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Abstract

A non parametric Auto-Regressive Conditional Heteroscedastic model for financial returns series is considered in which
the conditional mean and volatility functions are estimated non-parametrically using Nadaraya Watson kernel. A test
statistic for unknown abrupt change point in volatility which takes into consideration conditional heteroskedasticity, de-
pendence, heterogeneity and the fourth moment of financial returns, since kurtosis is a function of the fourth moment is
considered. The test is based on L2 norm of the conditional variance functions of the squared residuals. A non-parametric
change point estimator in volatility of financial returns is further obtained. The consistency of the estimator is shown
theoretically and through simulation. An application of the estimator in change point estimation in volatility of United
States Dollar/Kenya Shilling exchange rate returns data set is made. Through binary segmentation procedure, three change
points in volatility of the exchange rate returns are estimated and further accounted for.

Keywords: non parametric, kernel, volatility

1. Introduction

A change point is a situation where an entire data set is no longer characterized by the same underlying process. Instead,
the observations have two or more distinct segments and each segment has a unique underlying process. The segments
could have different variances or different mean. Change points are as a result of an observed event or an unobserved
combination of factors. These include among others financial liberalization of emerging markets and integration of world
equity markets, changes in exchange rate regimes from a fixed exchange rate regime to a floating exchange rate regime
and introduction of a single currency like the Euro in Europe. Synonyms for change point include probabilistic diagnostics
and disorder problems.

In financial instruments, volatility is rarely constant but instead behaves like a jump processes where it varies over time
creating temporal clusters due to volatility clustering. Volatility clustering means large or small price movements tend
to be followed by similarly large or small price movements respectively on consecutive hours, days, weeks or other time
durations. The clustering of volatility brings about the presence of structural breaks or change points which the standard
GARCH model fails to accommodate leading to overestimation of the degree of volatility persistence.

Unlike previous research which considers change points in identical or independent variables or change point in the
mean of variables Csorgo and Horváth (1997), Shao and Zhang (2010), the concern here is on dependent heterogeneous
processes with finite fourth moment since kurtosis is a function of the fourth moment. The change is assumed to be abrupt
(as though it occurs completely between two observations) thus creating piecewise stationary segments and not smooth
or gradual which could create locally stationary segments. The change point location is not known a priori as is common
with most previous studies. Due to the fact that inferences based on non-parametric approaches are robust against model
misspecification, non-parametric models are able to avoid misspecification problem commonly encountered in parametric
approaches. Hence, kernel estimator of conditional mean function is employed to estimate the conditional mean function
and the conditional variance function in financial returns. Change point estimation is further done on the conditional
variance function of the returns series.

The first published article in change point analysis was by Page (1954). He considered testing for a potential single
change point in mean for independent and identically distributed normal random variables motivated by a quality control
setting in manufacturing. Since then, change point analysis has developed rapidly with considerations on either multiple
change point detection and estimation, different types of data, parametric test statistics which are based on the likelihood
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ratio statistic and estimation done using maximum likelihood method Csorgo and Horváth (1997) and nonparametric
test statistics and other assumptions being put into consideration. An extensive literature on change point detection and
estimation in independent and identically distributed random variables is by Csorgo and Horváth (1997) where mostly a
change in mean is considered, or in martingale difference sequences as in Bai (1994) or even change in variance under
the assumption that financial returns are independent and identically distributed random variables Inclan and Tiao (1994)
which is not a fact when one is working with real financial data. It has over time been done in time series like Chen et al.
(2005), Ross (2013), Aminikhanghahi and Cook (2017) under different assumptions on dependence, heterogeneity among
others Gerstenberger (2018).

The change point detection and estimation methods can be classified into offline (fixed sample or retrospective) and online
(sequential) where the classification depends on the sample acquisition approach Brodsky and Darkhovsky (2013), Csorgo
and Horváth (1997) and Chen and Gupta (2011). In offline approach, the data set is first observed, then the detection and
further estimation of the change-point is done by looking back in time to recognize where the change occurred. These
include among others Lee et al. (2003) where a change point in variance in a non-parametric time series regression model
with a strong mixing error process using cumulative sum of squares approach introduced by Inclan and Tiao (1994)
is done, Sansó et al. (2020) in change point detection in unconditional variance of financial time series. In sequential
approaches, new data is continually arriving and is analyzed adaptively. The goal of on-line change point detection is to
detect changes as quickly as possible, while keeping the number of false alarms as low as possible. On-line approaches
are mostly used in areas such as quality control, financial risk management, allocation of asset or portfolio selection while
off-line approaches are used in areas such as genome analysis, linguistics, audiology among others. They include research
by Berkes et al. (2004) for change point detection in GARCH(p,q) models, Koubková (2006) under change point in mean.
Change point estimation in volatility is applicable in areas such as options pricing and calculation of value-at-risk. The
volatility change point estimator is applied to estimate change point in volatility of United States Dollar/Kenya Shilling
exchange rate returns and an account for the change points made. A significant improvement in describing time series is
expected, if points in time for volatility changes are identified.

