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Abstract The wide range of applications of collagen-

based materials has triggered research interest especially

on the effect of environmental factors in that these mate-

rials are exposed to during processing and application. As

the applications of these collagenous materials continue to

increase such as in the field of medicine, more studies are

required to gain more insight into their properties. Collagen

is a natural biopolymer whose structure is sensitive to

ultraviolet (UV) radiations, which alters its mechanical

properties. In this study, the influence of artificial UV

irradiations, wavelength 254 nm, on the viscoelastic

properties and dynamic viscosity of both pickled and tan-

ned hide was investigated by dynamic mechanical analysis.

The influence of tanning on the viscoelastic properties and

dynamic viscosity was also investigated. Freshly flayed

bovine hide was conventionally prepared to pickling stage

and split into two identical halves along the backline. One

half was tanned using chromium sulfate, while the other

half was left at the pickled stage. Samples of appropriate

dimensions from both the pickled and tanned hides were

cut and irradiated with artificial UV light for different time

duration of 6–30 h. The irradiated samples were then

analyzed using the DMA in the multi-frequency mode. It

was found that irradiation caused an increase in the storage

modulus (E0) of pickled hide over the entire irradiation of

6 h followed by consistent decrease up to a duration of

30 h. Tanning caused an increase in tand that consistently

decreased with the increase in the duration of irradiation. In

addition, UV irradiation caused an increase in dynamic

viscosity of pickled hide, but a decrease in tanned hide. The

results show the predominant elastic nature of bovine hides

as indicated by tand magnitudes less than a unit.

Keywords Thermal and dynamic mechanical analysis �
Bovine hide � UV radiation � Viscoelastic properties �
Dynamic viscosity � Collagen

Introduction

Bovine hide forms an important raw material for many

industries, and its applications span a wide range of fields

such as clothing, tannery, medicine, biotechnology, food

industry, among others. The main component of this hide is

collagen, which is a natural polypeptide biopolymer that

confers mechanical properties to the hide [1, 2]. Among the

26 types of collagens known, the main structural compo-

nent of animal hide and skin is type I that forms the basic

strong fibril [3]. The collagen triple helix of collagen type I

is sensitive to UV-254 nm radiation [4]. When this colla-

gen is exposed to these UV radiations, photopolymeriza-

tion in the telopeptide regions of the molecule occurs and

some energy causes local heating [4–6]. The radiations

absorbed by the collagen alter both its physical and

chemical structures [7]. The UV radiation absorption is

enhanced by the presence of aromatic groups such as tyr-

osine and phenylalanine. The photodegradation of these

residues creates free radicals that either recombine to form

crosslinks or undergo chain scission [7–9].

Owing to the growing applications of this biomaterial

and the increasing use of radiation in the fundamental

industrial processing of these materials, the investigation of
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the effects of the radiation and vulnerability of these col-

lagenous material to UV radiation was necessary [10–12].

The viscoelastic properties of these collagenous materials

have been studied [13–15]. Further, the influence of UV radi-

ation on collagen has also been investigated [7, 12, 16, 17].

However, the effect of UV radiations on the viscoelastic

properties and dynamic viscosity of bovine hide has not

been done to the best of our knowledge. This study

therefore investigated the effect of artificial UV radiations

on the storage modulus, tand and dynamic viscosity of both

pickled and tanned bovine hides using dynamic mechanical

analysis.

Materials and methods

Sample preparation

A freshly flayed bovine hide was commercially procured and

preserved by use of sodium chloride and a fungicide,

Mirecdide TC 1080 V, for 2 h to restrict bacterial and fungal

activities. The hide was prepared to the pickled condition by

conventional process. The pelt was cut into two identical

halves along the backline. One piece was tanned using

chromium sulfate and neutralized in sodium bicarbonate.

Rectangular specimens of dimensions 30 mm � 9:3 mm �
0:93 mm sampled according to the official sampling method

and sampling location ISO 2418:2002 were cut using a press

knife. The press knife cut out the specimen such that the

angle formed at the cutting edge between the internal and

external surfaces of the press knife was about 20 degrees and

the depth of the wedge of the cutting knife was greater than

the thickness of the cut leather, as illustrated in [18].

