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Abstract— The prediction of machining process capabilities 

is important in process parameter optimization and 

improvement of machining performance characteristics. This 

paper, presents the prediction of Wire-EDM input parameters 

for surface roughness using Artificial Neural Network and 

Response Surface Methodology. Ti-6Al-4V is an alpha-beta 

alloy widely applied in industry due of its excellent combination 

of mechanical properties. However, this alloy is found to be 

difficult to machine by means of conventional machining 

processes because of its high melting temperature, high chemical 

reactivity, and low thermal conductivity. Nevertheless, non-

conventional machining processes such Wire-EDM are able to 

overcome the challenge in machining Ti-6Al-4V. Response 

Surface Methodology (RSM) based on Central Composite 

design is used to evaluate and optimize the effect of pulse on time 

(Ton), discharge current (I) and open circuit voltage (UHP) on 

surface roughness (SR). Analysis of Variance revealed that 

open-circuit voltage is the most significant parameter affecting 

the obtained surface roughness followed by the discharge 

current. Parametric variation shows that lower surface 

roughness can be obtained at lower levels of UHP and I. The 

main contribution of this paper is the prediction of wire-EDM 

machining process parameters for a given surface roughness 

using Artificial Neural Network (ANN). The developed ANN 

model revealed to be 97.155% accurate with an average 

prediction error of 2.845%. The predictive capability of the 

developed ANN model is found to be satisfactory and the model 

can be successfully used for predicting machining process 

parameters for desired surface roughness in wire electrical 

discharge machining process.  

Index Term—  Artificial Neural Network, Response 

Surface Methodology, Scan Electron Microscopy, Ti-6Al-4V, 

WEDM 

I.  INTRODUCTION  
WIRE Electrical Discharge Machining is a thermo-electrical 
machining process consisting of a continuous traveling 
vertical-wire electrode, in which the material removal is due 
to spark erosion between the workpiece and the wire 
immersed in an electrically non-conductive dielectric fluid 
[1]–[6].  

 

Wire electrical discharge machining has the ability to 
machine precise, complex and irregular shapes of difficult to 
machine electrically conductive components. With this 
process, titanium alloy, alloy steel, conductive ceramics and 
aerospace materials can be machined irrespective of their 
hardness and toughness [3], [4], [6]–[8]. 

The Wire-EDM spark erosion process is due to the increase of 
voltage between the workpiece and wire electrode, causing the 
intensity of the electric field in the gap to be greater than the 
strength of the dielectric, resulting in electrical breakdown. 
The electrical breakdown allows the current to flow between 
the two electrodes, forming a plasma channel and spark 
discharges and therefore removing material from the 
workpiece. During pulse off-time, new dielectric fluid is 
flushed into the machining gap, serving as a coolant, enabling 
the debris to be carried away and restoring the insulating 
properties of the dielectric [1], [2], [4], [7]. 

The performance of WEDM is mainly evaluated in terms 
of material removal rate, surface finish, and sparking gap. 
Surface finish plays a very critical role in manufacturing 
engineering for determining the quality of engineering 
components, which can have an influence in their 
performance and in production costs. Various failures of 
components, sometimes catastrophic, leading to high costs, 
have been attributed to the poor surface finish of the 
components in question. A high surface quality improves the 
fatigue strength, corrosion and wear resistance of the 
component [1], [8]–[12]. 

Wire electrical discharge machining provides an effective 
solution for machining hard materials with intricate shapes. 
However, the selection of optimum parameters for the 
machining process is still a challenge. This is because wire-
cutting parameters for obtaining higher cutting accuracy and 
improved surface finish in WEDM is still not fully solved  [1], 
[2], [4]. 

Titanium alloys are regarded as important engineering 
materials for industrial applications due to their outstanding 
combination of properties such as high strength-to-weight 
ratio, low density, high elastic stiffness, good fracture 
toughness, excellent resistance to corrosion, good fatigue 
resistance and biocompatibility [1], [10], [13]. They are 
widely used in various fields such as aerospace, military, 
marine, biomedical, chemical, power generation, sporting 
goods, automobile, electronic, gas and food industry [10], 
[11], [14], [15]. Titanium alloy grade 5 (TI-6Al-4V) is an alloy 
belonging to the group of alpha-beta titanium alloys, 
considered five times more resistant than steel [1],[14],[11]. 
TI-6Al-4V is the most popular metal among titanium alloy 
group because of its wide application in industry, specially 
marine and aerospace [6], [7]. However, these alloys have 
relatively high melting temperature, low thermal conductivity 
and high electrical resistivity compared to other common 
materials[1], [11], [14], which make their machining difficult 
[10], [13]  costly, and requiring specialized cutting tools 
[13],[14],[16]. Machining titanium alloys by conventional 
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machining methods result in rapid tool wear because of their 
low thermal conductivity and high chemical reactivity which 
result in high cutting temperature at the cutting zone and 
strong adhesion between the cutting tools and the material [3], 
[9], [14]. For these reasons, there have been research 
developments with the objective of optimizing the cutting 
conditions of Titanium alloys to obtain an improved 
machining performance. 

S. Ramesh, L. Karunamoorthy, and K. Palanikumar [9] 
investigated the effect of cutting parameters on the surface 
roughness in turning process of titanium alloy grade 5 using 
response surface methodology. The investigated parameters 
were cutting speed, feed rate, and depth of cut. The results 
showed that feed rate was the most influential factor affecting 
the surface roughness. The investigated effect on surface 
roughness was done during turning process, the effect of the 
parameters on surface roughness during Wire-EDM was not 
part of the scope, therefore parameters such as pulse on time, 
discharge current and open circuit voltage were not 
investigated. 

S. Ramesh, L. Karunamoorthy, and K. Palanikumar [10] 
developed a surface roughness model of WEDM process of 
Titanium alloy in terms of cutting parameters such as cutting 
speed, feed, and depth of cut using response surface 
methodology and ANOVA. The results indicated that the feed 
rate is the main influencing factor on surface roughness, where 
it increased with the increase of  feed rate, but decreased with 
the increase of cutting speed and depth of cut. However, in this 
study was not considered the influence of parameters such as 
pulse on time, discharge current and open circuit voltage on 
surface roughness. The scope of this study also did not include 
the prediction of machining processes.  

D. Ghodsiyeh, A. Davoudinejad, M. Hashemzadeh, N. 
Hosseininezhad, and A. Golshan [1] investigated the influence 
of peak current, pulse on-time and pulse off-time on Surface 
Roughness (SR), Material Removal Rate (MRR) and 
Sparking Gap (SG) in WEDM of Ti-6Al-4V using response 
surface methodology. Peak current was found to be the most 
important factor for surface roughness and material removal 
rate while Pulse on time was the most significant for sparking 
gap. In this study was not considered the influence of open 
circuit voltage on surface roughness and the methodology did 
not explore the prediction of machining processes. 

Nourbakhsh et al. [14] investigated the effect of process 
parameters including pulse width, servo reference voltage, 
pulse current, and wire tension on process performance 
parameters such as cutting speed, wire rupture and surface 
integrity in WEDM of titanium alloy using Taguchi design, 
ANOVA and Scan electron microscopy. It was found that the 
cutting speed increases with increase of peak current and pulse 
interval. Surface roughness increased with increase of pulse 
width and decreased with increase of pulse interval. This study 
did not consider the influence of pulse on time on surface 
roughness, application of response surface methodology and 
the prediction of machining processes. 

