therefore taking the ‘shortest’ path. 

Reference [6] proves that both orientations are stable 
equilibrium states. 

B. Quaternion Logarithm Control  

The goal is to make the quaternion 
, ,d w n d→q q and

,
0

b

d w
ω → . From (6), we can use the property , , ,

b

d w d w d w
kω ϑ= &

such that: 

 
,

, , ,log( ) 0, 0,
2

T

Td w T b

d w d w d w

d

dt

ϑ
ω

 
 = =   

  
q k

&

 (24) 

The right hand side of (24) is only an approximation [12]. We 

select a Lyapunov function 
1

V as: 

 1 , , , ,

1
log( ) log( ) ( )

2

T b T n b

q d w d w d w d w
V k Iω ω= +q q  (25) 

INES 2022 • 26th IEEE International Conference on Intelligent Engineering Systems • August  12-15, 2022 • Crete, Greece

000263
Authorized licensed use limited to: Dedan Kimathi University of  Technology. Downloaded on May 22,2023 at 13:01:22 UTC from IEEE Xplore.  Restrictions apply. 



Taking the time derivative of the Lyapunov function, 
1

V  as: 

 ( )1 , , , ,
log( ) 0, ( )

T
T

T w b b T n b

q d w b d w d w d w
V k R Iω ω ω = +

  
q& &  (26) 

Taking the time derivative of (21), we get the relation: 

 
, , , ,

b b b d b w

d w n b d n d w b w
ω ω ω ω= − +R R& & & &  (27) 

We make substitutions from (14) and (27), such that:  

 
, , , ,

, ,

( ) ( ) ( ) ( )
n b b n b b

d w n b n b n b

n b d n b w

d n d w b w

I I f x D x G x u

I I

ω ω ω ω

ω ω

= − + + +

− +

S

R R

&

& &
 (28) 

Moreover, the first term in (26) can be manipulated as:  

( )

( ) ( )

,

, , ,

,

, , ,

log( ) 0, 0,
2

0,
2

T
T d wT w b T

d w b d w d w

T
T Td ww q b w T

b d w d w b d w

ϑ
ω

ϑ
ω ω

    =       

  =   

q R k

R R k

 (29) 

Inserting (28) and (29) into (26), a quaternion logarithm 
control is chosen as:  

 

(

)

1

, , ,

,

, , , ,

( ) ( )

2

n b n b d n b d

n b d n d d n d

d wb n w b T b

n b b w q w d w w d w

u I I I

D I k k

ω ω ω

ϑ
ω ω ω

−= + −

− − + − −

G S R S R

f R k

&� �

&

 (30) 

with 1, 0
q w

k k R> ∈ , ,( ) ( )b

n bω=S S� . With this choice, all the 

terms in 1V& cancel out, yielding 
2

1 ,

b

w d wV k ω= −& which is 

negative semi-definite. This implies uniform asymptotic 

stability, that is , , ,( , ) ( , 0)b

d w d w n dω →q q . Proof of this claim 

can be realized using Matrosov theorem, see [13]. 

V. SIMULATIONS 

The model used in these simulations is a Yak 54 UAV 

with the aerodynamic properties listed in Table 1. Other 
physical properties are as given in [14].  

The initial values for the model are chosen as

, [0.001,0.001,0.001]b T

n bω = , , [0,0,0,1]T

n b =q  for the angular 

velocity and quaternion (initial orientation) respectively. A 

velocity, aV  of 36 /m s  was used. The gains for the 

quaternion based control were chosen as 40q sk k= = and

3 3
5

∈ ×Λ = I . The quaternion logarithm control gains were 

chosen as 40, 40q wk k= = and the desired angular velocity

, [0.01,0,0]d T

n dω = . For both the formulations, the desired 

orientation is , [1,0,0,0]T

n d =q  such that the UAV performs a 

rotation of π radians in the nx axis. The control equations for 
the two methods are given by (22) and (30).  