UV irradiation

The samples were irradiated in air at room temperature and

at room relative humidity with UV light of wavelength

254 nm (UV-C) and irradiance of 0.0475 Wm-2 from a

8-W UV fluorescent lamp (Model LF-204.LS) from UVI-

TEC. The lamp was positioned horizontally 15 cm away

from the sample in an aluminum shutter. Various doses of

UV irradiation were achieved by varying duration of irra-

diation from 0 h (no irradiation) to 30 h. The samples were

then conditioned in a standard atmosphere 23/50 (temper-

ature T = 23 ± 2 �C, humidity / = 50 ± 5 % R.H.) for

at least 48 h according to ISO 2419:2002 (IULTCS/IUP 3)

standards prior to testing.

Dynamic mechanical analysis

Using the DMA (Model 2980 from TA instruments), a

variable-amplitude sinusoidal mechanical stress was applied

to each of the pickled and tanned samples to produce a sinu-

soidal strain of preselected amplitude. The samples were mounted

onto the film tension clamp, and the experiment was run in the

multi-frequency mode over the frequency range 0.1–100 Hz

equilibrated at 30 �C and a heating rate of 5 �C min-1 to

270 �C in static air environment. The heating rate chosen

was the ideal rate for film tension geometry dictated by the

thickness and nature of the sample, according to the DMA

2980 manual. The parameter measured was complex mod-

ulus which was resolved into real and imaginary compo-

nents, the storage modulus (E0) and loss modulus (E00),
respectively. Storage modulus determines energy stored and

is related to the stiffness of the material representing the

elastic portion of the viscoelastic material, while loss mod-

ulus gives the dissipated energy as heat per given cycle

representing the viscous portion or plasticity of leather [19].

The ratio of energy dissipated to energy stored per cycle is

given as tand, where d is the phase angle between the stress

and strain in the oscillatory experiment and this represents

the damping or loss factor. These parameters give important

information on the bulk properties related to their functional

performance.

Results and discussion

Storage modulus (E0)

The comparison of storage moduli (E0) of non-irradiated

(control) pickled and tanned hides is illustrated in Fig. 1.

Pickled hide showed progressive increase in E0 with tem-

perature up to two distinct peaks of 1192 and 1101 MPa at

temperatures 110 and 195 �C, respectively. There was a

minimum E0 value of 820 MPa at 135 �C and a drop to

almost zero at 210 �C. Tanned hide showed a peak of

1418 MPa at 225 �C. Minimum E0 of 813 and 765 MPa

occurred at 40 and 85 �C, respectively. During the tanning,

pre-tanning processes and exposure to the atmosphere,

collagen matrix absorbs water [20]. Increase in temperature

dehydrates the collagen, making the fibrils and bundles to

come together and the structure to be more compact and

stiff, hence increasing E0 [21, 22]. Beyond the first peak,

the storage modulus decreases due to the melting of the

amorphous fraction of collagen. A further increase in

temperature causes the water molecules in collagen to

compete for energy with the hydrogen bonds that maintain

the triple-helical configuration causing the unwinding of

the triple helix (denaturation) and final formation of

localized gel in the case of pickled hide [22]. Denaturation

leads to a decrease in the storage modulus. This process has

also been referred to as melting of the native crystalline

(rigid) collagen or shrinkage of the native collagen both

denoting glass transition [14, 23]. During this melting,
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there is increased mobility of the macromolecular chains

that weaken the intra- and inter-collagen bonds, hence

decreasing the storage modulus.

The influence of UV irradiation on E0 of the pickled hide

is illustrated in Fig. 2. At temperatures lower than 110 �C,

the control sample had the lowest values of E0 compared to

the irradiated samples. However, there was a characteristic

trend such that the sample irradiated for 30 h had the

highest E0 followed by 24 h, 12 h followed by 18 h then

6 h. Higher irradiation showed significant increases in E0.
These results agree with the findings of Liu et al. [24].