Saedon et al. [6] studied the influence of  peak current (IP), 
feed rate (FC) and wire tension (WT) to cutting speed and 
surface roughness of Ti-6Al-4V in WEDM using Response 
Surface Methodology. The cutting rate obtained ranged 
between 3.9 mm/min and 9.8 mm/min, where the maximum 
was obtained when the parameters were set at peak current (12 
A), feed rate (12 mm/min) and wire tension (16 N). The 

surface roughness obtained ranged from 1.667 𝜇m to 3.018 𝜇m, where the minimum was obtained for combination as 
given by peak current (1.27 A), feed rate (8 mm/min) and wire 
tension (11 N). In this study was not considered the effect of 
pulse on time and open circuit voltage on surface roughness, 
neither the prediction of machining processes. 

A. Prasad, K. Ramji, and G. L. Datta [2] investigated the 
effect of  peak current, pulse on-time, pulse off-time  and servo 
reference voltage on material removal rate and surface 
roughness using Taguchi method and analysis of variance. 
The most significant parameters for both MRR and SR were 
found to be peak current and pulse on-time, whereas pulse off-
time and servo reference voltage were less effective factors. It 
was also observed that both MRR and SR increase and 
decrease simultaneously. The study did not consider response 
surface methodology and the prediction of machining 
processes. 

Rahman [3] investigated the effect of peak current, servo 
voltage, pulse on-time and pulse off-time  on material removal 
rate (MRR), tool wear rate (TWR) and surface roughness (SR) 
in EDM using artificial neural network. It was observed that 
peak current effectively influences the performance measures. 
The results indicated that the proposed ANN model can 
satisfactorily evaluate the MRR, TWR as well as SR in EDM. 
The proposed model was to predict the machining 
performance in WEDM while varying the input parameters. It 
was not considered the prediction of machining process 
parameters to obtain a given or desired performance.  

B. Pradhan and B. Bhattacharyya [17] modeled the micro-
electro-discharge machining process of Ti-6Al-4V using 
response surface methodology and artificial neural network 
algorithm. The studied parameters are peak current, pulse on-
time and dielectric flushing pressure. The optimal 
combination of process parameters settings obtained are 
pulse-on-time of 14.2093 ms, peak current of 0.8363 A, and 
flushing pressure of 0.10 kg/cm2 for achieving the desired 
Material Removal Rate, Tool Wear Rate, and Overcut. During 
this study, it was not considered the effect of the parameters 
on surface roughness. The artificial neural network model 
developed was for prediction of machining performance using 
different process parameters, it was not considered the reverse 
process, where from a known, given or desired machining 
performance it is predicted the required machining process 
parameters for the machining process. 

The main contribution of this paper is the prediction of 
wire-EDM machining process parameters to obtain a desired 
surface roughness using Artificial Neural Network and 
Response Surface Methodology. This allows one to conduct 
machining processes and obtain the desired or required 
performance, leading to better surface quality, reducing 
product failures; and reducing the machining time, increasing 
productivity. 

II. RESPONSE SURFACE METHODOLOGY  

Response surface methodology (RSM) is a collection of 
mathematical and statistical techniques based on the fit of a 
polynomial equation to the experimental data, which must 
describe the behavior of a data set with the objective of 
making statistical previsions. They are useful for the modeling 
and analysis of problems in which a response of interest is 
influenced by several variables and the objective is to optimize 
this response [9], [10], [18], [19]. 
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A. Variables Screening  

Many variables may affect the response of a system, 

however it is necessary to select those variables with major 

effects for the modeling.  

B. Choice of the Experimental Design 

Response surface modeling is built on the approximation 
of the  correct performance of a response. The model response 
is expressed as  𝑦 = 𝑓(𝜃1, 𝜃2  , 𝜃3, … . 𝜃𝑘) + ɛ                                           (1) 

where 𝜃1, 𝜃2  , 𝜃3, 𝜃𝑘   represent the variables and 𝜀 
represent the residual related to the experiments. 

The elementary model used in response surface 
methodology, is a linear function expressed as 𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + 𝜀𝑘𝑖=1                                                  (2) 

where 𝑘 represents the number of variables, 𝛽0   is the 
average value of 𝑦𝑖, 𝛽𝑖  represents the first order coefficients, 
and 𝑥𝑖 constitute the coded factors of the variables.  

Therefore, the responses of this model do not present a 
curvature. To assess curvature, a second-order model 
describing the interaction  between different variables, which 
is expressed as  𝑦𝑖𝑗 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗𝑘1≤𝑖≤𝑗 + 𝜀𝑘𝑖=1                       (3) 

where 𝛽𝑖𝑗  constitute the interaction coefficients. The 

interaction model evaluates the curvature, however to 
determine a critical point, the polynomial function must 
contain quadratic terms as  

𝑦𝑖𝑖 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗𝑘
1≤𝑖≤𝑗 + ∑ 𝛽𝑖𝑖2𝑥𝑖𝑘

𝑖=1 + 𝜀𝑘
𝑖=1          (4) 

where 𝛽𝑖𝑖2  represents the second-order coefficients. To 
evaluate the parameters in Eqn. 4, a two-modeling 
symmetrical response surface design such as the central 
composite design has to be used to ensure that all studied 
variables are affected in at least three factor levels. 

C. Level of the variables codification 

Codification of the variables helps to analyze variables of 

different magnitude, where the evaluation of the variable of 

greater magnitude does not influence the evaluation of the 

variable of lesser magnitude. The coded value is obtained as 𝑥𝑖 =  𝜃𝑖− 𝜃𝑚𝑖𝑛𝛿𝜃 2⁄ − 1                                                         (5) 

where, 𝜃𝑖 is the real variable value, 𝑥𝑖 is the coded value, 𝜃𝑚𝑖𝑛 

is the minimum variable value and 𝛿𝜃 is the variable range. 

 

D. Mathematical analysis of the data 

In matrix notation, Eqn. 2 - Eqn. 4 is represented as 𝑦 = 𝑋𝑏 + 𝑒                                                                       (6) 

where y is a nx1 response vector, X is a nxp matrix of the 

coded values named design matrix, b is a px1 vector of the 
model coefficients, and e is a nx1 vector of the model 
residuals. A column of ones is added to the design matrix for 

the determination of the average value of y. 

