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Abstract: Models trained with Deep Reinforcement learning (DRL) have been deployed in various
areas of robotics with varying degree of success. To overcome the limitations of data gathering in
the real world, DRL training utilizes simulated environments and transfers the learned policy to
real-world scenarios, i.e., sim—real transfer. Simulators fail to accurately capture the entire dynamics
of the real world, so simulation-trained policies often fail when applied to reality, termed a reality gap
(RG). In this paper, we propose a search (mapping) algorithm that takes in real-world observation
(images) and maps them to the policy-equivalent images in the simulated environment using a
convolution neural network (CNN) model. The two-step training process, DRL policy and a mapping
model, overcomes the RG problem with simulated data only. We evaluated the proposed system with
a gripping task of a custom-made robot arm in the real world and compared the performance against
a conventional DRL sim-real transfer system. The conventional system achieved a 15-57% success
rate in gripping operation depending on the position of the target object while the mapping-based
sim-real system achieved 100%. The experimental results demonstrated that the proposed DRL with
mapping method appropriately corresponded the real world to the simulated environment, confirming
that the scheme can achieve high sim-real generalization at significantly low training costs.

Keywords: robot arm; reality gap; sim-real; simulated environment; deep reinforcement learning

1. Introduction

Artificial intelligence is a promising venture that seeks to revolutionize automation
and autonomous operations as witnessed in growing interest in the study. Deep reinforce-
ment learning (DRL), one of the many algorithms utilized in artificial intelligence, affords
machines the ability to interact with an environment and extract/learn an optimal behavior
from the interactions [1]. Learning is arrived at through a trial-and-error process with a
corresponding reward for every action taken. This feature of trial-and-error learning is
very appealing as training data do not have to be prepared in advance [2].

Reinforcement learning (RL) has been applied in many fields with varying success such
as robotics, autonomous driving, and chess games, among others. This paper will focus on
the application of DRL in robotics, particularly robot arms. Some of the challenges facing
DRL as far as robotics is concerned include but are not limited to the training time/cost
and safety of operations during operations [3,4]. In training, due to the trial-and-error
nature of RL, performing such explorations in a real-world environment is costly. Besides
that, during the exploration phase, the machine/robot is bound to perform unsafe actions
before settling on an optimal action plan. As such, the safe and efficient training of robots
is indispensable.

Simulators offer a solution to the above issues. In theory, simulators allow the con-
troller to be trained using diverse data, safer procedures, and an added advantage of
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scaling up the learning process by parallel trainings, which might be unfeasible in an actual
machine. Once the model (policy) is trained in the virtual environment, it is transferred to
the actual system, which is referred to as sim-real transfer [5,6].

Sim-real transfer is only effective if the simulator is given a suitably accurate repre-
sentation of the actual robot and its environment, which in itself is a difficult task. The
problem compounds when all dynamics of the environment/robot are captured as this
raises the computational costs. As such, sim-real systems consist of a trade-off between the
accurate representation of the robot environment and complexity. As a consequence of this,
when such models are deployed in the real world, the controller learnt in the simulator
degrades, a phenomenon referred to as the reality gap (RG).

In the literature, several approaches are adopted to overcome the RG challenge. Some
of these include meta learning [7], domain randomization [8,9], adversarial RL [10,11], and
continual and transfer learning [12,13], among others. These approaches can be broadly
divided into domain randomization and adaptation strategies.

Instead of meticulously simulating all of the real-world characteristics, the objective
of domain randomization is to randomize the simulation environment in order to cover
the whole distribution of the real world. A challenge with that is that prior knowledge
is needed to determine how much randomization to incorporate in training for a policy
robust to sim-real transfer. That is, deciding what randomization to add with a concrete
parsimonious explanation for how and why the randomization works [2]. In domain
adaptation, the idea is to unify the source domain with the target domain via adaptive
strategies ingrained during or after training. In this regard, the adaptation focuses on the
mismatch between the two environments and optimizes the transfer. The current paper
focuses on adaptation strategies, specifically a mapping protocol from the real world to the
virtual world, to deal with the RG that exists in sim-real systems in the gripping motion of
a robot arm.