2. Method

2.1 Non Parametric Auto-Regressive Conditional Heteroscedastic (NP-ARCH) Model

Let S t denote the price of some financial instrument observed at equally spaced discrete time points t = 1, 2, ... and that
Xt = logS t − logS t−1 is the continuously compounded single-period return on the asset from time t − 1 to t. The volatility
of the instrument is the standard deviation of these returns. One assumes the existence of a non-parametric and non-linear
relationship between Xt and Xt−i, for i = {1, 2, ..., d} which is modeled by a non-linear Auto-Regressive process of the
form

Xt = m(Xt−1, Xt−2, ..., Xt−d) + ut for t = 1, 2, ..., n (1)

where {ut} are innovations which are independent of the past {Xt}, m(.) is the conditional mean function of the returns in
period t given the previous periods Xt−1, Xt−2, .... In non-parametric approaches, m(.) is allowed to be from some flexible
class of functions and it is approximated in such a way that the precision of approximation increases with the size of the
sample. Since the interest is on the future volatility, by representing the innovations as

ut = σ(Xt−1, Xt−2, ..., Xt−d)zt, Equation (1) is extended to a Non Parametric Auto-Regressive Conditional Heteroscedastic
(NP-ARCH) model of the form

Xt = m(Xt−1, ..., Xt−d) + σ(Xt−1, Xt−2, ..., Xt−d)zt t = 1, 2, ..., n (2)

where E(Xt |Xt−1 = x1, ..., Xt−d = xd) = m(Xt−1, ..., Xt−d), is the conditional mean function, Var(Xt |Xt−1 = x1, ..., Xt−d =

xd) = E
(
u2

t |Xt−1 = x1, ..., Xt−d = xd

)
= σ2(Xt−1, Xt−2, ..., Xt−d) is the conditional variance function of the returns in period t

given the past periods. {zt} are independent and identically distributed random variables (errors) which are time invariant
with unspecified continuous and positive probability density function fz, E(zt |Ft−1 = Xt−1, ..., Xt−d) = 0, Var(zt |Ft−1 =

Xt−1, ..., Xt−d) = 1 and independent of Xt−1, ..., Xt−d while Ezt = 0, Ez2
t = 1, E (zt)4 < ∞ .

Model (2) is a flexible nonparametric time series model because it does not impose any (parametric) particular form
on the conditional mean and conditional variance functions. However, in higher dimensions, there is poor performance
called curse of dimensionality, which for d > 2 the estimation of the functions in Equation (2) is complicated unless one
has a very large sample (For a given bandwidth (window size), the higher the dimension, the less the data there is in a
neighborhood of a point x ∈ Rd with bandwidth bn). For simplicity,let d = 1 so that Equation (2) becomes

Xt = m(Xt−1) + σ(Xt−1)zt. (3)

Equation (3) generates heavy tailed distributions. To demonstrate this, suppose a simple model Xt = σ(Xt−1)zt with zt
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assumed to be i.i.d and from a standard normal distribution. This means that E(z4
t ) = 3 and by Jensen’s inequality,

kurtosis(Xt) =
E(X4

t )[
E(X2

t )
]2 =

E
[
σ4(Xt−1)z4

t

]
[
E(σ2(Xt−1)z2

t )
]2 = 3

E
[
σ4(Xt−1)

]
[
E(σ2(Xt−1))2] ≥ 3

This heavy tailed-ness feature implied by Equation (3) makes it a suitable model for modeling data with heavy tails like
financial returns data. Xt is assumed to be strictly stationary and strong mixing which is a common assumption satisfied
by most financial time series Fan and Yao (2008) hence the theorem below is applied.

Theorem 1 Strong mixing condition: Suppose the existence of a probability space (Ω,F , P). Let the dependence
measure between any two σ fieldsA and B ⊂ F as introduced by Rosenblatt (1956) be defined by

α (A,B) := sup
A∈A,B∈B

|P (A ∩ B) − P (A) P (B)| .

Now, suppose {Xt, t ∈ Z} is a two-sided sequence of variables on a given probability space (Ω,A, P). For −∞ ≤ j < l ≤ ∞,
let F l

j = σ(Xt, j ≤ t ≤ l) denote the σ − field of events which has been generated by the family {Xt, j ≤ t ≤ l (t ∈ Z)} (F l
j

assembles all the information collected between time j and l). For each n ∈ N, define the “coefficient of dependence
(mixing) ” α(n) by,

α(n) = sup
−∞< j<∞

α
(
F

j
−∞,F

∞
j+n

)
where F j

−∞ is the σ − field of events contained in the past of the sequence {Xt} up to time j and F ∞j+n is the σ − field of
events contained in the future of the sequence {Xt} from time j + n onwards. The sequence of numbers (α(n), n ∈ N) is
non-increasing (decreasing)in n and are non-negative. The sequence {Xt, t ∈ Z} is therefore said to be “strong mixing ” or
“α mixing ” if

lim
n−→∞

α(n) = 0

and hence the sequence is asymptotically independent between the past and the future.

For a one-sided sequence {Xt, t ≥ 1}, then one defines α (n) by

α(n) = sup
1≤ j<∞

α
(
F

j
1 ,F

∞
j+n

)
A strictly stationary two-sided sequence {Xt, t ∈ Z} is said to be strongly mixing if

lim
n−→∞

α(n) = 0 where α(n) = α(F 0
−∞,F

∞
n )

hence the sequence is said to be ergodic.