After the design matrix is built, the model residual is 

determined using the Method of Least Squares (MLS), which 

minimizes the error between the observed and predicted 

values. The model residual is obtained as 𝑒 = 𝑦 − 𝑦̂                                                                         (7) 

where e represents a nx1 vector of the model residuals, y 

represents a nx1 vector of the observed response values, and 𝑦̂ represents a nx1 vector of the predicted response. The 

predicted response is obtained as 𝑦̂ = 𝑋𝑏                                                                              (8) 
After mathematical transformations of Eqn. 8, the sum of 

squares of the model residuals is minimized according to 𝜕𝑒′𝑒𝜕𝑏 (𝑦 − 𝑋𝑏)′(𝑦 − 𝑋𝑏) = ⋯ = −2𝑋′𝑦 + 2𝑋′𝑋𝑏 = 0    (9) 

where the vector of model coefficients is obtained as 𝑏 = (𝑋′𝑋)−1𝑋′𝑦                                                               (10) 

Equation 10 is the least square estimate (LSM) of b. Because 

of the random distribution of the errors, it is necessary to 

estimate the variance of each component of 𝑏 by genuine 

repetitions of the central point as 𝑉̂𝑏 = (𝑋′𝑋)−1𝑠2                                                              (11) 

Accordingly, the standard errors for the coefficients of b are 
obtained by the extraction of the square root for each 

component of 𝑉̂𝑏 , making possible to assess its significance. 

E. Assessment of the fitted model 

The assessment of the fitted model is authentically done by 
the application of analysis of variance (ANOVA) [8], [14], 

[20]. Analysis of variance compares the variation explained 

by the model with the variation of model residuals, thus 

evaluating the significance of the regression model used for 
predictions in comparison to the real data. The assessment of 

the data variation is done by studying its dispersion. The 

evaluation of the square deviation 𝑑𝑖2 that each observation 

(𝑦𝑖) or its replicates (𝑦𝑖𝑗) present in relation to the media (𝑦 ̅) 
is computed as 𝑑𝑖2 =  (𝑦𝑖𝑗 −  𝑦 ̅)2                                                             (12) 

The total sum of the square (𝑆𝑆𝑡𝑜𝑡) is the sum of squares of 
all observations associated to the media, and is presented as 𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 −  𝑦̅)2 = 𝑛𝑖=1 𝑆𝑆𝑟𝑒𝑔 +  𝑆𝑆𝑟𝑒𝑠                       (13) 

where (𝑆𝑆𝑟𝑒𝑔) is sum of squares due to regression and (𝑆𝑆𝑟𝑒𝑠) 

is sum of squares due to the residuals. The sum of the squares 

due to residuals can be subdivided into sum of the square due 

to pure error (𝑆𝑆𝑝𝑒) and sum of the square due the lack of fit 
(𝑆𝑆𝑙𝑜𝑓), and presented as 𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑖 − 𝑦̂𝑖)2 = 𝑛𝑖=1 𝑆𝑆𝑝𝑒 +  𝑆𝑆𝑙𝑜𝑓                        (14) 

The model sum of squares is given by the sum of the square 

(𝑆𝑆𝑡𝑜𝑡) and residuals generated by the model (𝑆𝑆𝑟𝑒𝑠) as 𝑆𝑆𝑚𝑜𝑑 = 𝑆𝑆𝑡𝑜𝑡 +  𝑆𝑆𝑟𝑒𝑠                                                  (15) 

The pure error is given by 𝑆𝑆𝑝𝑒 =  ∑ ∑ (𝑦𝑖𝑗 −  𝑦̅𝑖)2 𝑛𝑟𝑗=1𝑚𝑖=1                                        (16) 

 

where 𝑆𝑆𝑝𝑒  is the estimate of a pure error, 𝑛𝑟 is the number 

of replicas at a design location and 𝑚 is the number of design 

locations where replicas were performed. The sum of the 

square due the lack of fit (𝑆𝑆𝑙𝑜𝑓  ) can also be obtained from 𝑆𝑆𝑙𝑜𝑓 =  𝑆𝑆𝑟𝑒𝑠 −  𝑆𝑆𝑝𝑒                                                    (17) 

Fisher’s distribution is used to compare the variation of the 
regression media squares and the variation of the residuals 

media squares while considering the degrees of freedom (dof) 

associated to these squares as 𝑀𝑆𝑟𝑒𝑔𝑀𝑆𝑟𝑒𝑠  ≈ 𝐹𝑉𝑟𝑒𝑔,  𝑉𝑟𝑒𝑠                                                           (18) 

where the square media of regression is represented as 

(𝑀𝑆𝑟𝑒𝑔), the squares media of residuals as (𝑀𝑆𝑟𝑒𝑠), the dof 

related to the regression as (𝑉𝑟𝑒𝑔) and the dof related to 
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residuals as (𝑉𝑟𝑒𝑠). If the 𝐹𝑡𝑒𝑠𝑡 presents a value greater than 

the tabulated F value means that the experimental data is well 

explained by the regression model and the model is 

considered statistically significant. The lack of fit test is also 

used as an alternative for evaluating the significance of the 
regression model where it is expected that it becomes 

insignificant, because it is desirable to fit the data. The lack 

of fit test is descried as 𝑀𝑆𝑙𝑜𝑓𝑀𝑆𝑝𝑒  ≈ 𝐹𝑉𝑙𝑜𝑓,𝑉𝑝𝑒                                                               (19) 

 𝑅2 =  𝑆𝑆𝑚𝑜𝑑𝑆𝑆𝑡𝑜𝑡 = 1 −  𝑆𝑆𝑟𝑒𝑠𝑆𝑆𝑡𝑜𝑡                                                (20) 

where R2 is the coefficient of determination. Its weakness is 

that it continues increasing as more terms are added to the 

model, leading to over-fitting. To solve this problem, it is 
introduced the adjusted R-squared which takes into account 

the degrees of freedom in the model, decreasing as the model 

terms are added if the model fit does not increase and 
increasing as terms are added if the model fit also increase. 
The adjusted R-squared is described by 𝑅𝑎𝑑𝑗2 = 1 − (𝑆𝑆𝑟𝑒𝑠 (𝑛 − 𝑝⁄ ) ∗ (𝑛 − 1) 𝑆𝑆𝑡𝑜𝑡⁄ )      (21)                                                      

F. Determination of optimal conditions 

The optimal conditions of a linear model are determined by 

the direction indicated by the generated surfaces. For 

quadratic models, the optimal conditions are calculated based 

on the first derivate of the regression equation described as 𝑦 =  𝑏0 +  𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥1𝑥2 + 𝑏11𝑥12 +  𝑏22𝑥22 (22)                                                                     
To obtain the optimal conditions the quadratic equation has 

to be differentiated as described by 𝜕𝑦𝜕𝑥1 =  𝑏1 + 2𝑏11𝑥1 +  𝑏12𝑥2 = 0                                     (23) 𝜕𝑦𝜕𝑥2 =  𝑏2 + 2𝑏22𝑥1 +  𝑏12𝑥1 = 0                                     (24) 

Therefore, to determine the optimal points, it is necessary to 

solve the first grade system formed by Eqn. 23 and Eqn. 24, 

after finding 𝑥1 and 𝑥2 values, then substitute in Eqn. 22. 

 

III. EXPERIMENTAL PROCEDURES 
Experimental design constitute a systematic method 

concerning the planning of experiments, collection, and 
analysis of data with near-optimum use of available resources 
[8], [10]. During this study, experiments were carried out in 
Stellenbosch University - Stellenbosch Technology Centre, 
South Africa.  

A. Experimental Setup 

In this paper, Ti-6Al-4V is used as a workpiece, deionized 
water as dielectric fluid and a brass wire of 0.25mm as the wire 
electrode. Table I provides the information of experimental 
conditions used during the machining process.  