Until now, conventional DRL studies (to distinguish between sim-real studies) have
been conducted and applied in robot arm inquiries. Zhang et al. attempted to control a
robot using only image information using the RL algorithm and Deep Q-Network [14].
The control target was a 3-DOF robot arm whose goal was to reach a target point with an
end-effector. To reduce the difficulty of the task, a 2D simulator was created for the robot to
reach the target. In this case, the authors used an input simulator image of 160 x 320 pixels
that was reduced and gray-scaled to 84 x 84 pixels. In this case, the joints of the robot arm
were position-controlled and moved +0.02 rad per step. For each step, the robot increased,
decreased, or did not change the joint angle. The reward setting was determined according
to the change in distance between the end-effector and the target position: +1 reward if the
distance was closer from the state before the step, —1 reward if it was further away, and 0 if
it did not change.

Similar research was done by James et al., who they used image-based RL to optimize
the grasping motion of a 7-DOF (3-translational and rotational motions of the tip and an
extra rotation of the elbow) robot arm in 3D simulations [15]. In the study, they used a 3D
simulation to optimize the grasping motion of a cube as the grasping object. The target was
for the robot arm to grasp the cube and lift it to a height of 30 cm. It was also confirmed that
the task success rate varied depending on the initial angles. However, when the optimal
controller obtained in virtual space was implemented on the actual machine, the robot arm
moved to the cube but did not close the gripper. These results show that the gripper has
limited timing for opening and closing compared to the control of the six joints, making it
difficult to effect an accurate closing of the gripper.

Among the sim-real approaches, Liu et al. proposed a real-sim-real transfer learning
vision-based robot grasping task [16]. In the study, a task-relevant simulated environment
was created utilizing semantic information from a real-world scenario and transformed
into a virtual scenario for real-to-sim training using the DRL technique. Other studies that
utilize synthetically generated environments are reported in [10,11,17]. The challenge with
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these approaches is they need sophisticated processing to re-generate synthetic data that
best approximate the real world.

Research in [18] reported vision-based robot operations with an auto-tuned sim-real
transfer system utilizing search parameter modeling. The proposal attempts to match
simulator system parameters to the real world without updating RL states. In this strategy,
a search algorithm predicts whether a sequence of actions and the corresponding system
parameters are higher or lower than the real-world values for corresponding observations.
The approach reported successful transfers to simulation and reality in environments where
other strategies such as domain randomization would fail.

From the review of the literature, the DRL robot control method that feeds back
external information obtained through camera images is effective to certain degrees. As
such, the present study utilized the visual observation of the environment to perform
pick and place robot operations. A sim-real transfer learning was adopted to enhance the
training process in the virtual environment. To address the problem of RG, we propose
employ image processing techniques as well as a search algorithm that maps reality to
simulation. In this way, the current proposed DRL system consists of a search algorithm
motivated by [18] but is different in the search modality.

In the proposed approach, an extra layer of a convolutional neural network (CNN)
model is added as an attempt to match the observed real-world to a learnt-simulator scene.
By mapping the real-world observation to an already learnt scene in the simulator, the
policy is able to approximate a true representation of reality, leading to a policy that is likely
to succeed in the real world without updating RL states. This study therefore presents a
computationally efficient algorithm that combines the DRL system with a CNN mapping
model to realize sim-real transfer. In summary, the main contributions of this paper are
listed as follows:

1.  We proposed a mapping approach of training a DRL policy to work in the real world
for a grasping operation of a robot arm. After training the DRL policy in a virtual
environment, we introduced a mapping CNN model that takes in real-world images
and maps them to the learnt-simulated environment.

2. We demonstrated the sim-real transfer without any real-world training data.

The rest of the document is organized as follows. Section 2 presents the materials and
methods applied in the study. Section 3 describes the performance of the conventional
image-based sim-real DRL method in robot gripping operation. Section 4 describes the
performance of the proposed sim-real method. Sections 5 and 6 present the discussion and
the conclusions drawn from the study, respectively.