Let {(Xt, Xt−1) ∈ R × R : t = 1, 2, ..., n} be a sample of size n ∈ N, K(·) : R −→ IR be a kernel function which is a bounded
continuous function on R satisfying the assumption of normalization

∫
K(u)du = 1, which ensures that the method of

kernel density estimation results in a probability density function, symmetry about zero K(u) = K(−u) ∀u implying that
all the odd moments are zero, K(u) ≥ 0 ∀ u implying that K(u) is a probability density function,

∫
u K(u)du = 0, and

u2 =
∫

u2 K(u)du < ∞ and bn a positive real-valued number , called a bandwidth or smoothing parameter. The kernel
density estimator is defined by the kernel density estimator is defined by

f̂ (x) =
1

(n − 1)bn

n∑
t=2

K
(

Xt−1 − x
bn

)
for x ∈ R (4)

m(x) and σ(x) are estimated by non-parametric technique. The assumption is that they are smooth functions and that Xt−1
has a density function f (x), x ∈ [−1, 1] which is actually the support of the second order Epanechnikov kernel function

K(u) =

 3
4 (1 − u2) support |u| ≤ 1
0 otherwise

where u =

(
Xt−1 − x

bn

)
. (5)

which is employed when estimating the regression function since it is the most efficient in minimizing the Mean Integrated
Squared Error (MISE) and is therefore optimal putting in mind that the choice of the kernel is not as important as the choice
of the bandwidth. The non-parametric estimator of the regression function m(x) = E [Xt |Xt−1 = x] is obtained by

m̂(x) =


∑n

t=2 K
( Xt−1−x

bn

)
Xt∑n

t=2 K
( Xt−1−x

bn

) , if f̂ (x) , 0

0, otherwise
(6)
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where K(·) is a kernel function and bn is the bandwidth. m̂(x) is called a kernel estimator or the Nadaraya Watson kernel
estimator developed independently by Nadaraya (1964) and Watson (1964).

The estimator of the conditional variance function σ2(x) = Var(Xt |Xt−1 = x) which is obtained by using the estimated
residuals E

(
{Xt − m(Xt−1)}2 |Xt−1 = x

)
= σ2(x) is given by

σ̂2(x) =


∑n

t=2 G
( Xt−1−x

gn

)
{Xt−m̂(Xt−1)}2∑n

t=2 G
( Xt−1−x

gn

) , if f̂ (x) , 0

0, otherwise
(7)

which is still a local constant smoother (kernel estimator) where G(.) is a kernel function and gn is the bandwidth. A
residual based estimator of σ̂2(x) is able to overcome the bias problem of the method of Härdle and Tsybakov (1997) who
used a direct estimator

σ(x) = m2(x) − m2(x) (8)

where m2(x) = E
(
X2

t |Xt−1 = x
)

and m(x) = E (Xt |Xt−1 = x), and which is also likely to produce negative estimate of the
volatility function especially when different bandwidth parameters are used to estimate m2(x) and m(x). Also, a residual
based estimator is able to reduce the variance of the difference based estimators. The second order Gaussian Kernel
function

G(u) =
1
√

2π
exp(−

1
2

u2) for u =

(
Xt−1 − x

gn

)
, −∞ < u < ∞ (9)

is employed when estimating the conditional variance function so as to cater for asymmetric behavior of volatility. gn is a
bandwidth that is different from bn. Fan and Yao (1998) showed that m̂(x) is a consistent estimator of m(x).

The bandwidth bn is fixed and does not vary with x. It determines the size of the neighborhood and is chosen dependent
on n ∈ N in such a way that for a larger sample, it is chosen smaller Härdle (1990). Hence, asymptotically, the bandwidth
is a sequence of positive real-valued numbers (bn)n∈N with limn−→∞ bn = 0. Due to dependency in the returns data set, the
bandwidth is estimated with the aim of minimizing the leave-one-out cross-validation function Härdle (1990).

2.2 Non-Parametric Auto-Regressive Conditional Heteroscedastic Model Under Structural Change

Under the null hypothesis H0, Equation (3) with no change in volatility, is written as

Xt = m(Xt−1) + σt(Xt−1)zt t = 1, 2, 3, ..., n (10)

This in turn implies that
E {Xt − m(Xt−1)}2 = σ2

t (Xt−1) (11)

where σ2
t (Xt−1) shall be denoted by σ2

(1)(Xt−1) for t = 1, 2, ..., n.

The data structure having changed at a certain point in time means that using one regression model to study the data will
obviously leave the data unfitted or poorly explained by the regression model. This implies that the model valid near t = 1
is not valid near t = n due to the presence of an unknown change point. Hence, in the presence of an unknown change
point in volatility, τ ∈ [2, n − 1], Equation (3) becomes

Xt = m(Xt−1) + σt(Xt−1)zt =⇒ E {Xt − m(Xt−1)}2 = σ2
t (Xt−1) (12)

where the alternative hypothesis HA becomes

σ2
t (Xt−1) :=

σ2
(1)(Xt−1) for t = 1, 2, ...τ

σ2
(2)(Xt−1) for t = τ + 1, ..., n

(13)

The model having instability in the conditional variance function is alternatively referred to as the model with non-
stationary variances.

2.3 Volatility Change Point Test Statistic and Estimator

Define the residuals obtained from non-parametric estimation of conditional mean function and standardized using the
conditional variances obtained from the conditional variance function as ε̂t =

Xt−m̂(Xt−1)
σ̂(Xt−1) where m̂(.) is the Nadaraya Watson

estimator of the unknown regression function m(.).