 

 

 

 

 

 

TABLE I  

Experimental Conditions for the machining process 

Condition Description 

Workpiece 

10mmx10mmx10mm Ti-6Al-

4V  

Tool Electrode Brass wire, 0.25mm 

Dielectric Deionized Water 

Polarity  (workpiece "+ve", wire "-ve") 

Flushing Pressure (bar) 0.3/8 bar 

Pulse frequency 3/50 

Constant feed rate 

(mm/min) 0.01 

Advancing Wire (mm/sec) 135 

Force Wire (N) 17 

Pulse on-time (ms) 15.6-46.8 

Discharge current (A) 102-170 

Open circuit voltage (V) 108-326 

 

 

Fig. 1.  Wire cut +GF+ Agie Charmilles CA 20 

Figure 1 shows the WEDM machine used in this study. A 
number of experiments were carried out according to the 
design of experiment (DOE) generated by RSM based on 
central composite face-centered design to investigate the 
influence of pulse on-time, discharge current and open-circuit 
voltage on surface roughness. 

B. Work material 

Cubes of Ti-6Al-4V alloy are machined by WEDM ( wire 
cut +GF+ Agie Charmilles CA 20). Ti-Al-4V has the 
following chemical composition, Titanium (Ti= 89.58%), 
Aluminum (Al= 6%), Vanadium (V= 4%), Carbon (C < 
0.10%), Oxygen (O<0.20%), Nitrogen (N< 0.05%), Hydrogen 
(H < 0.0125%), Iron (Fe < 0.3%) [2], [13], [17], [21]. 

C. Experimental Design 

The Response Surface Methodology based on Central 

Composite Design was used for the evaluation and 

optimization the effect of machining process parameters on 
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surface roughness. The central composite design employed is 

face-centered, which means that alpha (𝛼) is equal to 1. 

Alpha is the distance of each star or axial point from the 

center. This variety of design requires 3 levels of each factor. 

Thus, the total number of experimental runs is 20. The three 
variables controlled in this paper are pulse on-time (Ton), 

discharge current (I), and open-circuit voltage (UHP), with 

minimum and maximum values of 15.6 to 46.8 ms, 102 to 

170 A, and 108 to 326 V respectively. Table II illustrates the 

experimental design consisting of 8 factorial design points, 6 

center points and 6 axial points. The center points allow the 

experimenter to obtain an estimate of the experimental error 

and to obtain a more precise estimate of the effects. The 

experiment was performed randomly to satisfy analysis of 

variance requirements for random distribution of errors. 
TABLE II 

Central Composite Design table - Response Surface Methodology 

Run Ton (ms) 

I 

(A) UHP (V) SR  

1 31.2 136 217 0.755 

2 31.2 136 326 0.78 

3 31.2 102 217 0.567 

4 46.8 170 326 1.4 

5 15.6 170 326 0.94 

6 31.2 136 217 0.59 

7 31.2 136 217 0.82 

8 46.8 102 108 0.355 

9 31.2 136 217 0.554 

10 46.8 170 108 0.425 

11 15.6 136 217 0.678 

12 31.2 136 217 0.59 

13 15.6 102 326 0.456 

14 46.8 102 326 0.8 

15 31.2 136 217 0.71 

16 31.2 170 217 0.535 

17 15.6 170 108 0.759 

18 31.2 136 108 0.725 

19 46.8 136 217 0.71 

20 15.6 102 108 0.63 

 

IV. RESULTS AND DISCUSSIONS 

A. Response Surface Model 

The developed two-parameter interaction model for the 

surface roughness for the machining process of Ti-6Al-4V is 

explained by 

 𝑆𝑅 = 0.6903 + 0.0231𝑇𝑜𝑛 + 0.1247𝐼 + 0.1456𝑈𝐻𝑃 +0.0076𝑇𝑜𝑛𝐼 + 0.1761𝑇𝑜𝑛𝑈𝐻𝑃 + 0.1111𝑈𝐻𝑃       (25) 

 
TABLE III 

Model Summary of the fit Statistics 

R-squared 0.9541 

Adjusted R-squared 0.9296 

Predicted R-squared 0.7813 

Adequate Precision 11.9212 

Table III presents the model summary of the fit statistics. The 
R-squared of 0.9541 is close to 1, which indicates that the 

model is effective in explaining the experimental data. The 

adjusted R-squared reveals that the model fit takes into 

account the degrees of freedom and is not led by over-fitting 
of the parameters. The Predicted R-squared of 0.7813 is as 
close to the Adjusted R-squared of 0.9296 as expected, 

presenting a difference less than 0.2 [1], [8], [14], 

consequently they are in reasonable agreement. 

Adequate Precision computes the signal to noise ratio, by 

comparison of the predicted values to the average prediction 

error. Because it is desirable to obtain a ratio above 4, then 

the obtained ratio of 11.9212 implies appropriate model 

discrimination. Figure 2, presents the optimum parameters 

for surface roughness. The goal set was to minimize the 

surface roughness while maintaining the variables in the 

range. 

 
Fig. 2.  Surface roughness optimization 

The optimization process is according to Eqn. 22 - Eqn. 24 

and it helps to identify the combination of Ton, I, and UHP 

that jointly optimize the surface roughness. The desirability 
assesses how well the combination of these variables satisfies 
the goal defined that is to minimize the surface roughness. 

The desirability ranges from 0 to 1 and an optimal solution is 

found when it is at his maximum. The minimum surface 

obtained is 0.3704 𝜇m with the Ton, I and UHP equal to 

46.8ms, 102 A, 108 V respectively. 

B. Analysis of variance 

Analysis of Variance was used to estimate the suitability of 

the regression model given in Eqn. 25, employing F-test for 

the determination of the significance of the model considering 
the variance of all the terms at a suitable level of 𝛼. The F-

test evaluation is based on the null hypothesis, which states 

that all coefficients of the regression equation are equal to 

zero against the possibility that at least one of the regression 

coefficients is not equal to zero. Analysis of Variance 
(ANOVA) was used to determine the statistical reliability of 
the suggested relationship between the parameters pulse on 

time, discharge current and open circuit voltage and the 

response, the surface roughness. 

Table IV presents the Analysis of Variance results. The 

quadratic terms were all found to be insignificant, so they 

were removed and the adopted model is a two-interaction 

model. Throughout analysis, it was used a confidence level of 
95%, which indicate that the significance, 𝛼 is equal to 

0.0500. The significance of the model was verified by the 

Fishers F-test. The Model F-value of 7.24 indicate that the 

model is significant and there is only a 0.15% chance that this 
large F-value could be a result of noise. The P-values less 
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than the value imply significance of the model terms. In this 

case I, UHP, TonxUHP, and IxUHP are found to be 

significant model terms. Contrarily, Ton, TonxI are found to 

be insignificant because present p-values greater than 0.1000. 

The effect of open-circuit voltage is the most significant 
factor associated with surface roughness based on its p-value. 
The Lack of Fit presents a F-value of 1.71 and a p-value of 

0.2865 which indicates that the lack of fit of this model is not 
significant relative to the pure error, and there is only a 

28.65% chance that this large F-value of lack of fit could be 
a result of noise. A non-significant lack of fit is good because 
it desirable that the model fits. Therefore, the two-interaction 

model is found to be well fitted because it reveals to have a 
significant regression and insignificant lack of fit. 