2. Materials and Methods
2.1. Structure of 4-DoF Robot Arm

The target of the current study is to perform control of a robot arm using DRL strategies.
Towards that end, a custom-made 4-DoF robot and a corresponding virtual arm were
designed for the study. The actual robot arm has four link joints and one hand joint as
shown in Figure 1a. The corresponding virtual model is shown in Figure 1b. Figure 1c
shows the functional representation of the robot arm. In the design, the links were made
using an aluminum frame. The joints between the links and motor and the gripper were
modeled and 3D printed to complete the structural construction. The length and mass of
each component are shown in Table 1.
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Figure 1. Robot arm configuration. (a) Actual robot. (b) simulation model. (c) 4 DoF representation.

Table 1. Robot arm configuration.

Name Length [mm] Wight [g]

Link1 150 212

Link2 150 212
Gripper 115 22

A Dynamixel XM540-W150-T smart actuator was used for the motor of the 4-axis robot
arm. The XM540-W150-T is capable of position control, speed control, and torque control
by general PID control. Table 2 shows the specifications of XM540-W150-T. The control
method for each joint is velocity control for the joints and angle control for the gripper.

Table 2. The specifications of XM540-W150-T.

Name Value
6.9 [N-m] (at 11.1 [V], 4.2 [A])
Stall torque 7.3 [N'm] (at 12.0 [V], 4.4 [A])

8.9 [N'm] (at 14.8 [V], 5.5 [A])
50 [rpm] (at 11.1 [V])

No-load rotation speed 53 [rpm] (at 12.0 [V])
66 [rpm] (at 14.8 [V])
Reduction ratio 1/152.3

Maximum operating angle During positioning control: 0 to 360 [deg]

(12 bit resolution)
Power supply voltage range 10~14.8 [V]
Allowable axial load 20 [N]

Weight 165 [g]
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2.2. Real and Virtual Workspace

The virtual space was constructed using the 3D dynamics engine MujoCo to simulate
the motion control of the actual arm. The setup of this study is shown in Figure 2a,b for
the virtual and actual space, respectively. In the design of the virtual scene, the color tones,
lighting positions, shadows, and reflectance were adjusted to minimize differences from
the real space environment.

Camera 1

(a)

(d) (e)

Figure 2. The proposed virtual and real workspace and corresponding camera outputs. (a) Virtual
simulation scene. (b) Actual robot setup. (c) Camera 1 output. (d) Camera 2 output. (e) Camera 3 output.

Picking tasks play a very important role in the operation of a robot arm, and it is
expected that RL can be used to optimize the operation of picking [19]. In this study, the
target is to control a pick-and-place task of a 4-axis robot arm using image inputs. As such,
a target (cylinder) is placed on the desk in front of the robot arm, and images are acquired
from the x, y, and z directions using three cameras: Figure 2c—e. The robot arm was installed
so that the joint state of the robot arm could be seen from camera 1, and the gripper and
cylinder could be seen from camera 2 and 3. Each camera location is highlighted in Figure 2
for both the virtual and actual machine.

A cylinder with a height of 50 mm, a diameter of 25 mm, and a mass of 8 g was used
as the grasping object as shown in Figure 3. Previous studies implemented 7-DoF with a
cube target, thereby making gripper rotation necessary [15]. Contrary to this, the cylinder
can be grasped from any angle, hence a 3-rotational axis was not required in the current
study. As such, the focus of the study shifted towards efficient learning and not gripping.
Gripping operation is handled programmatically and will be described later in this section.
A successful grasp is defined as when the robot arm grasps the cylinder and lifts it 100 mm.
If the robot arm does not grasp the cylinder or drops the cylinder from the desk, the grasp
is considered to be unsuccessful.
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Figure 3. Grasping object used in the actual machine and simulated environment. (a) 3D printed
target object. (b) Virtual target object.

Previous studies have shown that the task success rate varies depending on the initial
position of the robot arm [15]. The task success rate is low when the robot arm is trained
at extreme distances from the target position, and the learning process is time-consuming.
Therefore, in this study, the initial angles of the robot arm are set as follows, Motor 1 is set
to 0°, Motor 2 to 20°, Motor 3 to 90°, and Motor 4 to 45°. The gripper is assumed to be open
at 60°.