The sums of squared residuals among the sample segments (partial sums) are defined as

εn =

n∑
t=1

ε̂2
t ετ =

τ∑
t=1

ε̂2
t εn−τ =

n∑
t=τ+1

ε̂2
t (14)
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Define ε̄1,τ as the mean of the first τ squared residuals and ε̄τ+1,n as the mean of the last n − τ squared residuals as

ε̄1,τ =
ετ
τ

=
1
τ

τ∑
t=1

ε̂2
t ε̄τ+1,n =

εn−τ

n − τ
=

1
n − τ

n∑
t=τ+1

ε̂2
t (15)

The estimate of the variance of the first τ observations is obtained by ετ
τ

while the estimate of the variance of the last
n − τ observations is given by εn−τ

n−τ once te jump point τ has been estimated. The change point estimator τ̂ of the unknown
change point position τ is obtained through minimization of the residual sum of squares among all the possible segments
of the sample as

τ̂ = arg min
τ

 τ∑
t=1

(
ε̂2

t − ε̄1,τ

)2
+

n∑
t=τ+1

(
ε̂2

t − ε̄τ+1,n

)2


= arg min
τ

V2
t

(16)

where V2
t =

∑τ
t=1

(
ε̂2

t − ε̄1,τ

)2
+

∑n
t=τ+1

(
ε̂2

t − ε̄τ+1,n

)2
. Further, suppose ε̄1,n = 1

n
∑n

t=1 ε̂
2
t is overall mean of the squared

residuals. Bai (1994), shows that for each τ ∈ {2, 3, ..., n − 1}, the following relation holds

V2
t =

n∑
t=1

(
ε̂2

t − ε̄1,n

)2
− n(Dn

t )2 (17)

This implies that the minimum of V2
t will occur when Dn

t is maximum. Hence,

τ̂ = arg min V2
t

τ
= arg max(Dn

t )2 = arg max
τ

∣∣∣Dn
t

∣∣∣ (18)

where considering a weighted l2 norm,

l2
(
σ2

(1)(Xt−1) − σ2
(2)(Xt−1)

)
=

 n∑
τ=1

wτ |ετ − εn−τ|
2


1
2

one obtains

Dn
t =

(
τ

n

(
1 −

τ

n

)) 1
2

∣∣∣∣∣∣∣1τ
τ∑

t=1

ε̂2
t −

1
n − τ

n∑
t=τ+1

ε̂2
t

∣∣∣∣∣∣∣ (19)

which is a non-parametric statistic for change point detection in volatility. The non-parametric statistic so obtained does
not utilize any a priori information about the data. This test statistic suitable for processes which are not independent
identically distributed as opposed to Inclan and Tiao (1994) test.

A good choice of the estimator for the change point τ is where the test statistic has a global maximum since the maximum
usually occur in the area of the “true ” change point. This means that all possible time points are taken to account and
hence the use of maximum statistics.Thus the estimator for unknown change point in volatility of financial returns is the
function

τ̂ = arg max
τ

∣∣∣Dn
t

∣∣∣ (20)

2.3 Consistency of the Volatility Change Point Estimator

When proving consistency of the volatility change point estimator, one needs to show that the volatility change point
fraction τ̂

n = k̂ is consistent for the “true ” change point fraction τ
n = k∗ under HA but not showing that the indexes are

consistent Truong et al. (2018). Distance between a true break point index and its estimated counterpart |τ̂ − τ| never
converge to zero and thus the need to consider the break point fraction instead of the indexes themselves. Hence, one
needs to show that the relative error |τ̂−τ|n decreases with the sample size n meaning that k̂

p
−→ k∗ as the sample size

diverges, The results on consistency of the volatility change point estimator are summarized in Theorem 2 and Theorem
3 below.

Theorem 2 Let τ be the “true ” location (position) of the change point under the alternative hypothesis

σ2
t (Xt−1) =

σ2
(1)(Xt−1) for t ≤ τ

σ2
(2)(Xt−1) for t > τ
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Let τ̂ be the estimate of τ given by
τ̂ = arg max

τ

∣∣∣Dn
t

∣∣∣
Then τ̂ is consistent for the “true ” break point τ Chen and Gupta (2001).

In proving the consistency of an estimator that has been obtained by maximizing an objective function, one needs to show
that the objective function

∣∣∣Dn
t

∣∣∣ with integer-valued variable τ, τ = 2, ..., n − 1 as its argument, is uniformly close to its
mean function (the expected value) and that this mean function has a maximum which is unique.

Theorem 3 below for the convergence in probability for the change point fraction k̂ is the main result in proving the
consistency of the estimated change point fraction.
Theorem 3 Consider a sample of squared residuals ε̂2

1, ε̂
2
2, ..., ε̂

2
n satisfying the alternative change point hypothesis and the

change point estimator τ̂ given in (18). If the sequences
{
ε̂2

1,t t ∈ Z
}

and
{
ε̂2

2,t t ∈ Z
}

satisfy

∆ := σ2
(1)(Xt−1) − σ2

(2)(Xt−1) , 0

where ∆ < ∞ denotes the finite magnitude of the jump in the conditional variance function , then for k̂ = τ̂
n

P
{
|k̂ − k∗| > ε

}
6

B
ε2∆2 n−

1
2

where 0 < B < ∞ (is a positive constant) and k∗ = τ
n .