TABLE IV   

Analysis of variance 

Source DF SS MS 
F-
Value 

p-
Value 

Model 6 0.7202 0.12 7.24 0.0015 

Ton 1 0.0053 0.0053 0.32 0.5802 

I 1 0.1555 0.1555 9.38 0.0091 

UHP 1 0.212 0.212 12.8 0.0034 

TonxI 1 0.0005 0.0005 0.03 0.8696 

TonxUHP 1 0.2482 0.2482 15 0.0019 

IxUHP 1 0.0988 0.0988 5.96 0.0297 

Residual 13 0.2155 0.0166     

Lack-of-

Fit 8 0.1579 0.0197 1.71 0.2865 

Pure 

Error 5 0.0576 0.0115     

Total 19 0.9936       

 

C. Model Diagnostic Checking 

Model diagnostic checking is a method used to analyze the 

model residuals based on certain assumptions in order to 

confirm the ANOVA results, which avoids to obtain 
misleading results. One of the diagnostic checking 

assumptions is done by building a normal probability plot of 

the residuals, where every residual is plotted versus its 

expected value under normality. It is expected to obtain a 

straight-line plot, with emphasized central points than the 

extremes, indicating that the residual distribution is normal. 

Another checking is the residual independence assumption 
done by plotting the residuals according to the order of runs 

in data collection. This plot should not present obvious 

patterns. During diagnostic checking it is also checked the 

assumption of constant variance by plotting the residuals 

against the predicted values, which is satisfied if the plot is 
structureless [1], [8], [14]. The model diagnostic checking 

has been done and the results are presented from Fig. 3 - Fig. 

6. The normal probability plot is presented in Fig. 3. The 

obtained results indicate that the errors are distributed 

normally because the residuals fall on a straight line. 

 
Fig. 3.  Normal plot of the RSM model residuals 

Figure 4 presents the plot of the standardized residuals 

against the predicted values. The residuals do not show any 

obvious pattern and are distributed in both positive and 

negative directions, which satisfies the assumption of 
constant variance. 

 
Fig. 4.  Relationship between standardized residuals and predicted values in 

RSM 

Figure 5 presents the plot of the residuals against the time 

order of runs of data collection. The plot does not present 
obvious pattern, implying that the independence of 

assumption on the residuals was not violated and the model 

is adequate. 

 
Fig. 5.  Plot of the residuals against the time order of runs 

 



                  International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:19 No:05                         41 

                                                                                                                           191305-4242-IJMME-IJENS © October 2019 IJENS                                                                      I J E N S 

Figure 6 presents the plot of the experimental values against 

the predicted values of surface roughness. Most of the points 

fall on the straight line and the experimental are very close to 

predicted values implying that the evaluation and prediction 

provided by the model is reliable. 

 
Fig. 6.  Relationship between actual and predicted values using RSM 

The analysis of surface roughness are explained through 2D 
contour plots and 3D surface plots. The contour plots show 

how the values of the surface roughness change as a function 

of two variables of the process parameters, while the third 

variable is held constant [10]. All the points with the same 

surface roughness are joined to build contour lines of constant 

surface roughness. The surface plot helps to examine the 

relationship between the surface roughness and two 

parameters while the third parameters is held constant by 

viewing a 3D surface of the predicted surface roughness. 

It allows to examine the relationship between two parameters 

jointly and the response and also the relationship between 

each parameter and the surface roughness. The peaks and 
valleys represent the combination of two machining process 

parameters that produce local maximum and local minimum 

respectively. The contour plots and surface plots for surface 

roughness regarding the machining process parameters are 

shown from Fig. 7 - Fig. 12. 

 
Fig. 7.  Contour plot of the relationship between the parameters Ton, I and 

the Surface Roughness 

 

Figure 7 presents the contour plot of the relationship between 

parameters Ton and I and Surface Roughness. At low values 

of I even when the T on is increased to its maximum, the 

contour obtained is low, of about 0.5 𝜇m. Maintaining the 

values of T on and increasing the values of I the surface 

roughness increases to about 0.6 𝜇m. At low values of T on 

and high values of I the surface roughness increases and a 

contour of 0.7 𝜇m is obtained. At high values of Ton and high 

values of I the surface roughness still increases to about 0.7 𝜇m. This means that the effect of T on is not significant to the 
obtained surface roughness and that in this interaction of Ton 

and I, the I is the most influential parameter on the surface 
roughness. 

 
Fig. 8.  Contour plot of the relationship between parameters Ton, UHP and 

the Surface 

Figure 8 presents the contour plot of the relationship between 

the parameters Ton, UHP and the Surface Roughness. At low 

values of UHP and high values of T on is obtained the 

minimum surface roughness for this interaction which is 

about 0.6 𝜇m. At high values of T on and high values of UHP 
the maximum surface roughness for this interaction is 

obtained, contour of 1.1 𝜇m. However, the high values of T 

on still produce a low surface of 0.6 but the low values of 

UHP produce a surface roughness of 0.8 𝜇m, then the high 

surface roughness attained at the high values of both 

parameters is attributed to the UHP not Ton. 

 
Fig. 9.  Contour plot of the relationship between parameters I, UHP and the 

Surface Roughness 

 



                  International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:19 No:05                         42 

                                                                                                                           191305-4242-IJMME-IJENS © October 2019 IJENS                                                                      I J E N S 

Figure 9 present the contour plot of the relationship between 

parameters I, UHP and the Surface Roughness. At low values 

of UHP and high values of I is obtained the minimum surface 

roughness for this interaction which is about 0.6 𝜇m. At high 

values of UHP and low values of I is also obtained the 
minimum surface roughness for this interaction which is 

about 0.6 𝜇m. At low values of UHP and low values of I is 

obtained the low surface roughness which is about 0.6 𝜇m. 

At high values of I and high values of UHP the maximum 

surface roughness for this interaction is obtained, which 

range from 0.7 𝜇m to 1.1 𝜇m. Therefore, it is observed that 

the parameters UHP and I conflict with each other in a way 
that in this interaction there is no one parameter that is more 

influential than the other, but the significance in the entire 
model is attributed first to the UHP according to the ANOVA 
and then followed by the I. 

 

 
Fig. 10.  Surface plot of the relationship between parameters Ton, I and the 

Surface Roughness 

Figure 10 presents the surface plot of the relationship 

between parameters Ton, I and the Surface Roughness 

Surface which is an additional analyze to the analysis 

provided in Fig. 7. Figure 10 shows that when Ton is 

increased the surface roughness is increased to a range of 0.4 𝜇m - 0.6 𝜇m. When I is increased, the surface roughness is 

increased to a range of 0.6 𝜇m - 0.6 𝜇m. The increase in the 

interaction of the two parameters produces a surface 

roughness in a range of 0.6 𝜇m - 0.8 𝜇m, which means that 
the affecting parameter here is the I and the interaction of the 

two parameters is not significant to the model as revealed in 
the ANOVA results. 

 
Fig. 11.  Surface plot of the relationship between parameters Ton, UHP and 

the Surface 

Figure 11 presents the surface plot of the relationship 

between parameters Ton, UHP and the Surface Roughness, 

which is an additional analyze to the analysis provided in Fig. 