The placement points of the target were initialized in either of the three positions,
left, right, and center as shown in Figure 4. That is, the target was placed +30 mm in the
x-axis direction from the center (Figure 4). The reason for this is that the higher the number
of placement points, the wider the search space becomes, which increases robustness
in learning.

- = - -

30 mm

(b) ()
Figure 4. Variation in the initialization position of the grasping target. (a) Left. (b) Center. (c) Right.

2.3. Deep Reinforcement Learning System

Reinforcement learning is a kind of machine learning in which an agent observes the
current state in a certain environment and acquires the optimum behavior through trial and
error. If the agent takes a certain action stochastically from the current state, the agent will
be rewarded by the environment. In 2013, Volodymyr et al. proposed a DRL model using
a CNN in the behavioral value function Q(s, a) of RL [20]. Deep Q-Network is a method
that combines deep learning with a RL method called Q-learning. The update formula of
the action value function Q(s,a) can be expressed as shown in (1), assuming the state s,
action a;, and reward r; at time t. The update process involves selecting the action with the
highest value in the state s;;1 and updating it with the obtained immediate reward ;.
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When renewing, the value is discounted at the discount rate y because the future reward
is uncertain.
Q(st, ar) = Q(st, ar)+

o <Vt+1 +9 max  Q(siy1,ai41) — Q(st, at))

a1 €A(spyn)

)

From the above, when the number of states becomes enormous, it is difficult to
calculate the action value function Q(s, a). Hasselt et al. proposed a method to reduce the
overestimation of the behavioral value by using two types of networks, a network to be
learned and a network for calculating value: Double Deep Q-Network [21]. The update
formulae and states are shown in Equations (2) and (3). The Double Deep Q-Network is
used as the algorithm in the proposed system.

Mmain = max Q(St—l-l/ at+1) )
ar11 €A(S; 41

Q(st, ar) = Q(st, ar)+
« <Vt+1 +9  max  Qr(si1,ai11) — Qst, ﬂt))

111 €A(Se4)

®)

Figure 5 shows the proposed system that takes in the camera images of the real or
virtual space and feeds it to deep learning CNN for inference. The image of 480 x 640 pixels
acquired from three cameras is preprocessed to reduce the dimensions to 64 x 64 pixels.
In visual-based ML, the computational load as well as the network size increase with image
dimension. Dimensionality reduction is one of the approaches adopted in RL literature to
reduce model complexity while maintaining performance [22,23]. Next, an image from either
virtual space or a real camera is passed to the training/inference deep reinforcement learning
model. The model outputs discrete actions affecting (increasing/decreasing) the motor values
of individual joints. The robot arm is connected to the PC via serial communication.

State
(real camera image)
Image ‘ < Camera
pgggﬁiimg ‘\1 o l ______ (480 x 640 px / 3 images)

r~ ﬂ T B
d : F‘l
State ! |

(real camera image /
64 x 64 px)

v

Deep Q-Network

(Optimization controller)

Action Robot arm
1 (serial communication (4 degrees of freedom /
/ motor input value) speed control)

Figure 5. Proposed deep learning control scheme.

Deep Q-Network uses a CNN composed of three convolutional layers/pooling layers
and two fully connected layers. In this case, the CNN was set up with a 5 x 5 kernel size
with single stride. The kernel size of the pooling layer was 2 x 2, and Max pooling was
used. The activation function of all layers was adapted to the ReLU function, and Adam
was used as the optimization function. The architecture is shown in Figure 6. The input
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3x64x64

image from each of the three cameras was 64 x 64 pixels, and the output was the number of
actions (10 actions). The Huber loss function was applied to the error function. The output
drives the corresponding motor as per the action set described below.

32x60x60 32x30x30 64x26x26  64x13x13  B64X9X9  64x5x5 1600 256 action

5x5
Conv
strid1
RelLu

S

2x2 5x5 2x2 5x5 2x2 Dense
max Conv max Conv max reshape Relu
Pooling strid1 Pooling strid1 Pooling

RelLu Relu

Figure 6. The architecture of the Q-Network.

