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REVIEW

Current advances in perovskite oxides supported on graphene-based
materials as interfacial layers of perovskite solar cells

Samantha Ndlovua , Moses A. Ollengob , Edigar Muchuwenia� , and Vincent O. Nyamoria

aSchool of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa; bChemistry Department, School of Science,
Dedan Kimathi University, Nyeri, Kenya

ABSTRACT
Perovskite solar cells (PSCs) are emerging efficient photovoltaic devices, with record-high
power conversion efficiencies (PCE) of more than 25.5%. However, PSCs exhibit some draw-
backs, such as poor stability upon exposure to moisture or humidity, ultraviolet (UV) radi-
ation and heat, which in turn limits the device lifetime and performance. In addition, the
introduction of perovskite films comes with associated toxicity, which is a major environ-
mental concern. Furthermore, the application of titanium dioxide (TiO2) as an electron trans-
port layer (ETL) and 2,20,7,70-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,90-spirobifluorene
(spiro-OMeTAD) as a hole transport layer (HTL), causes device instability. The wide-bandgap
characteristic of TiO2 introduces charge carrier recombination in the ETL, which, in turn,
impairs device performance. This is, over and above, the high cost of spiro-OMeTAD,
coupled with its multi-step synthetic preparation method. To address the aforementioned
shortcomings, approaches, such as modifying the interfacial architecture, have been
explored by introducing versatile materials between the charge-collecting electrode and the
perovskite active layers. In this regard, perovskite oxides are more appealing due to their
wide bandgap and high electron mobility. However, perovskite oxides have limitations due
to their agglomeration, which causes short-circuits and leakage current, in addition to their
poor charge separation efficiency, surface hydrophilicity and weak visible-light absorption.
As a result, nanocomposites of perovskite oxides with carbon-based materials, particularly
graphene and its derivatives, have attracted significant research attention due to their
exceptional optoelectronic properties, superior stability, and non-toxicity of graphene-based
materials. Therefore, this review discusses the recent trends in graphene-based materials,
their composites with perovskite oxides, effective ETLs or HTLs of PSCs and the subsequent
improvement of photovoltaic performance. In addition, a summary of synthetic routes for
perovskite oxides/graphene nanocomposites is presented. This review will foster the
advancement of the fabrication of PSCs with improved PCE and stability.
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1. Introduction

Perovskite solar cells (PSCs) are of great interest due
to their low manufacturing cost and high power con-
version efficiency (PCE).[1–4] In recent years, the
PCE of PSCs has rapidly increased from 3.8% to
more than 25.7%.[5–8] The photovoltaic performance
and device stability of PSCs can be improved by
enhancing the morphology of each functional layer
and the device structure, controlling the crystalliza-
tion of perovskites, and engineering the interfacial
structure. One drawback of PSCs is their low effi-
ciency and poor device stability arising from the typ-
ical electron transport layer (ETL) and hole transport
layer (HTL) materials.[9] To circumvent these issues,
the insertion of interfacial layer materials between
the ETL or HTL and the perovskite absorber layer
can play a significant role in improving device per-
formance and stability.[10] The interfacial layers tune
the energy levels between the electrode and perovsk-
ite interface, creating an Ohmic contact from a
Schottky barrier.[11] This dramatically improves both
the light absorption and charge transport while sup-
pressing charge carrier recombination. The other
major challenge is moisture, which can be obviated
by using hydrophobic graphene-based materials as an
interfacial layer leading to improved PSC perform-
ance and sustainability.

An effective ETL should not only influence the
charge transfer and collection, but also behave as the
hole blocking layer to suppress electron-hole (e�/hþ)
recombination at the interface.[12] This calls for the
exceptional properties of graphene, namely, strong
mechanical stability, large specific surface area, and
good electrical conductivity.[9] This would enhance
charge extraction and charge transport by the ETL,
and reduce the recombination rate due to the effective
passivation of trap states at the interface, which effect-
ively eliminates J-V hysteresis.[13] Nevertheless, gra-
phene has some limitations, especially when there is

restacking of graphene sheets, limiting various proper-
ties, such as high surface area and electrical proper-
ties.[14] To prevent graphene restacking, metal, metal
oxide, and perovskite nanoparticles can be introduced
onto the graphene sheets. Also, the wide-bandgap of
perovskite oxides can be easily tuned to a low
bandgap by incorporating graphene support materials
to suppress charge carrier recombination on the
device.[15] The interaction of perovskite oxide nano-
particles with the graphene support has a synergistic
effect leading to an enhanced surface area and a good
electrical conductivity.[16–18] Herein, discussion on
hydrophobic graphene-based materials (undoped and
doped), as the interfacial layers and support of per-
ovskite oxides, which are resistant to moisture pene-
tration, enhancing device stability, increasing its
lifetime and improving its performance, is presented.
In addition, different methods of preparing graphene-
based materials/perovskite oxide nanocomposites
are reviewed.