8. Figure 11 shows that when Ton is increased the surface 

roughness is increased to a range of 0.4 𝜇m - 0.6 𝜇m. When 

UHP is increased, the surface roughness is increased to a 

range of 0.6 𝜇m - 0.8 𝜇m. The increase in the interaction of 

the two parameters produces peak or local maximum and 

increases the surface roughness to a range of 1.0 𝜇m - 1.2 𝜇m, 

which means that the more affecting parameter here is the 

UHP, however the interaction of the two parameters is 

significant to the model as revealed in the ANOVA results. 

 
Fig. 12.  Surface plot of the relationship between parameters I, UHP and 

the Surface Roughness 

Figure 12 presents the surface plot of the relationship 

between parameters I, UHP and the Surface Roughness 

which is an additional analyze to the analysis provided by 

Fig. 10. Figure 12 shows that when I is increased the surface 

roughness is increased to a range of 0.4 𝜇m - 0.6 𝜇m. When 

UHP is increased, the surface roughness is increased to the 

same range but closer to 0.6 𝜇m. The decrease in the 
interaction of the two parameters produces valley or local 

minimum and the increase in the interaction produces peak or 

local maximum and increases the surface roughness to a 

range of 1.0 𝜇m - 1.2 𝜇m, which means that the two 

parameters and their interaction is significant to the model but 
the UHP is more significant than the I as revealed in the 

ANOVA results. 
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The contour plots and the surface plots of the relationship 

between parameters Ton, I, and UHP and the Surface 

Roughness reveal that the most significant parameter 
affecting the surface roughness is UHP followed by I as 

presented in the ANOVA results. Low values of I and UHP 

minimize the obtained surface roughness and high values of 
I and UHP maximize the obtained surface roughness. 

 

D. Scan Electron Microscopy analysis results 

Wire-EDM machined samples with different surface 

roughness from the preliminary experiment and main design 

of experiment were selected and prepared for Scan Electron 
Microscopy (SEM) analysis. The objective of this scan was 

to analyze the morphology, the micro-structure, and 

composition of the samples of different roughness machined 

at different machining parameters levels after the machining 

process. Figure 13 - Fig. 17 describe the sample preparation 

process. The samples previously machined in WEDM were 

cut using a sewing machine as in Fig. 13 to allow the analysis 

of the cross-sectional area. 

 

 
Fig. 13. Sample Preparation: Sawing process 

They were mounted in an automatic mounting press using 

epomet molding compound, at a pressure of 280bar, heat time 

of 3.50 minutes and cool time of 4.00 minutes as shown in 

Fig.14. 

  
Fig. 14.  Sample Preparation: Mounting process 

 
Later on, they were grinded and polished on a 2speed grinder-

polisher to remove the peaks and obtain an even surface as 

shown on Fig. 15. 

 
Fig. 15.  Sample Preparation: Grinding and polishing process 

The non-mounted samples cut on the sewing machine were 

ultrasonically cleaned as shown on Fig. 16 with acetone and 

the mounted samples were cleaned with acetone only before 

the itching process. 

 
Fig. 16.  Sample Preparation: Ultrasonic cleaning process 

Lastly all the samples were itched with a solution of 2wt% 

HF / 20wt% HNO3 (based on Kroll’s reagent) for about 15 
seconds and rinsed in distilled water. 

 
Fig. 17.  Sample Preparation: After Itching process 

The samples were analyzed using the scan electron 
microscopy Gemini 2 as presented in Fig. 18. 
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Fig. 18.  Scan electron microscopy Gemini 2 

After the preliminary evaluation of the scan electron 

microscopy analysis of the wire-EDM machined samples, it 

was selected one sample of a lower surface roughness (0.590 𝜇m), one sample of an average surface (1.440 𝜇m) and one 

sample of a higher surface (3.150 𝜇m- obtained in the 

preliminary experiment) machined at the different levels of 

process parameters for deeper analysis of their morphology, 
micro-structure and composition. The scan electron 

microscopy analysis of the three samples in terms of 

morphology, heat affected zone, white layer, and 

composition is presented below. 

 

i. Analysis of the morphology 

 

Figure 19 - Fig. 21 show the SEM analysis of the morphology 

of the machined surfaces of Ti6Al-4V done in a working 

distance (WD) of 9.5mm; magnified 1000 times (Mag=1.00 
KX). 
Figure 19 presents a sample machined at Ton=31.2 ms, I= 

136 A, UHP = 217 V, with a resultant surface roughness of 

0.590 𝜇m. The sample presents smaller crater sizes, smaller 

cracks, smaller melted drops, and a smoother surface that 

resulted from the average discharge current (level 2), average 

open-circuit voltage (level 2) and average pulse on-time 

(level 2). 

 
Fig. 19.  SEM analysis of the morphology of the machined Ti-6Al-4V with 

surface roughness of 0.590 𝜇𝑚 

 

Figure 20 presents a sample machined at Ton=15.6 ms, I= 

102 A, UHP = 326 V, with a resultant surface roughness of 

1.440 𝜇m. As the pulse on time is decreased to level 1, 

discharge current is decreased to level 1, and the open circuit 

voltage is increased to level 3. It is observed an increase in 
the surface roughness, the melted drops become bigger, also 

the cracks and craters. This agrees with the analysis of 

variance results obtained from the response surface 

methodology that the obtained surface is more influenced by 
the open circuit voltage than the other two parameters. 

 
Fig. 20.  SEM analysis of the morphology of the machined Ti-6Al-4V with 

surface roughness of 1.440 μm 

Figure 21 presents a sample machined at Ton=500 ms, I= 578 

A, UHP = 54 V, with a resultant surface roughness of 3.150 𝜇m. This sample was obtained during the preliminary 

experiment; therefore, its values are not within the levels 

defined in the design of experiment. Figure 21 shows bigger 

crater sizes, bigger cracks and bigger melted drops, 

consequently a very rough surface. Primarily, the parameter 
setting was not optimized, and from the result of the previous 

morphologies in the Fig. 19 and Fig. 20, this proves that the 

response surface design and its optimization of process 

parameters improves significantly the obtained surfaces in 

wire electrical discharge machining process. Secondly, 

though this experiment presents a huge pulse on time, the 

morphology cannot be resultant of it because the first two 

morphologies demonstrated that the pulse on time was not 

significant, as obtained in the analysis of variance, as it was 

decreased from Fig. 19 to Fig. 20 but still the cracks, craters 

and drops kept increasing. The morphology is more attributed 
to the open circuit voltage as seen in the previous figures and 

analysis of variance, but as also seen in the interaction of 

discharge current and open circuit voltage in Fig. 12, these 

two parameters conflict which eat other. Therefore because 

of that, the obtained surface can be more attributed to 

discharge current applied in the machining process, rather 

than the open circuit voltage. 
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Fig. 21.  SEM analysis of the morphology of the machined Ti-6Al-4V with 

surface roughness of 3.150 μm 

In the analysis of the morphology was observed that as the 

surface roughness increases, the melted drops, the craters and 

the cracks also increase. The main factor that contributed to 

the increase of the surface roughness is the open circuit 

voltage and the discharge current. 
 

ii. Heat Affected Zone and White Layer analysis 

The wire electrical discharge machining melts the workpiece 

material, and part of the melted metal is flushed away during 
the pulse off-time. However, the left molten material re-

solidifies forming a recast layer known as white layer because 

of its white appearance under the microscope. Below the 

white layer, it is formed a heat affected zone as a result of the 

rapid heating and cooling cycles of the wire electrical 

discharge machining process [5], [16]. The SEM images in 

Fig. 22, Fig.  23, and Fig. 24 display the heat affected zone 

and the white layer created during the machining process. The 
SEM images were analyzed using Fiji Image-J software to 

measure the thickness of the heat affected zone and the white 

layer. 