In this experiment, the search space for the RL model was set as a discrete space with
10 action sets as shown in Table 3. From this, three distinct actions can be set for each joint:
clockwise: R, anti-clockwise: L, and stop: S. The fourth action is reserved for the gripper
as shown in action 10, “close: C”. When either R or L action is invoked for any motor,
the motor value is altered, corresponding to the input until a new input is supplied. The
movement speed was set to 22.9 rpm.

Table 3. Combination of actions.

Motor 1 Motor 2 Motor 3 Motor 4 Motor 5
Action 1 S S S S S
Action 2 R S S S S
Action 3 L S S S S
Action 4 S R S S S
Action 5 S L S S S
Action 6 S S R S S
Action 7 S S L S S
Action 8 S S S R S
Action 9 S S S L S
Action 10 S S S S C

In the study, default training parameters were adopted with the alteration of the
step size during the initial tuning process. The final parameter settings for the RL Deep
Q-Network are shown in Table 4. The learning rate was set to 0.0001 and the maximum
number of steps to 300. The sampling period was set to 0.15 [s], considering the performance
of the PC used. The discount rate was set to 0.95, so that the value of actions that could
complete the task in a short time would be high.

Table 4. Learning parameter settings.

Parameter Value
Learning rate 0.0001
Maximum number of steps 300
Sampling cycle 0.15 [s]
Discount rate 0.95
Replay memory size 1 x 100
Start epsilon 1
Final epsilon 0.1
Epsilon attenuation coefficient 6 x 107
Model update interval in steps 10

Target model update interval in steps 1000
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The reward settings for completed operations are described in Table 5. The reward
setting was given so that it was inversely proportional to the distance between the robot
hand and the cylinder, and the closer to the cylinder, the higher the reward. In addition,
when the distance between the robot hand and the cylinder is within 10 mm, the value of
the approaching motion is increased by setting it to +1. If the grip was successful, +1000
was given.

Table 5. Reward setting.

State Reward
Successful grip 1000
The distance between the robot hand and the cylinder is within 1 mm 1
When not grasping 1/ (1 + distant)

In the gripping operation, the trained DRL model performs operations to approach
the cylinder. When the target is within 10 mm distance, the gripping operation is initiated
programmatically, i.e., closing the gripper. This operation takes 50 steps to close the gripper
and 20 steps to raise the picked object.

3. Sim—-Real Model Performance

In this section, we test the performance of the sim-real model that was trained on a
simulated scene and review how it performs in the actual world using image processing as
a mediator between real and virtual workspaces. In this case, a conventional DRL model
is utilized with low-dimensional images, i.e., gray-scaling, binarization, etc., in an actual
robot. First, the grasping motion of a four-axis robot arm is optimized in virtual space by
adapting DRL and then, the learned model is implemented on the actual machine.

3.1. Image Processing for Environment Matching

The objective of the research was to obtain image-based robot control from the simu-
lated environment. The challenge of such an approach is how the simulated environment
mirrors the actual workspace. To address this, structural design-matching was considered
as explained in Section 2.2, but this does not guarantee true uniformity. To this end, we
adopted image preprocessing to eliminate chromatic information and sensor noise in a
bid to increase mirroring as well as achieve dimension reduction in the inference process.
Image processing has been used in machine learning and fields, including sim-real transfer,
as a means to enhance training [24-27].

In the study, six types of image processing were adopted: grayscale, binarization,
4-level grayscale, 10-level grayscale, 4-level grayscale with a median filter, and 10-level
grayscale with a median filter. The kernel size of the median filter was set to 3 x 3. Sample
scenes are shown in Figure 7a—e to showcase the processing strategies utilized. From the
different operations, the background details and target object are impacted differently.
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Figure 7. Sample scenes of different image processing operations adopted. (a) gray scale operation.
(b) binarization operation. (c) 4-gradiation grayscale. (d) 10-gradiation grayscale. (e) 10-gradiation
grayscale with median filter.