 

TABLE 1: AERODYNAMIC PROPERTIES 

Longitudinal derivatives  (1/rad) Lateral derivatives  (1/rad) 

uDC  0.0011 yC
β

 -0.3462 

DC
α

 -0.0863 
pyC  0.0073 

uLC  0.0017 
ryC  0.2372 

LC
α

 4.5363 lC
β

 -0.0255 

LC
α&

 1.9314 
pl

C  -0.3817 

qLC  5.1515 
rl

C  0.0504 

umC  0.0004 nC
β

 0.0954 

mC
α

 -0.3701 
pnC  -0.0156 

mC
α&

 -4.4705 
rnC  -0.1161 

qmC  -8.5026 
ryC

δ
 0.1928 

eLC
δ

 0.3762 lC
δα

 0.3490 

emC
δ

 -0.8778 
rlC

δ
 0.0154 

qDC  0 nC
δα

 -0.0088 

eDC
δ

 0 
rnC

δ
 -0.0996 

 

A. Simulation results using  quaternion control 

Fig. 1 show the evolution of attitude error using a 

quaternion, qe alongside the evolution of quaternion in w  

frame relative to d  frame, ,d wq . In this case, the shortest 

path was towards ( 1, )T T− 0 as the quaternion heads to 

[ 1, 0, 0, 0]T− as opposed to [1, 0, 0, 0] .T  

Fig. 1:  Evolution of ,d wq quaternion and the quaternion error  

The angular velocity between the relative frames from 

(21) is shown in Fig. 2, and it converges to zero as t → ∞ , 

according to the design objective. 
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Fig. 2: Angular rates 

Fig. 3: Quaternion and the Euler angles  

Fig. 3 show the orientation of the b  frame with respect to 

the n  frame. We note that the evolution of ψ , shifts from π

to π− at the start of the simulation. Both angles represent the 

same orientation i.e. π π⇔ − rad. The control deflection 

angles, angle of attack and the sideslip angle are shown in 
Fig. 4. The velocity components during the simulation are 
shown in Fig. 5. 

Fig. 4: The Control deflections, angle of attack and sideslip angle 

 

 

Fig. 5: Evolution of velocity and velocity components 

B. Simulation results using quaternion logarithm control 

Fig. 6 shows evolutions of ,d wq  with respect to time. The 

error in orientation, eq  is strictly the difference between two 

orientations ,d wq  and ,n dq , and it is not similar to an attitude 

orientation error. This dissimilarity asymptotically heads to 
zero as the UAV aligns with the desired orientation. 

Fig. 6: Desired orientation and the error in orientation 

The angular velocity components are shown in Fig. 7, and 
they converge to zero. 

Fig. 7: Angular velocity 
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Fig. 8: Quaternion and the Euler angles 

Fig. 8 show the orientation of the b  frame relative to n  

frame from an initial orientation of , [0,0,0,1]T

n b =q  to the 

desired orientation , [1,0,0,0]T

n d =q . The Euler angles show 

the evolution of the three angles during the orientation 
alignment. Fig. 9 shows the angle of attack, the sideslip angle 
and the control deflections during the simulation. 

Fig. 9: The Control deflections, angle of attack and sideslip angle 

The components of velocity are finally shown in Fig. 10. 

Fig. 10: Evolution of velocity and velocity components 

VI. CONCLUSION 

Two methods utilizing quaternions in attitude control 
have been presented. The first method derives a quaternion 
error from two rotations represented as quaternions such that 
as the error approaches zero, the UAV inertial orientation is 
aligned with a desired orientation. The second method uses 
the quaternion logarithm to steer the wind frame to a desired 
orientation as the angular velocity between the relative 
frames heads to zero. Through simulations, the two methods 
were able to reach the desired orientation thereby 
demonstrating the effectiveness of the designed control laws 
for attitude control in a maneuvering fixed wing UAV. 
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