Figure 22 presents a sample machined at Ton=31.2ms, I= 136 

A, UHP = 217 V, with a resultant surface roughness of 0.590 𝜇m. The white layer thickness obtained in Fig. 22 is 0.013mm 

and the heat affected zone corresponds to 0.027 mm. Fig. 22 

reveals smaller white layer thickness and a lower heat 

affected zone resulted from the average discharge current, 

average open-circuit voltage and average pulse on-time 
applied during the machining process. 

 

 
Fig. 22.  SEM analysis of the heat affected zone and white layer of the 

machined Ti-6Al-4V with surface roughness of 0.590 𝜇𝑚 

Figure 23 presents a sample machined at Ton=15.6 ms, I= 

102 A, UHP = 326 V, with a resultant surface roughness of 

1.440 𝜇m. The white layer thickness obtained in Fig. 23 is 

0.016 mm and the heat affected zone corresponds to 0.043 

mm. By comparing Fig. 22 and Fig. 23 it is observed the 
major effect of open circuit voltage on the white layer 

thickness, although the discharge current is influencing 
significantly the heat affected zone. 

 
Fig. 23.  SEM analysis of the heat affected zone and white layer of the 

machined Ti-6Al-4V with surface roughness of 1.440 μm 

Figure 24 presents a sample machined at Ton=500 ms, I= 578 
A, UHP = 54 V, with a resultant surface roughness of 3.150 𝜇m. The white layer thickness obtained in Fig. 24 is 0.021 

mm and the heat affected zone corresponds to 0.081 mm. 

Figure 24 shows bigger white layer thickness and higher heat 

affected zone compared to the previous two samples. 

The white layer thickness is attributed to the applied 

discharge current during the machining process, but the white 

layer in this case is more attributed to the pulse on time, 

because the large pulse on time occupied the large part of the 

machining cycle, which means that the pulse off time was 

short, resulting in more molten metals re-solidifying in the 
workpiece.  

 
Fig. 24.  SEM analysis of the heat affected zone and white layer of the 

machined Ti-6Al-4V with surface roughness of 3.150 μm 

Again, the analysis of this preliminary sample, before the 

design and optimization, points out the need of optimization 

of machining processes and also proves that the machined 

samples based on the response surface methodology present 

better surface morphologies and micro-structure. 

iii. Compositional Analysis 
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Figure 25, Fig. 26, and Fig. 27 show the SEM-EDS (Scan 

Electron Microscopy with Energy Dispersion Spectroscopy) 

analysis of the machined surfaces. SEM-EDS reveals the 

percentage range of chemical elements in Ti-6Al-4V 

surfaces, visualized in the adequate voltage range, counted in 

seconds per electron-volt (cps/eV). According to the 
literature Ti-6Al-4V has the following chemical composition, 

Ti= 89.58%, Al= 6%, V= 4%, C < 0.10%, O < 0.20%, N < 

0.05%, H < 0.0125%, Fe < 0.3%  [2], [13], [17], [21]. During 

SEM-EDS it was found that all the samples demonstrate a 

higher Ti content near the surface, which decreases gradually 

to approximately the bulk concentration. It was also observed 

a diffusion of chemical elements from the wire electrode to 

the machined samples due to the high temperatures generated 

during the machining process and the duration of the pulse on 

time [5], [22], [23], [24], [25]. 

Brass wire electrode is composed mainly by copper (Cu=55-

90%) and zinc (Zn=10-45%), but usually it is added lead 
(Pb=2%), tin (Sn=1%), aluminum (Al), nickel (Ni), iron (Fe), 

silicon (Si) and manganese (Mn) to improve the strength, 

resistance to corrosion, wear and tear [23], [24], [26]. Due to 

the diffusion of elements during the machining process Fig. 

25 reveals an addition of Cu, Si, Sn, Mn, Ca, and Zn to its 

original chemical composition. Figure 25 presents a sample 

machined at Ton=31.2 ms, I= 136 A, UHP = 217 V, with a 

resultant surface roughness of 0.590 𝜇m. Due to the diffusion 

of elements during the machining process Fig. 25 reveals an 

addition of Cu, Si, Sn, Mn, Ca, and Zn to its original chemical 
composition. It reveals a greater number of added elements 

due to the discharge current and machining time for the 

obtained smother surface roughness, the longer machining 

time results in longer exposure to the high temperatures, 

consequently more diffusion of chemical elements to the 

workpiece. 

 
Fig. 25.  SEM-EDS analysis of the machined Ti-6Al-4V with surface 

roughness of 0.590  𝜇m 

Figure 26 presents a sample machined at Ton=15.6 ms, I= 

102 A, UHP = 326 V, with a resultant surface roughness of 

1.440 𝜇m. Due to the diffusion of elements during the 

machining process, Fig. 26 reveals an addition of Cu, Si, Sn, 

Ca, and Mn. The discharge current applied here is less than 

the discharge current applied in the sample of 0.590 𝜇m, the 

pulse on time is shorter and the total machining time is shorter 

as well, this resulted in shorter exposure to the heat, thus 
having lower diffusion of chemical elements to the 

workpiece. 

 
Fig. 26.  SEM-EDS analysis of the machined Ti-6Al-4V with surface 

roughness of 1.440 μm 

Figure 27 presents a sample machined at Ton=500 ms, I= 578 

A, UHP = 54 V, with a resultant surface roughness of 3.150 𝜇m. Due to the diffusion of elements during the machining 

process Fig. 27 reveals an addition of Cu, Si, and Ca. The 

added chemicals in this sample are less in number than the 

added chemicals in the previous two samples but just a 

difference of two elements with the sample in Fig. 26. This 

analysis highlights the aspect of machining time, although the 

composition is affected by the discharge current, the pulse on 
time during the machining, it also matters the total machining 

time. Considering that a rough surface like this does not need 

long machining time, and that wire electrical discharge 

machining operates at high temperatures, though the pulse on 

time is longer, the less the workpiece is exposed to heat, for 

the whole machining process, the less is the probability of 

diffusion of chemical elements from the workpiece to the 

material, which is highly influenced by the temperature. 