3.2. Model Gripping Operation

Figure 8 shows the learning curve of target gripping in the study. The figure shows
the moving average of the reward in grayscale and the binarization process. In all of
the schemes used, the reward increases as the number of episodes increases as expected,
indicating the successful training of the model. It is worth noting that all of the models
obtained a satisfactory training curve within 10,000 to 15,000 episodes. From the figure,
there was an observed drop in rewards as training progressed. During the dips, we
observed situations where the robot moved to a specific place regardless of whether the
target was placed there or not, i.e., over-adapted to a specific gripping location. This was
thought to be a consequence of incomplete hyperparameter tuning, i.e., the size of the
experience replay memory and update methods. When the update interval is short and
the memory size is small, the model may be overfit to the most recent action history. From
the above, it is necessary to investigate hyperparameter tuning towards the target network
update method and loss function, among others. In the current use case, the overall training
time was not so critical since the model converged within an acceptable episode length.
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Figure 8. Learning curve in training using the sample image processing technique. (a) Grayscale
operation. (b) Binarization operation.

The cylinders (target objects) were placed at three points (left, center, and right), and
the results of five verifications at each point are shown Table 6. In all cases, the robot
succeeded in grasping the object on the desk in every instance, confirming that the policy
had been sufficiently learnt.

Table 6. Results of grasping in the simulation environment.

Image Processing Left[%]  Center[%]  Right [%] Total [%]
Grayscale 100 100 100 100
Binarization 100 100 100 100
10-gradation gray scale 100 100 100 100
4-gradation gray scale 100 100 100 100
10-gradation gray scale w/medjian filter 100 100 100 100
4-gradation gray scale w/median filter 100 100 100 100

3.3. Gripping by the Actual Robot

In the actual machine, the external cameras attached to the system are utilized to
supply the images of the setup and feedback. Thus, the motion optimized in the virtual
space is reproduced in the real space. Table 7 shows the results of verification (10 times) for
each arrangement of the target cylinder. It can be seen that in all cases, the gripping success
rate was lower than the result derived in the virtual space (Table 6). In particular, in the
case of grayscale and 10-gradation grayscale median filters, it was never possible to grasp
the object. A possible reason for the failure of grasping in real space is that the difference
between the virtual and real-space images could not be eliminated by reducing the image
dimensionality or image processing alone.

Table 7. Experimental results in real space.

Image Processing Left[%]  Center[%]  Right[%] Total [%]
Grayscale 0 0 0 0
Binarization 50 100 60 70
10-gradation gray scale 40 40 70 50
4-gradation gray scale 0 100 0 33
10-gradation gray scale w/median filter 0 0 0 0
4-gradation gray scale w/median filter 0 100 0 33
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From the table, the success rate for each cylinder position was 15% for the left, 57%
for the center, and 43% for the right. When placed in the center, only Motor 2 had to be
operated to approach, but when placed on the left and right, multiple motors had to be
operated, which increased the difficulty of the task. From the above, the results of attempts
to implement a system on a real machine using the conventional method show that the
system could not behave in the same way as in a virtual space. It can be said that the reality
gap cannot be erased simply by image processing strategies alone.

4. Real-Sim Mapping

As described in the preceding section, sim-real transfer experiences the RG challenge
when deployed in the real environment. The study adopted a mapping strategy that
searches for patterns in real space that best correspond to the virtual space. The premise in
this approach is that the simulation DRL has been optimally trained to perform successful
operations; the only hurdle is the disconnect between the two environments. The role of
mapping would therefore be a go-between of observations and learnt experience. In this
case, a mapping model is supplied before the DRL model to bridge the gap.

4.1. Real-Sim Model

The proposed real-to-sim mapping model is shown in Figure 9 where the real camera
inputs are passed through a CNN model before feeding them to the DRL model. From this,
the robot utilizes the already trained model without the need for further adaptations.

Real-to-sim mapping

| Key
IS q L ‘ ' I , L - Selected
' . ! Il. ' # ﬂri_'_ O
Reality camera input | _______ x - Rejected
Simulation image vector

representation

Figure 9. Proposed real-sim mapping model showing the selection of the best corresponding virtual
image set from the real-world camera input.