2. Interfacial layers

The main function of the ETL is to transport the pho-
togenerated electrons from the light-harvesting mater-
ial to the transparent conductive oxide (TCO) while
blocking hole transport, thereby suppressing charge
carrier recombination and hence improving device
efficiency.[19,20] ETLs can also be called a blocking
layer, using metal oxides with a wide bandgap.[21]

ETLs can help eliminate device hysteresis and enhance
electron extraction and transportation.[22] Excellent
matching of the energy level of the perovskite absorb-
ing layer with the conduction band of the ETL leads
to good electron extraction efficiency and low charge
transfer resistance.[23] The most commonly used and
successful type of PSC device architecture is a fluor-
ine-doped tin oxide (FTO)/HTL/perovskite-harvester/
ETL/indium tin oxide (ITO) either as mesoscopic or
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planar (Figure 1), in which electrons are injected from
the perovskite harvester to an ETL, and finally col-
lected by FTO.[24,25] The most common ETL in PSCs
is titanium dioxide (TiO2) due to its low cost.
However, TiO2 has a wide bandgap, which increases
the recombination rate and reduces the electrical con-
ductivity due to defects on Ti3þ and oxygen vacancies;
hence, reducing the PCE.[9] Zinc oxide (ZnO), as an
alternative ETL, demonstrates better electron mobility
than TiO2.

[9] However, ZnO possesses high charge
recombination and chemical instability when interact-
ing with the perovskite absorber.[9]

On the other hand, HTLs play a vital role by pre-
venting direct contact between the metal electrode
and perovskite layer, which suppresses the recom-
bination of electrons and holes by transporting holes
to a specific back contact metal electrode while
blocking any electron transfer to the anode.[26] So
far, organic HTLs, such as poly(3-hexylthiophene)
(P3HT), poly(triarylamine) (PTAA) and 2,20,7,70-
tetrakis[N,N-di(4-methoxyphenyl)amino]-9,90-spiro-
bifluorene (spiro-OMeTAD), are mostly used for
fabricating high-performance PSCs.[27] Among
these, spiro-OMeTAD has shown a tremendous
increase in PCE from 3.8 to 25.7%.[28–32] However,
the high cost limits the use of spiro-OMeTAD.[33]

Also, poly(3,4-ethylenedioxythiophene):poly(styrene-
sulfonate) (PEDOT:PSS) exhibits poor long-term
stability due to its acidic and hygroscopic nature.[34]

In addition, PTAA and P3HT have relatively poor
stability due to their inability to prevent moisture
ingress.[35] Therefore, alternative interfacial layers
have gained significant research interest to over-
come the aforementioned disadvantages. In particu-
lar, graphene-based materials offer distinct
advantages of low cost, excellent stability and
unique optoelectronic properties.

3. Stability of perovskite solar cells

Researchers have invested significant efforts to
improve the interfacial engineering of PSCs to
enhance not only the PCE but also the stability of
PSCs.[36] This has been achieved through the use of a
variety of transport layers, selective charge collection
electrodes and active layers. Nevertheless, PSCs are
vulnerable to a number of factors, such as tempera-
ture, UV radiation, oxygen and moisture, which lead
to degradation, as illustrated in Figure 2(a).[37]

The instability of PSCs is mainly influenced by
the degradation of the interfacial layers and the deg-
radation of the perovskite itself.[38] The degradation
of the perovskite has been a critical issue, especially
when applying CH3NH3I and PbI2, which decom-
pose in a high humidity environment, resulting in
poor instability in light due to their hydrophilic
nature.[39] Another concern is the usage of organic
charge transport layers that can be easily influenced
by atmospheric water and oxygen, which can con-
tribute to the degradation of PSC devices.[40] Also,
the metal electrodes, such as Al and Ag, can easily
react with perovskite absorbers when they are in dir-
ect contact.[40] However, an electrode, such as Au,
cannot undergo any corrosion, but this metal is too
costly for large-scale commercialization.[41] Hence,
the challenge is to overcome the poor stability of
PSCs by using a controlled environment and highly
stable materials to improve the stability in severe
conditions, such as high temperature, high humidity
and UV illumination, as shown in Figure 2(b). At
this point, we present a review of graphene-based
materials with perovskite oxides that can be used to
protect the PSC device when exposed to atmospheric
moisture while maintaining the good stability of
the device.

Figure 1. Structure diagram of (a) mesoscopic and (b) planar perovskite solar cell.
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4 Perovskite oxides

Perovskite oxide materials play a significant role in
the emerging field of photovoltaics because of their
potential to improve the PCE of solar cells.[42]

Perovskite oxides exhibit a cubic structure, with the
general formula of ABO3, where the A-site ion is usu-
ally a rare-earth element or an alkaline earth metal sit-
uated at the center of the lattice, the B-site ion is a
transition metal positioned at the lattice corners.[43,44]

Perovskite oxides have been applied in solar cells as
the hole-transporter,[45] sensitizers,[46] and the elec-
tron- and hole-transporter.[47] They can possess an
energy bandgap in the range from 1.4 to 3.8 eV, which
allows these materials to be useful as interfacial
layers.[48] Any distortion formed on the nanostructure
of perovskite oxides can influence different physical
properties, such as the dielectric, optical, magnetic
and electronic properties.[48] The size and structure of
perovskite oxides play a substantial role in tuning the
physical and chemical properties, which subsequently
influence their various applications, e.g., in photo-
catalysis,[49] light-emitting diodes,[50] electrochemical
devices[51] and solar energy conversion.[42]