Collagen amino acids possess endogenous chromophoric

sites (aromatic residues) such as tyrosine and phenylala-

nine which absorb the UV radiations in the range of 250–

300 nm [12, 25–27]. The energetic UV radiations initiate

photodegradation of these aromatic amino acids to form

crosslinks called dityrosine [12, 17, 26, 28, 29]. This

enhances the hardness and stiffness which increases the E0

[12, 30]. Further absorption of the UV radiation forms new

photoproducts such as pentosidine and pyridinoline that

add more crosslinks [9, 16]. However, the concurrent

polypeptide chain scission initiated by the UV irradiation

causes intermediate magnitudes of E0. Similarly, water

molecules in the collagen matrix split under UV irradia-

tion, forming radicals which attack peptide backbone rad-

icals (–NHC–CO–). The radicals recombine, forming

covalent bonds together with the subsequent modification

of the amine and carboxyl groups’ crosslinks and hence

increasing the storage modulus [31]. This agrees with

results obtained by [31] who attributed the intermediate

magnitudes to competing processes of peptide bond scis-

sion events arising from the free radical mechanism of the

aromatic residues donating free electrons.

The effect of UV radiation on the tanned hide is shown

in Fig. 3. The samples irradiated for 30 min, 3, 12 and 30 h

had lower storage modulus values than the control sample,

while samples irradiated for 6 and 18 h had higher E0 than

the control. Beyond 30 min, E0 increased to the highest

value at 6 through 3 h. Thereafter, the storage modulus

decreased through 12 and 18 to 30 h. From 0 to 30 min, the

decrease in E0 indicates the photodegradation of collagen

along its main chains with scission of -CH2-N= and

=CH2 bonds. It is likely due to the breaking of N-H���O=C

inter-chains hydrogen bond as well as the loss of the
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bonding water in collagen [32]. Thereafter, the E0 starts to

increase slowly to 6 h where the magnitude is highest. This

can be attributed to the crosslinking as a result of formation

of dityrosine, pentosidine and pyridinoline. Further irradi-

ation and increased absorption causes photodegradation

and photolysis that weakens the bonds and decreases the

storage modulus. Comparing Figs. 4 and 5, the trends are

different. Apart from the tyrosine, phenylalanine, pento-

sidine and pyridinoline that increase UV absorption, the

presence of chromium ions acts as synthetic polymer or

special inorganic pigment increasing absorption [33, 34].

Similarly, tanning makes the leather structure compact

lowering the percentage reflectance and increasing the

absorption. This absorption complicates further the

polypeptide crosslinking and chain scission. Absorption

coefficient is affected by hydration level owing to direct

absorption by water molecules and subsequent vaporization

[35]. At higher irradiation duration, the maximum of

absorption/scattering is almost the same. Pickled hide

behaves as undyed crust which has high reflectance of the

UV radiations that scatter the radiation, and hence their

impact on the structure is minimal [36]. Free radicals

appear in collagen water solutions under UV radiation and

evoke photodegradation of the macromolecule [37].
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tan delta (tand)

Figure 4 illustrates the influence of tanning on the tand.

Both pickled and tanned hides possess some damping

capability useful to dissipate cyclic mechanical energy

imposed on it during deformation. As it can be seen in the

figure, in the temperature range 55–165 �C, tanning

slightly increases the dissipative capability of the collagen

fibers as indicated by slightly higher tand of tanned hide

compared to pickled hide. However, this damping is higher

in pickled hide than in tanned hide at temperatures higher

than 165 �C.

Figure 5 illustrates the effect of UV irradiation on tand
of pickled hide. Although there was overlapping in tand
due to smaller values in the temperature range 35–210 �C,

there appears a characteristic trend. The tand was highest in

the specimen irradiated for 18 h, and then it decreased in

the order 12, 6, 3 h then control. In the temperature range

35–210 �C, the magnitudes of tand were \0.5, implying

the elastic nature of the hide. tand increased rapidly higher

than 210 �C, although only samples irradiated for 12 and

18 h recorded tand greater than a unit. This implies that

pickled hide is predominantly elastic in nature at these

temperatures. The viscous component is only noticed at

higher temperature when the mobility of the peptide chains

associated with the dissipation of energy in form of heat

being high [38].