To proof Theorem 3 above, suppose that
{
ε̂2

1,t t ∈ Z
}

and
{
ε̂2

2,t t ∈ Z
}

are two conditional heteroscedastic processes of
regression residuals which can be described as pre-break and post-break sub-samples respectively. Further, suppose that
one obtains a sample ε̂2

1, ε̂
2
2, ..., ε̂

2
n such that

ε̂2
t :=

ε̂2
1,t if 1 ≤ t ≤ τ
ε̂2

2,t if τ < t ≤ n
(21)

Also, assume that the two sequences of residuals
{
ε̂2

1,t, t = 1, 2, ..., τ
}

and
{
ε̂2

2,t, t = τ + 1, ...n
}

have different conditional
variance functions such that

E
(
ε̂2

i,t

)
:=

σ2
(1)(Xt−1) for 1 ≤ t ≤ τ when i = 1

σ2
(2)(Xt−1) for τ < t ≤ n when i = 2

(22)

where τ = k∗n and 0 < k∗ < 1. The conditional variance function is assumed to change at time t = τ. One assumes that
ε̂2

1,t is a process which is independent from ε̂2
2,t thus resulting in a discontinuity in the conditional variance function of the

residuals at τ. Since the returns are dependent due to the fact that they are obtained from a single instrument, the change
in the conditional variance function will result in the observations having starting values not out of stationary models.
Hence, one assumes that the observations after the change are based on a time series which is stationary.

The disordered sequence
{
ε̂2

t

}
which has a change point is no longer a stationary sequence and τ is referred to as the

change point while ε̂ is the change point estimator of τ̂.

|E
(
Dn

t
)
| will achieve its maximum at t = τ and E(Dn

t ) has a unique maximum at τ and also that
(
Dn

t − E
(
Dn

t
))

is uniformly
small in τ for large n. The first sum shall thus be weighted by τ

n converging to k∗ which is the percentage of chronologically
ordered observations before the change point while the second sum is weighted by 1− τ

n converging to 1− k∗ which is the
percentage of the chronologically ordered observations after the change. This results to

E
(
Dn

t
)

=

∆k
1
2 (1 − k∗)

1
2 if t ≤ τ

∆k∗
1
2 (1 − k)

1
2 if t > τ

(23)

where 1 < τ < n, is parametrized as τ = bnk∗c with k∗ ∈ (0, 1).

Consideration of both cases when t ≤ τ and when t > τ is made even though there is symmetry.
Thus

E
(
Dn
τ

)
= ∆k∗

1
2 (1 − k∗)

1
2 (24)

From Equations (23) and (24) one obtains

∣∣∣E (
Dn
τ

)∣∣∣ − ∣∣∣E (
Dn

t
)∣∣∣ =


|∆| k∗

1
2 (1 − k∗)

1
2 − |∆| k

1
2 (1 − k∗)

1
2 = |∆| (1 − k∗)

1
2

(
k∗

1
2 − k

1
2

)
if t ≤ τ

|∆| k∗
1
2

(
(1 − k∗)

1
2 − |∆| k∗

1
2 (1 − k)

1
2

)
= |∆| k∗

1
2

(
(1 − k∗)

1
2 − (1 − k)

1
2

)
if t > τ

(25)

61



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 1; 2021

If k ≤ k∗, then by the mean value theorem

k∗
1
2 − k

1
2 ≥

1
2

k∗−
1
2 (k∗ − k) (26)

If k > k∗, then 1 − k < 1 − k∗ and Equation (26) above yields

(1 − k∗)
1
2 − (1 − k)

1
2 ≥

1
2

(1 − k∗)−
1
2 (k − k∗) (27)

Combining Equations (25), (26) and (25), one obtains∣∣∣E (
Dn
τ

)∣∣∣ − ∣∣∣E (
Dn

t
)∣∣∣ ≥ |∆| 1

2
(k∗)−

1
2 (1 − k∗)−

1
2 min {k∗, 1 − k∗} |k∗ − k| (28)

Also
Dn

t − Dn
τ =

[
Dn

t − E
(
Dn

t
)

+ E
(
Dn

t
)]
−

[
Dn
τ − E

(
Dn
τ

)
+ E

(
Dn
τ

)]
(29)

which from the triangle inequality and the relation that |a| = |a − b + b| ≤ |a − b| + |b| yields∣∣∣Dn
t

∣∣∣ − ∣∣∣Dn
τ

∣∣∣ ≤ ∣∣∣Dn
t − E

(
Dn

t
)∣∣∣ +

∣∣∣E (
Dn

t
)∣∣∣ +

∣∣∣Dn
τ − E

(
Dn
τ

)∣∣∣ − ∣∣∣E (
Dn
τ

)∣∣∣
≤ 2

(
max
τ

∣∣∣Dn
t − E

(
Dn

t
)∣∣∣) +

∣∣∣E (
Dn

t
)∣∣∣ − ∣∣∣E (

Dn
τ

)∣∣∣ (30)