The preparation method is a key factor that con-
tributes to a good structure and superior physico-
chemical properties. Some of the methods used to
prepare perovskite oxides are sol-gel,[52,53] combustion
synthesis,[54] sonochemical,[55] microemulsion,[56]

electrospinning,[57] and co-precipitation.[58] For per-
ovskite oxides at the nanometer scale, the agglomer-
ation has been considered a serious concern that can

lead to short-circuits and leakage current.[52]

Agglomeration in perovskite oxides can cause limited
transparency and poor performance in optoelectronic
devices.[52] Also, perovskite oxides have drawbacks,
such as poor charge separation efficiency, surface
hydrophilicity and weak visible-light absorption.[59,60]

To circumvent these issues, the introduction of gra-
phene-based materials into perovskite oxides as the
support can prevent agglomeration and also suppress
the charge recombination rate, which favors charge
transport by forming a suitable band alignment.[61]

Also, the addition of graphene-based materials into
perovskite oxides can act as a highly conductive sup-
port and provides a good interfacial contact, which
increases the electrical conductivity.[62]

5 Graphene-based materials

The primary concern for commercial applications of
PSC devices is moisture and stability due to the use of
volatile components.[63] Carbon-based materials can
assist in discouraging humidity penetration due to
their hydrophobic nature. Additionally, the interface
architecture can also act as the buffer layer to further
prevent metal-atom penetration onto the perovskite
harvester.[64] Various interfacial materials, such as
water-resistant metal nanostructures, carbon materials,
and graphene-materials, such as graphene oxide (GO),
reduced graphene oxide (RGO),[65] graphene quantum
dots (GQDs),[66] graphene nanosheets (GNSs),[67] and
graphene nanoribbons (GNRs),[68] have been used due
to their better stability, and efficiency.[69]

Figure 2. The (a) degraded and (b) stable PSCs. Adapted with permission.[35] Copyright 2019, American Chemical Society.
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Graphene-based materials can be synthesized
through either covalent or non-covalent, doping poly-
mers and chemical functionalization.[70] Any of these
methods can create different graphene derivatives with
a unique oxidation level. Graphene is one of the most
attractive materials since it is a 2D single layer of sp2-
hybridized carbon atoms, whereby the sp2-hybridiza-
tion is formed from the r-bonds (in-plane) and pi-
bonds (out-plane).[71,72] The formation of graphene,
as multilayer graphene (MLG) achieves higher charge
carrier mobilities of �60000 cm2 V�1 s�1 at 4 K, and
�15000 cm2 V�1 s�1 at 300K.[73] On the other hand,
few-layer graphene (FLG) can have relatively low
charge carrier mobilities of up to 10000 cm2 V�1

s�1.[73] In addition, FLG has displayed excellent
optical transparency of up to 95% in the visible range,
with high charge carrier mobility, thus, graphene-
based materials are excellent candidates for PSC
fabrication.[74]

5.1. Graphene oxide and reduced graphene oxide

GO is formed from covalent carbon-oxygen (C-O)
bonds, making it an insulator with a wide bandgap
due to a mixture of sp2 and sp3 hybridization.[75] GO
has major functional groups, such as carbonyl (-C-
OH) and carboxyl (-COOH) on the sp2-hybridized
carbons, and hydroxyl (-OH), and epoxide (C-O-C)
situated on the sp3-hybridized carbons, as shown in
Figure 3(a)[75]. The oxygenated functional groups
allow for ease of chemical functionalization and have
hydrophilic characteristics that make GO to be easily
exfoliated in water.[75] Thus, GO can be chemically
functionalized with other materials, such as hybrid
organic and inorganic materials, to form novel nano-
composites.[76] Nevertheless, the oxygen functional

groups tend to reduce the intrinsic electrical and ther-
mal conductivity and can be easily removed through
chemical treatment or high-temperature thermal
annealing, resulting in a semi-metallic state.[76,77]

RGO is a semi-metallic material obtained from
chemically exfoliated GO, either from the chemical or
thermal removal of oxygenated functional groups, as
revealed in Figure 3(b)[77]. The chemical method uses
corrosive reagents such as sulfuric acid, which are not
considered green, while the thermal method uses heat
to break down weak van der Waals forces of attrac-
tion between the sheets.[77] Although these methods
can result in some oxygenated functional groups
remaining, these can be utilized to incorporate per-
ovskite oxides or support other nanoparticles, enhanc-
ing chemical stability, electrical conductivity and
forming a high surface area material.[78]

5.2. Graphene quantum dots

GQDs have a zero-dimensional structure (Figure 4)
containing sp2-sp[2] hybridized carbon bonds that
impart stable structural and excellent optical proper-
ties.[79] GQDs can be prepared via a top-down
approach, i.e., from small fragments of graphene sheet
layers.[80] GQDs show quantum confinement, more
abundant active sites, and are comparable in size to
biomolecules.[81] They can contain various functional
moieties, which allows for complex bandgap structures
and catalytic abilities.[81] Water molecules and oxygen
can be adsorbed by GQDs to create defects on the
energy level toward the highest occupied molecular
orbital (HOMO) level, as revealed by Shin et al.[79]

They observed that the addition of a GQD layer could
reduce charge carrier recombination, and increase the
stability of a PSC relative to PEDOT:TSS alone. Pang

Figure 3. Illustration of (a) graphene oxide and (b) reduced graphene oxide sheet. Adapted with permission.[73] Copyright 2019,
Nanomaterials.
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et al.[82] synthesized GQDs decorated by tin(IV) oxide
(SnO2) as the ETL of a PSC and compared the result
with SnO2. They observed the suppression of charge
carrier recombination and enhanced electron extrac-
tion. GQDs, as interfacial layers, can form an excellent
matching energy level, which can further suppress e-/
hþ recombination rate, to improve device performance.