 
Fig. 27.  SEM-EDS analysis of the machined Ti-6Al-4V with surface 

roughness of 3.150 μm 

E. Artificial Neural Networks 

A feedforward back-propagation neural network algorithm 

by 1-30-3 network topology was developed to predict the 
wire-EDM machining process parameters for surface 

roughness. The developed multilayer neural network has one 

input layer (IL), one hidden layer (HL), and one output layer 

(OL). Thus, corresponding to one input parameter (surface 

roughness), there is one neuron in the input layer, and three 

neurons in the output layer corresponding to the three process 

parameters, Ton, I, and UHP. Figure 28 presents the 

architecture of the developed artificial neural network model. 
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Fig.28.  Architecture of the developed artificial neural networks 

The model was developed and trained using built in 

MATLAB toolbox nntool. Figure 29 presents the MATLAB 

diagram of the model. Samples from the design of experiment 

were used to train the model. The surface roughness data was 

used as the input data (in the input layer) and the process 

parameters were used as the target data (in the output layer). 

 
Fig. 29.  MATLAB diagram of the ANN model 

The model was trained using Levenberg-Marquardt training 

algorithm. After searching the optimal performance and a 

good coefficient of determination by adjusting the number of 
hidden layers and the number of neurons in the hidden layer, 

the best result attained was with one input layer, one hidden 

layer with 30 neurons and one output layer with 3 neurons 

corresponding to the three process parameters Ton, I, and 

UHP. The minimum gradient was reached at epoch 456 and 

the threshold was set at 0.000100. The analysis of the 

performance and reliability of the developed artificial neural 
network was based on the coefficient of determination or 

correlation coefficient (R value) of the model as presented in 

Fig. 30. 

 

 
Fig. 30.  Artificial Neural Network Training Regression 

The correlation coefficient measures how well the model 
explains the change in the neural network outputs in relation 

to the provided target values. Its values range from 0 to 1, 

where 1 indicates an excellent correlation between the output 

and the targets [27],[28],[29].  The obtained correlation 

coefficient is 0.97155 which indicates a good fit of the model. 
This correlation coefficient confirms the significance and 
reliability of the developed model. 

 

i. Confirmation Experiment 
The predictive performance of the artificial neural network 

model was tested based on the predicted process parameters 

from stochastically selected experimental dataset not used in 

the training process and the result is given in Tab. V. The 

actual values were compared to the artificial neural network 
predicted values, and the prediction error was computed by 𝑃𝑒𝑟𝑟𝑜𝑟% =  |𝑥𝑎 − 𝑥𝑝|𝑥𝑎 ∗ 100% 

where 𝑃𝑒𝑟𝑟𝑜𝑟  represents the prediction error, 𝑥𝑎 represents the 

actual or experimental values and 𝑥𝑝 represents the predicted 

values. The minimum and maximum error recorded was 

0.04% and 2.7% respectively. The maximum error in the 

ANN model prediction is found to be less than 10%, as per 

the available literature [27], [28], the model presents a 
satisfactory predictive capability. Table V and Fig. 31 present 

the data used during the confirmation experiment and the 
respective prediction errors. 

 

TABLE V   

Artificial neural network model confirmation experiment results 

  Actual Values Predicted Values Error % 

Exp. SR Ton I UHP Ton I UHP Ton I UHP 

1 0.422 31.25 102 108.57 31.46 101.3 105.63 0.68 0.683 2.705 

2 0.79 15.62 136 325.71 15.21 134.52 325.16 2.61 1.085 0.168 

3 0.576 15.62 102 217.14 15.35 101.43 215.33 1.75 0.55 0.833 

4 0.475 15.62 136 162.85 15.86 136.23 160.9 1.55 0.172 1.196 

5 0.865 15.62 102 325.71 15.65 101.95 325.01 0.17 0.046 0.215 
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Fig. 31.  Plot of the actual values vs ANN predicted values 

The predictions of each process parameter were statistically 

analyzed using MATLAB curve fitting toolbox and values of 

sum of squares error (SSE), R-squared, Adjusted R-squared 

and root mean square error (RMSE) were obtained according 

to Tab. VI. As mentioned before, SSE measures how far the 
actual values from the predicted values. R-squared evaluates 

the model fit, the proportion of the data that is correctly 

predicted by the model, without including the degrees of 

freedom. The adjusted R-squared includes the degrees of 

freedom in its evaluation. RMSE evaluates the standard 

deviation of the prediction errors. The statistical analysis 

revealed that the error between the predicted and actual 

values is small and the fit of each predicted parameter is good, 
therefore they confirm the good prediction of the developed 

ANN model. 

 
TABLE VI  

Statistical analysis of the ANN predicted values 

Parameters SSE 

R-

squared 

Adj. R-

squared RMSE 

Ton 0.2579 0.9987 0.9983 0.2932 

I 1.697 0.9988 0.9984 0.7521 

UHP 0.1271 1 1 0.2058 

 

V. CONLUSIONS 

This paper presents a study of the prediction of wire-EDM 

machining process parameters for surface roughness using 

Artificial Neural Network model and Response Surface 

Methodology, and Scan Electron Microscopy analysis of 
surface morphology, microstructure and composition. Based 

on the results, the following conclusions are drawn: 

 

i. The two-factor interaction model developed is 

accurate and used successfully for the prediction of 

the surface roughness in relation to the investigated 

process parameters. The percent contributions of the 

input variables and interaction on the surface 

roughness were obtained as: Ton = 2.31%, I = 

12.47%, UHP = 14.56%, TonxI = 0.76%, TonxUHP 

= 17.61%, IxUHP = 11.11%. 
ii. The optimal parameter settings for minimum surface 

roughness of 0.3704 𝜇m is pulse-on time (Ton) of 

46.8 ms, discharge current (I) of 102 A, and open 

circuit voltage (UHP) of 108V. 

iii. The analysis of variance clearly show that the open 

circuit voltage is the most influential parameter on 

the obtained surface roughness followed by 

discharge current. The ANOVA analysis revealed 
that the surface roughness of Ti-6Al-4V increases 

with the increase of discharge current and open 

circuit voltage. But the pulse on-time was found to 

be less effective to the obtained surface roughness. 

iv. The SEM analysis confirm a change in the 
morphology and micro-structure of Ti-6Al-4V due 

to discharge current and open circuit voltage 

resulting in bigger crater sizes, more cracks and 

higher thickness of the white layer and HAZ as these 

parameters are increased. A higher white layer 

thickness result is also influenced by a longer pulse 
on-time. 
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v. Better characteristics of the morphology are 

obtained at lower discharge current, and open circuit 

voltage regarding to low surface roughness values, 

narrow craters, melted drops and small cracks. A 

white layer thickness of 0.013mm, 0.016mm, and 

0.021mm and HAZ of 0.027mm, 0.043mm, and 
0.081mm are observed for machined surfaces of 

0,590 𝜇m, 1.440 𝜇m and 3.150 𝜇m respectively. 

vi. The SEM-EDS analysis confirmed the diffusion of 

chemical elements from the wire to the workpiece 

during the machining process due to the applied 

discharge current, longer pulse on time and total 

machining time. 

vii. The developed artificial neural network provide 
prediction capability of 97.155% in the correlation 

coefficient and an average error of 2.845%. 
viii. The confirmation experiment revealed that the 

predicted values are very close to the actual values, 

being the minimum and maximum error recorded 

correspondent to 0.04% and 2.7% respectively. The 

experiment confirmed that the developed model is 
accurate in predicting the process parameters for 

desired surface roughness and can be satisfactory 

used for prediction of process parameters during 

WEDM process. 
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