Taking
∣∣∣E (

Dn
τ

)∣∣∣ − ∣∣∣E (
Dn

t
)∣∣∣ to the left hand side of the inequality will imply that∣∣∣E (

Dn
τ

)∣∣∣ − ∣∣∣E (
Dn

t
)∣∣∣ ≤ 2

(
max
τ

∣∣∣Dn
t − E

(
Dn

t
)∣∣∣) +

∣∣∣Dn
τ

∣∣∣ − ∣∣∣Dn
t

∣∣∣ (31)

Therefore, from Equations (28) and (31) the following is obtained

|∆|
1
2

(k∗)−
1
2 (1 − k∗)−

1
2 min {k∗, 1 − k∗} |k∗ − k| ≤

∣∣∣E (
Dn
τ

)∣∣∣ − ∣∣∣E (
Dn

t
)∣∣∣

≤ 2
(
max
τ

∣∣∣Dn
t − E

(
Dn

t
)∣∣∣) +

∣∣∣Dn
τ

∣∣∣ − ∣∣∣Dn
t

∣∣∣ (32)

Replacing k by k̂ in Equation (30) above and noting that
∣∣∣Dn

τ

∣∣∣ ≤ ∣∣∣Dn
τ̂

∣∣∣ one obtains

|∆|
1
2

(k∗)−
1
2 (1 − k∗)−

1
2 min {k∗, 1 − k∗}

∣∣∣k∗ − k̂
∣∣∣ ≤ 2

(
max
τ

∣∣∣Dn
t − E

(
Dn

t
)∣∣∣) (33)

Considering Dn
t as given in Equation (19), max

τ

∣∣∣Dn
t − E

(
Dn

t
)∣∣∣ needs to be estimated.

Writing

∣∣∣Dn
t − E(Dn

t )
∣∣∣ =

1
n

∣∣∣∣∣∣∣
√
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√
τ

τ∑
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[ε̂2
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t )] −
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=

1
n
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√
τ

√
n − τ
√
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t )] −
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1
√
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√
τ
√
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=

1
n
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√
τ
√

(n − τ)

τ∑
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τ

√
n − τ

√
τ
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(34)

Opening the brackets

∣∣∣Dn
t − E(Dn

t )
∣∣∣ =

1
n
√

n − τ
√
τ

∣∣∣∣∣∣∣n
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Which implies ∣∣∣Dn
t − E(Dn

t )
∣∣∣ =

1
n
√
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√
τ
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Distributing 1
n and introducing the magnitude in Equation (36) yields
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(37)

where one concludes that

max
τ

∣∣∣Dn
t − E(Dn
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∣∣∣ ≤ 2 max

τ

2
√
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A general Hajek Renyi type inequality for dependent processes for the maximum of weighted sums in Theorem 4 below
is applied Kokoszka et al. (2000).

Theorem 4 Let Y1,Y2, ...,Yn be any random variables with finite second moments and suppose b1, b2, ..., bn are any non-
negative constants (a decreasing positive sequence of constants). Then for any ε > 0,

ε2P
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Setting m = 1 ,Yi = ε̂2
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√

n−τ
√
τ

by Cauchy Schwarz inequality,
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This in turn implies that

ε2P

max
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which further implies that

P
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substituting this result into Equation (33) yields

P
{
|∆| k̄

∣∣∣k∗ − k̂
∣∣∣ > ε} ≤ P

max
τ

1
√

n − τ
√
τ

∣∣∣∣∣∣∣
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[ε̂2
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 ≤ B
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(42)

where k̄ = 1
2 (k∗)−

1
2 (1 − k∗)−

1
2 min {k∗, 1 − k∗}, and B is some positive constant which further proves Theorem 3 which was

initially stated as

P
{∣∣∣k∗ − k̂

∣∣∣ > ε} ≤ B
ε2∆2

√
n

(43)

From Equation (43), it can be seen that as n −→ ∞, then B
ε2∆2

√
n −→ 0 which helps complete the proof for consistency of

the change point estimator. One can observe that consistency of the change point estimator depends on the magnitude of
change due to the fact that ∆ is kept on the right hand side.

3. Results

3.1 A Simulation Study on Consistency of the Change Point Estimator

The performance of the change point estimator with respect to sample size, change point location and the magnitude of
change is investigated by simulating an ARMA(1,1) ARCH(1) model is simulated with a singe change point in volatility
function as

σ2
t (Xt−1) =

(0.1 + ∆) + 0.1ε2
t−1 for t = 1, 2, ..., τ

0.1 + 0.1ε2
t−1 for t = τ + 1, ..., n

(44)

Xt = 0.35Xt−1 + εt + 0.4εt−1, εt = σt(Xt−1)zt.

Where ∆ = {0.3, 0.5, 0.7} and the sample sizes n = {500, 1000, 2000, 4000} and the true change point instants being
τ =

{
1
3 n, 1

2 n, 2
3 n

}
. A table after 1000 bootstrap samples for each sample size is created. In each simulation, the estimates

of the change point highly depended on the locations of the change points, the magnitude of change and the sample size
just as per Equation (40) above. As the sample size grew unbounded, the error of estimation was decreasing to zero.