To achieve the mapping, the key frames of a successfully executed trial run of DRL
robot control in a simulated environment are recorded and saved as a reference database.
In this case, 60-70 images (frames) of a successful operation are saved in varying stages of
the robot motion as shown in Table 8. After that, random images in subsequent successful
trial runs are recorded to create a CNN training dataset as described in Table 9. The CNN
model performs a classification of the current input to the nearest approximation of the
simulation database.
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Table 8. Key frames (labels) per processing strategy.

Image Processing Key Frames (Labels)
Grayscale 65
Binarization 64
10-gradation gray scale 62
4-gradation gray scale 59
10-gradation gray scale w/median filter 63
4-gradation gray scale w/median filter 67

Table 9. Deep learning CNN dataset.

Image Processing Training Data  Validation Data Total

Grayscale 7020 1755 8775

Binarization 6912 1728 8640

10-gradation gray scale 6696 1674 8370
4-gradation gray scale 6404 1601 8005
10-gradation gray scale w/medjian filter 6804 1701 8505
4-gradation gray scale w/median filter 7128 1782 8910

The dataset in use is shown in Table 9. For training, the database was split into
80:20 for training and testing (validation). To supplement the training, data augmentation
was performed on the dataset by adding variations (noise) in images that are expected in
real-world robot operations, e.g., image rotations, pixel shifting, and blurs, amongst others.

The architecture of the CNN model is shown in Figure 10 consisting of four convolu-
tional and pooling layers, followed by one fully connected layer. The convolutional layer
has a kernel size of 3 x 3 and a stride of 1. The pooling layer has a kernel size of 2 x 2 and
uses Max pooling. Dropout is applied to the all-coupling layer. The output layer adapts
the SoftMax function, the other layers adapt the ReLU function, and Adam is used as the
optimization function. Each input image was concatenated to 64 x 192 pixels from image
processing. The loss function is the cross-entropy error.

32x31x95 64 x 14 x 46 128 x6x22 256x2x10 128

Y
3x3 2x2 Dense Dense
Conv Max RelLu Softmax
strid1 Pooling Dropout Dropout

RelLu

Figure 10. Architecture of the CNN model in use.

A trained model was created for each of the image processing strategies supplied in
the previous section. The accuracy of the mapping was successful for all of the dimension
reduction strategies adopted in the study. Figure 11 shows the learning curve of the
grayscale and binarization strategies, as a representative sample of the training process.
The accuracy converges to approximately 100% around 40 epochs for all image processing,
indicating that a model capable of mapping has been successfully obtained.
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Figure 11. Sample training and validation curves of the CNN mapping operation. (a) Grayscale
operation. (b) Binarization operation.

4.2. Gripping by the Actual Robot

Next, we validated the proposed system using the trained deep-learning CNN and RL
model discussed in the previous section. Table 10 shows the grasping success rate for each
image processing. The experiments were conducted five times for the left, center, and right
cylinder positions, and it can be seen that the grasping was successful in all cases and the
grasping success rate was improved compared to the conventional method.

Table 10. Experimental results in real space with the proposed scheme.

Image Processing Left[%]  Center[%]  Right[%] Total [%]
Grayscale 100 100 100 100
Binarization 100 100 100 100
10-gradation gray scale 100 100 100 100
4-gradation gray scale 100 100 100 100
10-gradation gray scale w/medjian filter 100 100 100 100
4-gradation gray scale w/median filter 100 100 100 100

Since the grasping was successful in all cases, it can be said that the deep learning
CNN was able to form a correspondence between the real and virtual space images.

5. Discussion

The paper proposed a sim-real and a corresponding real-sim model to transfer the
learnt controller of a robotic arm from the simulation environment to real space. A custom-
made 4DoF robot arm was designed for testing the proposed system. The simulation was
conducted in the MuJoCo virtual environment, with careful design consideration to mirror
the physical setup in an attempt to reduce the reality gap.

In the study, image processing and mapping techniques were applied to reduce the
RG between the simulated and actual environment. For image processing, dimension-
ality reduction and filtering techniques were investigated with the end goal of bridging
the reality gap. The advantage of using grayscaled images as opposed to raw images
was demonstrated to reduce the computational cost and enhance the accuracy of the
network [25].