5.3. Graphene nanorods and graphene nanosheets

GNRs are made up of a one-dimensional graphene
sheet from elongated strips of graphene layers with an
ultra-thin width of <50 nm, as shown in Figure
5(a).[83] GNRs can be either metallic or nonmetallic.
GNSs form two-dimensional graphene nanosheets
(Figure 5(b)),[84] that differ from regular graphene

sheets, based on the quasi-periodic nanoholes com-
pared to GNRs. This makes GNSs to have more active
sites, leading to higher electrocatalytic activities and
faster electron transport.[84] All these graphene-based
materials have exceptional properties, such as high
optical transmittance in the visible region, large sur-
face area, high electrical conductivity and bet-
ter stability.

6. Modifications of graphene-based materials

In this section, various modifications carried out to
improve the optoelectronic properties of graphene-
based materials are presented. Modifications, such as
heteroatom-doping of graphene and formation of

Figure 4. Molecular diagram of graphene quantum dots (GQDs). Adapted with permission.[79] Copyright 2020, Elsevier.

Figure 5. (a) Illustration of graphene nanorods. Adapted with permission.82 Copyright 2011, Royal Society of Chemistry. (b)
Illustration of graphene nanosheets. Adapted with permission.83 Copyright 2017, IGI global.
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perovskite oxide/graphene nanocomposites, will be
systematically discussed.

6.1. Heteroatom-doping

The chemical modification of graphene alters its elec-
tronic properties, such as the Fermi level, bandgap,
thermal stability, charge transport, spin density, mag-
netic, electrical, and optical properties,[85] due to the
electron modulation caused by the difference in elec-
tronegativities during doping of heteroatoms into the
graphene sheet.

6.1.1. Boron doping
Boron (B), 2 s22p1, is a neighbor element of C, 2 s22p2,
on the periodic table.[86] Boron can easily substitute a
carbon atom in the GO lattice due to size compatibil-
ity, as illustrated in Figure 6. B-doping results in sp2

hybridization that is electron-deficient (p-type), with
charge polarization between neighboring carbons.
Furthermore, the C-C (�1.42 Ð) bond is shorter than
the B-C bond (�1.50 Ð); thus, inducing intrabond
strain.[88] The electron-deficient nature of B imposes
p-type and p-doping effects, thereby decreasing the
Fermi level, and increasing the doping level.[89] The
incorporation of B onto the graphene lattice allows it
to assemble at the interstitial sites, which increases the
bond length,[90] and hence improves the conductivity
and PCE of the device. Ideally, doping B onto gra-
phene can increase the work function of the graphite
sheet via the replacement of C with a B atom. Li
et al.[87] used the chemical vapor deposition (CVD) to
synthesize B-doped graphene using boron hydride as
a boron source and obtained an enhanced PCE of
3.4% when a p-type semiconductor material was used.

They also improved the conductivity and work func-
tion of B-doped graphene by using a nitric acid sur-
face treatment.

6.1.2. Nitrogen doping
Nitrogen (N), 1 s22s2sp3, is an immediate neighbor
element of C in the periodic table of elements and is
electron-rich in nature (n-type). N-doping can exist in
three configurations: viz., pyridinic, pyrrolic, and
graphitic, as shown in Figure 7. Zhang et al.[91] syn-
thesized amino-functionalized graphene and charac-
terized the materials with X-ray photoelectron
spectroscopy (XPS). The graphiticC and pyridinic N
exert marginal intrabond strain due to the comparable
bond lengths of C-C (1.42 Ð) and C-N (1.41 Ð).
However, the introduction of N improves the work
function of graphene as a result of the nonbonding
electrons. Studies have shown that N-doped graphene
can enhance electrocatalytic activities and electron
transfer properties due to the additional lone pairs of
electrons that create defects on the graphene-material

Figure 6. The formation of boron-doped graphene (BRG) from graphene oxide (GO). Adapted with permission.[87] Copyright
2018, Elsevier.

Figure 7. Schematic diagram of the different configurations of
N in doped graphene sheet. Adapted with permission.96
Copyright 2016, IntechOpen.
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matrix.[92–94] Zhu et al.[95] synthesized N-doped gra-
phene using a one-step fast pyrolysis method and
achieved an improved PCE of 10.3% when the mater-
ial was used as a counter electrode in PSC. They
observed that N-doping increased the electrical con-
ductivity and charge extraction capability.