Table 1. Numerical results on consistency of the change point estimator

∆ = 0.3 ∆ = 0.4 ∆ = 0.5

n τ τ̂ |τ̂−τ|
n → 0 τ̂ |τ̂−τ|

n → 0 τ̂ |τ̂−τ|
n → 0

500 166 164 0.00402 165 0.00201 165 0.00201
249 247 0.00402 248 0.00201 248 0.00201
332 330 0.00402 330 0.00402 331 0.00201

1000 332 330 0.00200 331 0.00100 331 0.00100
499 498 0.00100 498 0.00100 498 0.00100
666 664 0.00200 665 0.00100 665 0.00100

2000 666 663 0.00150 665 0.00050 665 0.00050
999 997 0.00100 998 0.00050 998 0.00050

1332 1330 0.00100 1331 0.00050 1331 0.00050
4000 1332 1331 0.00025 1331 0.00025 1331 0.00025

1999 1997 0.00025 1998 0.00025 1998 0.00025
2666 2665 0.00025 2665 0.00025 2665 0.00025

From the sequence of the estimates τ̂, it was observed that the estimator seemed to work better in larger samples than in
smaller samples and in samples with larger magnitude of shifts than those with smaller magnitude of shift as evident from
the table 1. Also, the bias of estimation, |τ̂−τ|n is decreasing as the sample size increases and as the magnitude of the shift

64



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 1; 2021

∆ grows, which further verifies that the estimator τ̂ is consistent. The accuracy of the change point detection is seen to
increase with the sample size.

3.2 Sampling Distribution of the Change Point Estimator

Besides being a function, the change point estimator τ̂ is a random variable. As a random variable, an estimator will
itself follow some probability distribution, which is called the sampling distribution of the estimator. A distribution of all
change points thus becomes the sampling distribution. The plots of the histograms of estimated change points when the
“true ”change point is located at 1

3 n, 1
2 n, 2

3 n for a sample size of n = 4000 after 500 bootstrap samples of

σ2
t (Xt−1) =

0.6 + 0.1ε2
t−1 for t = 1, 2, ..., τ

0.1 + 0.1ε2
t−1 for t = τ + 1, ..., n

(45)

Xt = 0.35Xt−1 + εt + 0.4εt−1, εt = σt(Xt−1)zt.

where zt is a sequence of i.i.d random variables symmetric around zero from a normal distribution and ∆ = 0.3 are as
shown below in figures 1, 2 and 3 respectively.

Figure 1. Sampling distribution of τ̂ when τ = 1
3 n = 1332

Figure 2. Sampling distribution of τ̂ when τ = 1
2 n = 1999

Figure 3. Sampling distribution of τ̂ when τ = 2
3 n = 2666

65



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 1; 2021

Figures 1, 2 and 3 show that the sampling distribution of τ̂ is skewed to the left and the degree of the skewness depends
on the position of the change point in that it increases as the change point moves to the right hand side of the sample. The
distribution is seen to have a long slowly decaying tail (leptokurtic).

3.3 Application to Foreign Exchange Rate Data Set

The existence of a change point in the conditional variance (volatility) of USD/KSH daily returns from 1st January 2010
to 27th November 2020 is investigated where n = 2839 historical exchange rates. This means obtaining 2838 continuously
compounded returns. Lagging the returns by one implies having 2837 continuously compounded returns at lag one.

(a) Daily exchange rate (b) Plot of the squared residuals

Figure 4. Exchange rate data and squared residual series

The exchange rates are plotted as in Figure 4a above. Since the conditional variances are obtained via the conditional
expectation of the squared residuals, the squared residuals plot is as shown in Figure 4b above.

The estimate of the first change point was τ̂1 = 668 corresponding to 26th July 2012. The data was then split into two
segments from [1 : 668] and from [669 : 2736] and change point estimation done on both segments. The second estimate
of the change point was τ̂2 = 375 corresponding to 13th June 2011. From the second segment [669 : 2736], the third
change point estimate was at data point 850 meaning that τ̂3 = 1519 corresponding to 30th October 2015 in the original
returns series at lag one.

(a) Three estimated change points, τ̂1 = 668 and
τ̂2 = 375 and τ̂3 = 1519

(b) Conditional volatility function, τ̂1 = 668, τ̂ = 375
and τ̂3 = 1519

Figure 5. Returns series at lag one and the conditional volatility function with three estimated change points

The returns series and the conditional volatility function with three estimated change points, τ̂1 = 668 corresponding to
26th July 2012, τ̂2 = 375 corresponding to 13th June 2011 and τ̂3 = 1519 corresponding to 30th October 2015 are as in
Figures 5a and 5b respectively.

The corresponding plot of the change point statistic with τ̂1 = 668, τ̂2 = 375 and at t = 850 for segment [668 : 2837]
corresponding to τ̂3 = 1519 are as shown in Figures 6a, 6b and 7 respectively.

4. Discussion of Results

From the exchange rate plot there is an increasing trend between January 2010 up to October 2011 where the exchange
rate prices were at the peak. The USD/KSH exchange rate depreciated from 83.89 to 101.39 between April 2011 to
October 2011. After October 2011, there is a decreasing trend after which the exchange rates started to rise again around
the year 2014 up to the year 2016. From the year 2016, the USD/KSH seems not to be varying very much. From the year
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(a) The sequence Dn
t when τ̂1 = 668 (b) The sequence Dn

t when τ̂2 = 375

Figure 6

Figure 7. The sequence Dn
t for change point at t = 850 for segment [668 : 2837], corresponding to τ̂3 = 1519 in the

original return series at lag one

2020, the USD/KSH exchange rate seems to be taking an upward trend probably due to economic crisis brought about by
Covid-19 pandemic like loss of jobs and ban on international travels by governments in most countries of the world.