The influence of UV irradiation on tand in tanned hide is

illustrated in Fig. 6. For all the samples, tand increased

rapidly at temperatures greater than 180 �C. This is due to

increased chain mobility that increases the energy dissi-

pation in the form of heat.

Dynamic viscosity

Figure 7 illustrates the effect of tanning on the dynamic

viscosity of hide. The dynamic viscosity increased in both

hides with temperature forming peaks at different temper-

atures. The initial increase in dynamic viscosity with

temperature is possibly due to the increasing hydrophobic

interactions between the collagen molecules as collagens

associate more at high temperatures [39]. With increasing

temperature, energy for heat motion of the polypeptide

chains increases and thus the resistance to segment motion

becomes weaker, leading to drop in dynamic viscosity [40].

Similarly, during melting or denaturation of the collagen,
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the triple helix of collagen collapse to a random coil with

weak intra- and inter-molecular hydrogen bonding that

holds the secondary structure of collagen [41–43]. This

leads to a decrease in the dynamic viscosity. At tempera-

tures higher than 195 �C, the dynamic viscosity of pickled

dropped continuously, while it increased rapidly in tanned

hide. This is probably due to the excess tannins that gen-

erate additional crosslinks of collagen fibrils leading to

reinforcement of the tanned hide at higher temperatures

[44]. The dynamic viscosity curves peaks in pickled hide

were sharper than those observed in tanned hide. Major

peaks in pickled hide were at 115 and 195 �C of magni-

tudes 60 and 90 MPasec, respectively, and a minimum of

45.65 MPasec at 130 �C, while at 135 �C of 45.55 MPasec

in tanned hide. Dynamic viscosity of pickled hide was

greater than that of tanned hide in the temperature range

75–205 �C. The collagen spaces created by the swelling

processes in tanned hide were filled up by the chromium

ions. This leaves little space for water absorption, and

hence the increases and the peaks in tanned hide were less

sharp and smaller.

Figure 8 illustrates influence of UV irradiation on

dynamic viscosity of pickled hide. The control sample had

the lowest dynamic viscosity followed by the sample

irradiated for 30 h with the specimen irradiated for 30 min

having the highest dynamic viscosity with a minimum of

439 MPasec and a maximum of 949 MPasec at 185 and

100 �C, respectively. All the specimens showed a distinct

common trend, whereby the dynamic viscosity reached

maximum at 90–130 �C.

The effect of UV irradiation on the dynamic viscosity of

tanned hide is illustrated in Fig. 9.

The control sample had the highest dynamic viscosity

than the irradiated samples. This implies that dynamic

viscosity decreases with irradiation. This agrees with

results from collagen studied by Sionkowska [25] and

Sionkowska et al. [16]. In both investigations, the relative

viscosity decreased with time of UV irradiation. The results

also agree with the viscosity measurements by Fathima

et al. [9] on both native and aldehydes-treated collagens.

The reduction in dynamic viscosity can be attributed to the

cleavage of peptide bonds of the rod-like triple-helical

molecule [28]. The presence of chromium ions in the

collagen matrix plays the role of synthetic polymer that

increases the absorption of UV irradiation as observed in a

study by Sionkowska [34]. Increased absorption causes
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major photodegradation and scission in the main chains and

hence weak stability that leads to decreased dynamic vis-

cosity for irradiated samples [9]. Similarly, the distinct blu-

ish color of the tanned hide is good for the absorption of UV

irradiations than the highly reflecting undyed pickled crust

that scatters leading to low impact on its structure [35]. These

results significantly correlate with those of Olle et al. [45]

whereby the chrome-tanned leather was strongly affected by

the UV radiations than the wet white leather.

Conclusions

It was found that irradiation increases the storage modulus

(E0) of pickled hide, whereas in tanned hide, irradiation

increased E0 up to maximum at 6 h followed by the con-

sistent decrease with irradiation until 30 h of irradiation. It

was observed that tanning increases the damping capability

as indicated by higher tand in tanned than in pickled hides.

The results also show the predominant elastic nature of

hides. In pickled hide, tand consistently decreased with

irradiation. Further, it was found that irradiation increases

the dynamic viscosity of pickled hide, but decreases that of

tanned hide.
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