6.1.3. Phosphorus doping
Phosphorus (P), 3p23p3, forms a pyramidal bonding
configuration with three carbon atoms, as shown in
Figure 8. P-doping creates more structural distortion,
transforming the sp2 hybridized carbon to the sp3 state.
It is well known that P is an n-type dopant, which
enhances the charge extraction efficiency, potentially
reducing charge carrier recombination at the perovskite
interface.[96] The extra electron causes a localized state,
and a nonzero magnetic moment is obtained due to
the charge transfer from P to graphene.[96]

6.1.4. Sulfur doping
The sulfur-carbon (S-C) bond length is longer (1.78
Ð) than the C-C bond.[97] Consequently, S-doping of
graphene has drawbacks because of the size and the
binding behavior of the S atom, as shown in Figure 9.
Unlike N, B and P, there is no polarization or charge
transfer on the C-S bond due to the same electronega-
tivity of C (2.55) and S (2.58). The synthesis of S-
doped graphene is even more difficult due to the con-
siderable energy of formation required. Thus, limited
attempts have been made; for instance, S-RGO was
used as the counter electrode in a dye-sensitized solar
cell, and an efficiency of 4.2% was obtained, as
reported by Luo et al.[98] Li et al.[98] employed S-dop-
ing onto GQDs by using a hydrothermal method. XPS
revealed two configurations of S on the GQDs: oxide-
S and thiophene-S.[99] The S-bonding can assist in
altering different physicochemical properties. S-doping
provides an extra electronic transition and an add-
itional energy level (p ! p�) on carbon.[99] In this
regard, heteroatom-doping can reduce charge carrier
recombination, increase grain size, enhance optical
properties, and improve the morphology of graphene
materials, resulting in enhanced device performance.

6.2. Graphene hybrid materials

6.2.1. Perovskite oxide (ABO3)/graphene
nanocomposites

In order to improve the photocatalytic performance of
graphene, it has been fabricated into composites with
other materials.[100] For instance, perovskite oxides
are known to enhance the catalytic performance,
mechanical flexibility, dielectric properties and ductil-
ity of materials, as well as reduce electron-hole recom-
bination.[101] Graphene materials have attractive
physical and chemical properties that could provide a

Figure 8. Different configurations of P species on RGO sheet,
showing C (gray), P (blue) and O (red). Adapted with permis-
sion.97 Copyright 2017, Elsevier.

Figure 9. The sulfur doping of graphene. Adapted with permission.101 Copyright 2017, Elsevier.
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synergistic effect (Figure 10) to perovskite oxides and
provide an electrochemically active center with gra-
phene, serving as a support.[102] Both graphene and
perovskite atoms can form the interfacial covalent
bond, which can act as the electron transfer connector
between the two and can improve the catalytic per-
formance of the composites.[102] Similarly, the ligand
effect on the interface can alter the electronic struc-
ture to facilitate electron transfer.[103]

Perovskite oxides such as BiFeO3 have a good
narrow bandgap of about 1.8 to 2.2 eV, making them
suitable for solar cell applications.[61,104] The com-
bination of perovskite oxides and graphene-based
materials enhances the electron-donating capability
and reduces the recombination of the photogener-
ated charges. Correspondingly, the addition of gra-
phene to a perovskite oxide acts as a highly
conductive interfacial layer support that promotes
electrical conductivity.[60,62]

Sun et al.[105] synthesized a superparamagnetic iron
sillenite (Bi25FeO40)-graphene composite for use as a
photocatalyst through a one-step hydrothermal
method. A larger surface area of SBET ¼ 59.0m2 g�1

was obtained for the Bi25FeO40-graphene composite
compared with bismuth ferrite (BiFeO3) of SBET ¼
3.6m2 g�1.[106] The high surface area was able to
improve the adsorption sites and reduce e-/hþ recom-
bination. Fe-based perovskite oxides absorb visible
light due to the presence of Fe, which can work well
with solar cells because of the abundance of visible
light in the solar spectrum.[105]

Nayak et al.[107] reported the sol-gel synthesis of a
BiFeO3-graphene nanocomposite calcined at 500 �C.
They obtained BiFeO3 nanoparticles with a large
100� 200 nm diameter on a graphene sheet.

However, they observed the presence of impurity
phases such as Bi25FeO40. The disadvantage of the
sol-gel method is the post-treatment of the products
and the formation of by-products.[108] Hu et al.[109]

reported the synthesis of a graphene-Bi2Fe4O9 com-
posite using a one-pot co-precipitation method at
95 �C. Using Fourier-transform infrared spectroscopy
(FTIR) analysis, they observed the composite to be
chemically bonded through Bi-O-C or Fe-O-C bonds.
The co-precipitation method assisted in producing
small particle sizes of 5 nm with enhanced physico-
chemical properties, although the reaction was multi-
step.[110] Nevertheless, co-precipitation is the tech-
nique mostly used to produce controlled sizes of
nanoparticles of less than 10 nm.[111]

Meanwhile, Cao et al.[112] utilized an in situ solvo-
thermal method to synthesize cobalt tin oxide
(CoSnO3)/graphene (space group Pn3m) calcined at
300 �C. This method gave rise to impurities, such as
CoSnO4 and SnO2, instead of pure CoSnO3, resulting
from side-reactions. Finally, Li et al.[113] reported the
simple synthesis of RGO-BiFeO3, as illustrated in
Figure 11. Their study revealed the change of energy
bandgap from 3.2 eV, for BiFeO3, to 2.5 eV, for RGO-
BiFeO3, which was lowered by introducing RGO.
They obtained enhanced magnetic and optical proper-
ties, thus, allowing this nanocomposite to be suitable
for use as PSC interfacial layers.

In this case, smaller particle sizes improved the sur-
face area and charge carrier transportation capability
as a desired characteristic for interfacial layers.
Furthermore, introducing graphene into perovskite
oxides can prevent agglomeration and suppress the
recombination rate, which favors charge transport by
forming a suitable band alignment.