Accounting for the change point in June 2011, Kenya was importing too much and exporting too little (imbalanced
economy) which made it vulnerable to shocks. In 2011, imports soared because of higher costs of fuel and food while
exports were stagnant which led to increase in demand for foreign exchange to finance imports. The foreign exchange
market witnessed significant volatility between May 2011 and October 2011 as seen in exchange rate plot Figure 4a and
the return series 5a reflecting the general volatility in the global financial markets. This resulted in the weakening of the
Kenyan Shilling just like other currencies in the region and other global markets whereby the exchange rate for the Kenya
shilling against the US dollar depreciated from an average of 84.2 in March 2011 to 101.39 in October 2011 (20.42%
depreciation).

Accounting for the change point in volatility of the returns on 26th July 2012, the Kenyan economy experienced slow
growth at the beginning of 2012 following high inflation and high interest rates from commercial banks. For the change
point on 30th October 2015, the Kenya shilling depreciated against the United States Dollar in the financial year ended
June 2015 due to tightening of global financial market conditions and further continued to depreciate in the financial year
starting July 2015. The depreciation was further aggregated by increase in food prices due to delayed rains in the same
period up to December 2015.

4.2 Conclusion and Recommendations

In this research, a non-parametric procedure for estimating a change point in volatility of financial returns is consid-
ered. The procedure allows for change point estimation in sequences with conditional heteroscedastic variances. The
consistency of the change point estimator is proven theoretically and shown through simulations. It is observed that the
estimator best estimates change point when the change point is fixed around the middle of the sample, when the magnitude
of change is large and as the sample size grows. The sampling distribution of the change point estimator is shown through
histograms and is found to be negatively skewed and the degree of skewness increases as the change point moves to the
right.

The change point estimation approach can be applied to multidimensional non-parametric models of the form Xt =

m(Xt−1, ..., Xt−d) +σ(Xt−1, ..., Xt−d) where either the volatility function is changing with time. One can also consider a case
where both the conditional mean function and the conditional variance function are changing. In such cases, the functions
m(.) and σ(.) should be estimated using multivariate kernel methods. This should be done carefully due to the curse of
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dimensionality problem. Also, situations where there are change points both in conditional mean function and conditional
volatility function would be much interesting. The authors aim to obtain the limit distribution of the change point test
statistic in a subsequent paper.
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Theorem 5 [Taylor’s theorem] It provides an estimate for the error involved in the approximation of functions by polyno-
mials. Let g be an (n + 1) times differentiable function on an interval which is open and which contains the points a and
x. Then

g(x) = g(a) + g′(a)(x − a) +
g′′(a)

2!
(x − a)2 + . . . +

g(n)(a)
n!

(x − a)n + Rn(x)

where Rn(x) =
g(n+1)(c)
(n+1)! (x − a)n+1 for some number c between a and x. Rn(x) which is the remainder term gives the error

in the approximation. If Rn(x) −→ 0 as n −→ ∞, then one obtains a sequence of better and better approximations of
g. When n = 0, then the Taylor’s theorem reduces to the Mean Value Theorem which itself is a consequence of Rolle’s
theorem Sahoo and Riedel (1998).

Theorem 6 [Rolle’s theorem ] If a function g is continuous on the closed interval [a, b] and differentiable on an open
interval (a, b) such that g(a) = g(b), then g′(c) = 0 for some c with a ≤ c ≤ b Sahoo and Riedel (1998).

Inequality 1 Jensen’s inequality: This can be demonstrated by remembering that the variance of every random variable
X is a positive (or non-negative) value i.e

var(X) = E(X2) − (EX)2 ≥ 0

Thus E(X2) ≥ (EX)2.

Suppose g(.) : R −→ R is a convex function e.g g(x) = x2. Also, assume that the expectations of X and g(X) exist (is
finite). Thus the Jensen’s inequality states that for any convex function g, there is

E
[
g(X)

]
≥ g (E [X])

For the proof, Pishro-Nik (2016).

Inequality 2 Regular triangle inequality: This inequality states that for any triangle,the sum of the lengths of any two
sides should be greater than or equal to the length of the side remaining.i.e Suppose without loss of generality that we
have vectors x and y in Lp and that x is no smaller than y.

‖ x ‖ + ‖ y ‖≥‖ x + y ‖

For the proof, Pedoe (2013) and by considering the Cauchy Schwartz inequality.

Inequality 3 Cauchy Schwartz Inequality: Let x and y be vectors in Lp space. Then we shall have

|x.y| ≤ ‖x‖‖y‖

If one of the two vectors is zero, then both sides are zero. So one may assume that both x and y are non-zero so as to proof
the inequality.

Also, for any a1, a2, ..., an b1, b2, ..., bn ∈ R it holds |
∑

aibi| ≤
(∑n

i=1 a2
i

) 1
2
(∑n

i=1 b2
i

) 1
2 .
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Also, for any random variables X and Y , it holds E [|XY |] ≤ E
[
X2

] 1
2 E

[
Y2

] 1
2 Wigren (2015).
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