In the sim-real model, the robot was trained and effectively attained gripping opera-
tions successfully for all of the image processing techniques. This is as reported in Table 6
with an average success rate of 100% for all target positions. However, upon deploying
the model to the actual robot, the average successful grasps dropped to 15% for the left,
57% for the center, and 43% for the right target positions. This paints a clear picture of the
severity of RG, where both the environment and the target objects ought to be similar for
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the accurate transfer of knowledge. Approaches of a synthetically generated simulation en-
vironment based off the real environment, akin to real-sim-real systems and GAN-related
studies, can offer a potential solution in this regard [11,16,17,26]. The challenge would be
in complexity in the training environment. As noted by [6], these approaches are inherently
data-intensive, thus limiting the practical applicability of such methods. The training time
of the approaches is in the range of 100,000 episodes with 1,000,000+ episodes being typical
even with high-end computing hardware as reported in [17,26].

The alternative approach considered in this paper is that of mapping the real environ-
ment to approximate the simulated environment. In this approach, similar to other reported
methods, a search algorithm is introduced to mediate or adapt the real environment to
the simulated environment [9,18,28,29]. In the study, a CNN layer is introduced with
simulation data to map the real environment to a potentially similar environment in an
already learnt simulation environment. With this adjustment, the DRL model attained a
100% grasping success rate in an actual robot arm. Since the grasping was successful in
all cases, it can be said that the deep learning CNN was able to form a correspondence
between the real and virtual space images. From this, real-sim mapping was confirmed to
be more suitable than enhancing the similarity of the two environments.

The advantage of the proposed scheme is the integration with a trained simulation model
without requiring any additional RL updates. Further, the image processing method adopted
reduces the amount of data to be processed, allowing for a quick and efficient learning process
with minimal data requirement as reported in the learning curves (Figures 8 and 11). In
the proposal, the mapping model is introduced after a trained policy is attained. This
means that it is possible to integrate this with other RG mitigation mechanisms such as
domain randomization. The mapping can thus be looked at as a re-sampling of the entire
observation to what is critical to the success of the task. From this, the generation of the
reference database is critical in the training process. How to choose the keyframes to best
capture the entire dynamics of the environment can impact the search algorithm. In the
current implementation, we used time-based capturing of keyframes, where a keyframe
is saved after every 20-50 updates. More refinement of the algorithm should be done
targeting this and other emerging issues.

The current proposal has several limitations, one of which is similar to many other
image-based systems, i.e., the approach only addresses the visual gap, and not any physics-
based simulation-to-real differences. In the experiment, the motor speed in the gravity
direction in the actual machine was set as 11.45 rpm, which is different from what was
used in the simulation. When the motor speed was set to 22.9 rpm, to match the virtual
environment, the robot moved at a higher speed than expected, which in turn affected the
prediction accuracy of the deep learning CNN and altered the system grasping operation.
In this case, the effects of gravity and other physics-induced dynamics such as the grasping
force, friction, etc., are unaccounted for by the proposed system.

Another limitation is the test environments used, as the evaluation in this study
only confirmed the efficacy of the proposal in pick-and-place scenarios. Further research
will be conducted to investigate the operations with a wider range of tasks and dynamic
environmental settings to further validate the proposal. In the next step, a comparison
or integration of other RG adaptation methods will be conducted to prove the efficacy of
the proposal.

6. Conclusions

In this study, we sought to optimize the gripping operation of an image-based 4DoF
robot controller using deep reinforcement learning. We performed the successful training
of the gripping operation in the MuJoCo simulation environment and deployed the model
in an actual robot arm. The sim-real system achieved a 15-57% success rate in gripping
operation depending on the initialization position of the target object. The failure in the
gripping process was attributed to the reality gap that exists in simulation-to-reality transfers.
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As aremedy to the RG experienced, we adapted the model with a search algorithm that
takes in real-world images and maps them to a learnt model in the simulated environment,
i.e., sim-real mapping. The strategy achieved a 100% success rate in real robot deployment.
The sim-real mapping works best with visual information but fails to account for physics-
based reality. Further inquiries are needed to test the performance of the system for wider
robot tasks and the complexity of the environment in the future.
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