Figure 10. The general representation of synergistic effect between graphene and perovskite atoms, as (a) ligand effect and (b)
bond formation of interfacial heterostructures. Adapted with permission.103 Copyright 2017, John Wiley and Sons.
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6.2.2. Perovskite oxides (AB2X4)/graphene
nanocomposites

Several researchers have prepared composites of gra-
phene and spinels that exhibit better photocatalytic
activities; for example, Lu et al.[114] fabricated a
ZnFe2O4-graphene composite using a one-pot solvo-
thermal reaction, and GO was automatically reduced
to graphene. They obtained ZnFeO4 with average par-
ticle sizes of 200 nm. The excellent uniform distribu-
tion of ZnFeO4 nanoparticles onto the graphene
sheets enhanced catalytic efficiency. Evidently, the sol-
vothermal technique has been found to be a suitable
low-temperature synthetic route that yields a good
distribution of nanoparticles on the support, such as
graphene.[115]

Li et al.[116] demonstrated the formation of cobalt
ferrite (CoFe2O4)-functionalized graphene by employ-
ing a hydrothermal reaction, as illustrated in Figure
12. They observed a strong interaction of the inor-
ganic salts, i.e., Fe3þ and Co3þ with –OH, and func-
tionalized graphene during the reaction process. They
noted that graphene absorbs the intermediate product,
forming graphene sheets with oxygen functionalities.
Wang et al.[117] reported the synthesis of RGO-
ZnFe2O4 nanohybrids using a one-pot hydrothermal
synthesis method. The GO was prepared by the modi-
fied Hummers method,[118] and zinc nitrate hexahy-
drate (Zn(NO2)3�6H2O), and iron(III) nitrate
nonahydrate (Fe(NO3)3�9H2O) were used as the pre-
cursor materials. They concluded that the RGO-
ZnFe2O4 nanocomposite has more effective active sites
that increase the catalytic activity of the material than
ZnFe2O4 alone. In essence, the hydrothermal method
is one of the techniques that require a low tempera-
ture for a synthesis with good reproducibility.[113]

The formation of perovskite oxides/graphene nano-
composites can be characterized using various techni-
ques. The obtained nanocomposites can be dependent
on the morphology, chemical composition and par-
ticle sizes. When Lu et al.[114] prepared ZnFe2O4-gra-
phene using a one-pot solvothermal reaction, they
examined the composition and crystalline nature of
the nanocomposites using powder X-ray Diffraction
(XRD). They further observed a shift in the diffraction
angle from 10.6� (002) to 21.2� (002), as well as the
conversion of GO to crystalline graphene after the
deposition of ZnFe2O4 particles onto the graphene
surface. On using scanning electron microscopy
(SEM) and transmission electron microscopy (TEM)
to analyze the morphology and microstructure of
CoFe2O4-functionalized graphene sheet nanocompo-
sites, Li et al.[116] observed the CoFe2O4 nanoparticles
to be well distributed on the graphene sheets with
particles sizes of 10� 40 nm, which led to a high sur-
face area. In this case, graphene-based materials have
been considered as the best support for perovskite
oxides and metal nanoparticles.

7. Application of graphene-based materials
and perovskite oxides as interfacial layers
of PSCs

Graphene-based materials have been used as inter-
facial layer material in solar cells. This section high-
lights specific graphene materials incorporated into
perovskite solar cells.

7.1. Graphene nanocomposites

Several authors have demonstrated that different
derivatives of graphene materials can enhance the

Figure 11. The simple mechanism of preparing RGO/BiFeO3. Adapted with permission.114 Copyright 2013, Elsevier.
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stability and performance of PSCs.[75,119,120] Agresti
et al.[121] designed a PSC with GO-lithium (Li) as an
interlayer, situated between the perovskite harvester
and TiO2. They observed an improved device effi-
ciency due to the enhanced electron extraction and
injection capabilities of their device. The addition of
Li to GO promoted the transfer of charges from Li to
GO, resulting in a Fermi level shift, and a smaller
work function. The results obtained revealed the
enhancement in fill factor (FF) and on the short-cir-
cuit current density (Jsc) with reduced hysteresis, as
shown in Figure 13(a) and (b).

In an attempt to suppress charge carrier recombin-
ation, Nouri et al.[122] prepared PSCs with Li-GO/
TiOx as the ETL, and GO/nickel oxide (NiO) as the
HTL, and they were able to obtain PCEs of up to
11.2%. They observed that the presence of graphene
derivatives, on both sides as interfacial layers of the
device, could protect the perovskite layer from humid
conditions and exposure to moisture. A similar trend

was observed by Sahin et al.,[123] when they used
modified-GO as the buffer layer to assist in reducing
charge carrier recombination in their device. GO as
the buffer layer has been observed to decrease current
leakage and reduce charge recombination, which sub-
sequently improves the Jsc and PCE of PSCs.
Mahmoudi et al.[124] prepared perovskite/Ag-RGO as
an ETL for PSC devices. They observed an enhance-
ment in charge transport upon the introduction of
graphene due to its excellent electrical conductivity.
Wang et al.[125] also prepared a graphene-TiO2 nano-
composite as an ETL, and their device showed
improved FF and Jsc, with a PCE of about 15.6%.
They noted that graphene forms excellent electrical
contacts with TiO2, while maintaining a high electrical
conductivity, allowing graphene to serve as an excel-
lent electron acceptor and collection material. Shen
et al.[126] prepared a device using GQDs/TiO2 with a
PCE of 20.5%. This resulted from the excellent elec-
tron extraction, reduced series resistance and high Jsc.

Figure 12. Schematic diagram of the CoFe2O4/functionalized graphene mechanism. Adapted with permission.117 Copyright
2011, Elsevier.

Figure 13. A typical photovoltaic characteristics, i.e., (a) dark I-V characteristics and (b) J-V curves of the device with GO. Adapted
with permission.122 Copyright 2016, John Wiley and Sons.
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Xie et al.[127] fabricated a device with SnO2-GQD and
obtained an average PCE of 20.2%. Good performance
on the device was obtained as a result of a decrease in
the recombination rate and efficient electron transpor-
tation with reduced hysteresis. GQDs provide segre-
gated trap sites when incorporated with SnO2, thus,
act as localized reservoirs that decrease the recombin-
ation rate and enhance electron mobility.

Redondo-Obispo et al.[128] fabricated inverted PSCs
by doping PEDOT:PSS with graphene. They demon-
strated that the incorporation of graphene into
PEDOT:PSS helps improve the electrical conductivity
ten times without affecting the optical transmittance.
In addition, spiro-OMeTAD is a volatile material,
making devices that use it easily exposed to moisture.
Yeo et al.[129] applied RGO-spiro-OMeTAD as the
HTL for PSCs, and obtained an enhanced PCE of
10.8%. They observed that the presence of RGO
improved the device performance and stability
because of the enhanced electrical conductivity and
low recombination rate of the photogenerated charges,
coupled with the excellent stability of RGO. In this
regard, graphene-based materials as an interfacial layer
can help to improve the stability, while lowering the
charge carrier recombination rate and further improv-
ing the Jsc, which improves the device performance. A
summary of the reported applications of graphene-
based materials as interfacial layers in PSCs is shown
in Table 1.

7.2. Heteroatom-doped graphene nanocomposites

Heteroatom doping can have an effect on altering the
electronic properties of graphene. Hong et al.[130] fab-
ricated a PSC with SnO2-nitrogen-doped graphene
oxide (NGO) as an ETL, as illustrated in Figure 14(a).
They obtained a high PCE of 16.5% with an enhanced
Voc and Jsc, when compared with a PCE of 15.4%

obtained with SnO2 alone, as shown in Figure 14(b).
The high performance of their devices was ascribed to
the low recombination rate, efficient charge extraction
and higher electrical conductivity. Chandrasekhar
et al.[131] prepared a PSC with nitrogen-doped
graphene(NG)/ZnO nanorod composite ETL and
obtained a PCE of 16.8%, compared with 12.9% for
pristine ZnO nanorods. The enhanced PCE was attrib-
uted to the relatively high surface area and improved
crystallinity of NG/ZnO composite when compared
with pristine ZnO. Bi et al.[132] reported a device with
N-doped graphene/fullerene derivative phenyl-C61-
butyric acid methyl ester (G-PCBM) as an electron
extraction layer and obtained an initial PCE of 15.6%.
The use of PCBM with G formed a good Ohmic con-
tact of G-PCBM with a metal electrode, resulting in
higher electrical conductivity and reduced hysteresis.
They noted that the increase in the concentration of
G was related to an increase in the grain size and
crystallinity of the perovskite harvester.

Duan et al.[133] employed a B-doped graphene HTL
in a PSC device and obtained a PCE of 13.6%. Their
device demonstrated an improvement in hole extrac-
tion, which shielded the perovskite layer as the har-
vester, resulting in an improved FF and Voc.

[133]

Selvakumar et al.[90] replaced the high-cost spiro-
OMeTAD HTL with B-RGO, which resulted in PSCs
with a relatively high PCE of 9.0%. In the presence of
B, both Jsc and Voc were improved, which resulted in
an enhanced efficiency. A similar trend of enhanced
efficiency was observed when B was doped onto gra-
phene by Fang et al.[134] In this regard, doping B onto
graphene (by replacing C with B) enhances the work
function, conductivity and charge extraction; thus,
improving the device performance. Kim et al.[135] syn-
thesized a stable device from N-doped GO nanorib-
bons as HTLs, and obtained an enhanced PCE of
12.9%. The study obtained a low current hysteresis

Figure 14. The (a) SEM cross-section of the prepared PSC with SnO2:NGO and (b) J-V curves with the best performing nanocom-
posites. Adapted with permission.146 Copyright 2020, American Chemical Society.
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and improved stability when GO was doped with N.
Also, the introduction of N reduced the recombin-
ation rate, increased the grain size, enhanced the
optical properties and improved the morphology fea-
tures of graphene, resulting in enhanced device per-
formance. On the other hand, the co-doping of N and
S onto GQDs as NSGQDs has been explored by Chen
et al.,[136] and they obtained a high PCE of 19.2%.
The use of NSGQDs as an ETL promoted charge sep-
aration and reduced the recombination rate, while
good stability and proper band alignment were
observed between the HTL and perovskite harvester
when NSGQDs HTLs were used.

7.3. Perovskite oxides

With low-cost, high PCE and long-term stability,
PSCs are favorable for good ETLs and HTLs. In add-
ition, PSCs have good resilience toward moisture, heat
and light, and excellent electrical properties.[137] So
far, TiO2 has been the commonly used ETL in PSCs;
however, its use is being limited by poor electron
mobility.[138] Zhu et al.[138] prepared a mesoporous
BaSnO3 ETL with an enhanced PCE of 12.3% com-
pared to 11.1% for TiO2. Their findings noted that
BaSnO3 has a matching energy level with the light
harvester, i.e., CH3NH3PbI3, which promotes electron
extraction and transportation. Also, they noted that
BaSnO3 has a high electron mobility, which results in
efficient charge collection. Bera et al.[139] employed
mesoporous SrTiO3 with an average particle size of
230 nm, as an efficient ETL in hybrid PSCs.
Increasing the loading thickness of SrTiO3 from 200
to 350 nm provided good band alignment with the
perovskite layer, resulting in relatively high Voc, Jsc
and FF. This, in turn, resulted in PSCs with a PCE of

7.55%, which was slightly lower than 7.80% for meso-
porous TiO2.

Limited studies have reported the use of perovskite
oxides as HTLs in PSCs. For example, Yang et al.[140]

fabricated PSCs using ferroelectric PbTiO3 as the HTL
material. They noted an increase in PbTiO3 particle
sizes to more than 10 nm and HTL thickness from 1
to 10 nm when the Pb(OAc)2 concentration was
increased from 0.01 to 0.1M. This gave rise to PSCs
with a high PCE of 16.37%, which was attributed to
the suppression of non-radiative recombination.
However, HTLs prepared using perovskite oxides only
still experience relatively high charge carrier recom-
bination rates. Thus, integrating graphene with per-
ovskite oxides would be a better choice to minimize
charge carrier recombination.

7.4. Perovskite oxide/graphene nanocomposites

Few studies have reported perovskite oxide/graphene
nanocomposites, particularly applied as interfacial
layers in PSCs, even though these nanocomposites
have great potential in this field. PSCs can easily suf-
fer from the recombination of charge carriers and can
be easily degraded by moisture, which in turn reduces
the PCE and stability of devices. The combination of
p-conjugated graphene materials and perovskite
oxides containing Fe can narrow the energy bandgap
to produce a redshift and collect solar radiation in a
wider spectral range.[141] Wang et al.[142] prepared an
effective ETL consisting of graphene/SrTiO3 nanocom-
posites and obtained a PCE of 10.0%. They observed
that the presence of the nanocomposites reduced the
recombination rate and enhanced the absorption of
light. Mamoudi et al.[124] also designed a highly stable
device with SrTiO3/Al2O3-graphene as an ETL. They
observed a high PCE of up to 20.6%, as shown in

Figure 15. (a) J-V characteristics and (b) IPCE spectra of various materials preparing PSC devices. Adapted with permission.125
Copyright 2019, John Wiley and Sons.
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Figure 15. The use of SrTiO3 contributed to a smaller
band offset, which resulted in an excellent collection
of photogenerated electrons from the perovskite layer.
The use of graphene-based materials to form nano-
composites resulted in highly conductive ETLs, which
had excellent electron mobility, charge extraction and
balance of charge carriers. The graphene-based mate-
rials also enhanced the Jsc and open-circuit voltage
(Voc) of the PSCs due to their faster electron accept-
ing capability. Hence, incorporating graphene onto
perovskite oxides can improve electron transport, and
increase the electrical conductivity charge carrier
mobility, thereby enhancing the PCE performance of
PSCs. Therefore, perovskite oxide/graphene nanocom-
posites as HTLs of PSCs still need further research to
be conducted in the future.

8 Conclusion and outlook

In conclusion, different graphene-based materials have
been investigated as interfacial layers of PSCs. The
PSCs can be used as a renewable energy system to
harness sunlight and generate electricity without pol-
luting the environment. The use of typical metal
oxides, such as TiO2 as ETLs, and organic HTLs, such
as spiro-OMeTAD, can cause the device to degrade
easily, and thus, lead to poor device performance.
Interestingly, the use of graphene-based materials
improves the performance of the device and offers
long-term operational stability. Also, heteroatom-
doped graphene produces n-type or p-type conductiv-
ity, altering the Fermi level and enhancing the optical
properties of graphene, thereby allowing it to function
as a substitute for the traditional metal oxide ETLs
and organic HTLs. Any distortion, such as size and
structure, on perovskite materials, can positively influ-
ence different properties, such as the electronic,
optical, magnetic and dielectric properties. Moreover,
the photogeneration of charge carriers can also be
enhanced. When preparing nanocomposites, it is
highly essential to consider the cost of materials and
environmental safety. Perovskite oxides have been
supported on graphene or doped graphene to form
hydrophobic nanocomposites that are resistant to
humidity penetration. Structures and sizes of perovsk-
ite oxides have played a considerable role in tuning
the physical and chemical properties of the desired
application. Synthetic protocols for preparing the
nanocomposites can improve the homogeneity of the
structures, reduce the synthesis time, and ensure good
reproducibility. Therefore, perovskite oxide/graphene
nanocomposites can function as good interfacial layers

with high electrical conductivity, suitable for solar cell
application. This review is envisaged to shed more
light on the advancement of perovskite solar cell
fabrications.
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