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Abstract

We present a comparison of two variational Bayesian algo-
rithms for joint speech enhancement and speaker identifica-
tion. In both algorithms we make use of speaker dependent
speech priors which allows us to perform speech enhancement
and speaker identification jointly. For the first algorithm we
work in the time domain and in the second we work in the log
spectral domain. Our work is built on the intuition that speaker
dependent priors would work better than priors that attempt to
capture global speech properties. Experimental results using
the TIMIT data set are presented to demonstrate the speech en-
hancement and speaker identification performance of the algo-
rithms. We also measure perceptual quality improvement via
the PESQ score.

Index Terms: Speech enhancement, speaker identification,
variational Bayesian inference.

1. Introduction
Current speaker recognition systems are adversely affected by
environmental noise and mismatch between training and oper-
ation conditions. As a result a significant amount of research
continues to focus on improving the performance of speaker
identification and verification systems in real world environ-
ments where noise is unavoidable (for example see [1]).

Approaches to robust speaker recognition include the use
of robust features such as Mel Frequency Cepstral Coefficients
(MFCCs) [2, 3] and noise compensation techniques which work
in the acoustic or feature domains. Noise compensation tech-
niques in the acoustic domain include Kalman filtering. In the
feature domain, cepstral mean subtraction (CMS) is frequently
used to mitigate channel effects. Recently, methods that rely on
prior speech and interference models have been proposed [4].
Using these priors the clean speech features are estimated us-
ing Bayesian techniques. The Algonquin speech enhancement
algorithm [5, 6] and some extensions [7] apply a variational in-
ference technique to enhance noisy reverberant speech using a
speaker independent Gaussian mixture model (GMM) speech
prior in the log spectral domain.

In this work we compare two variational Bayesian (VB) in-
ference algorithms for joint speech enhancement and speaker
identification. Both techniques rely on speaker dependent
speech priors. The first algorithm is described in our earlier
work [8] and models speech as an autoregressive (AR) pro-
cess with the AR coefficients governed by a speaker dependent
GMM prior. In the second algorithm we use speaker dependent
log spectrum priors. For both models VB algorithms are derived
for inference.

2. Problem Formulation
We begin by describing the two speech models used in our
work.

2.1. Log spectral model

Here we consider the enhancement of log-spectra of observed
speech using speaker specific speech priors in the log spectrum
domain. In [9] an approximate relationship between the log
spectra of observed speech and clean speech is derived. We
assume that the clean speech is corrupted by a channel and ad-
ditive noise. We have

y[t] = h[t] ∗ s[t] + n[t], (1)

where y[t] is the observed speech, h[t] is the impulse response
of the channel, s[t] is the clean speech n[t] is the additive noise
and ∗ denotes convolution.

Taking the DFT and assuming that the frame size is of suf-
ficient length compared to the length of the channel impulse
response we get

Y [k] = H[k]S[k] +N [k],

where k is the frequency bin index. Taking the logarithm of the
power spectrum y = log |Y [:]|2 it can be shown that [9]

y ≈ s+ h+ log(1+ exp(n− h− s)) (2)

where s = log |S[:]|2, h = log |H[:]|2 and n = log |N [:]|2.
The approximate observation likelihood is given by

p(y|s,h,n) = N (y|s+h+log(1+exp(n−h−s)),ψ) (3)

where ψ is the covariance matrix of the modelling errors which
are assumed to be Gaussian with zero mean.

In this work we assume that we can mitigate channel ef-
fects using methods such as mean subtraction and concentrate
on mitigating the effects of additive distortion. In this case the
observation likelihood becomes

p(y|s,n) = N (y|s+ log(1+ exp(n− s)),ψ).

To complete the probabilistic formulation we introduce priors
over s and n. For a given speaker � the prior over s is given by

p(s|�) =
Ms∑
m=1

πs
�mN (s;μs

�m,Σs
�m) (4)

where � ∈ L = {1, 2, . . . , |L|} with L being the library of
known speakers.
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We find it analytically convenient to introduce an indicator
variable zs that is a Ms|L| × 1 random binary vector that cap-
tures both the identity of the speaker and the mixture coefficient
‘active’ over a given frame. We have

p(s|zs) =
Ms|L|∏
i=1

[
N (s;μs

i ,Σ
s
i )
]zs,i

, (5)

and

p(zs) =

Ms|L|∏
i=1

(πs
i )

zs,i . (6)

We assume that the noise is well modelled by a single Gaus-
sian. That is

p(n) = N (n;μn,Σn). (7)

We can now write the joint distribution of this model as

p(y, s, zs,n) = p(y|s,n)p(s|zs)p(zs)p(n). (8)

Inference in this model is complicated due to the nonlinear like-
lihood term. To allow us to derive a tractable variational infer-
ence algorithm we linearize the likelihood as in [5, 6].

Let g([s,n]) = log(1+exp(n− s)). We linearize g(.) us-
ing a first order Taylor series expansion about the point [s0,n0].
We have

g([s,n]) ≈ g([s0,n0]) +∇g([s0,n0])([s,n]− [s0,n0]) (9)

And the linearized likelihood is

p̂(y|s,n) = N (y|s+ g([s0,n0]) +G([s,n]− [s0,n0]),ψ)
(10)

Where G = [Gs,Gn]
def
= ∇g([s0,n0]) with

Gs = diag
[ − exp(n1

0 − s10)

1 + exp(n1
0 − s10)

, . . . ,
− exp(nN

0 − sN0 )

1 + exp(nN
0 − sN0 )

]

Gn = diag
[ exp(n1

0 − s10)

1 + exp(n1
0 − s10)

, . . . ,
exp(nN

0 − sN0 )

1 + exp(nN
0 − sN0 )

]

where N is the dimension of the Log-spectrum feature vector.

2.2. AR model

Here we model speech as a time varying autoregressive (AR)
process of order P . For a given block k of speech samples
sk = [sk1 , . . . , s

k
N ]T we have (the speech signal is divided into

K segments)

skn =

P∑
p=1

ak
ps

k
n−p + εkn = akT skn−1 + εkn (11)

where skn = [skn, . . . , s
k
n−P+1]

T , ak = [ak
1 , . . . , a

k
P ]

T and

εkn ∼ N (εkn; 0, (τ
k
ε )

−1). The signal observed at the microphone
is given by

rkn = skn + ηk
n (12)

where ηk
n ∼ N (ηk

n; 0, (τ
k
η )

−1) is additive white Gaussian noise

with precision (inverse variance) τk
η . For more details about the

probabilistic formulation refer to our earlier work [8].

3. Variational Bayesian Inference
Now that we have described the probabilistic models, we can
derive the VB algorithm for both models. Here we focus on the
log spectral model, details for the AR model can be found in
our earlier work [8].

In variational Bayesian inference, we seek an approxima-
tion q(Θ) to the intractable posterior p(Θ|y) over the model
parameters Θ which minimizes the Kullback-Leibler (KL) di-
vergence between q(Θ) and p(Θ|y) with q(Θ) constrained to
lie within a tractable approximating family (in the log specral
case Θ = {s, zs,n}). The KL divergence D(q||p) is a measure
of the distance between two distributions and is defined by

D(q||p) =
∫

q(Θ) log
q(Θ)

p(Θ|y)dΘ.

To ensure tractability, the approximating family is selected
such that the approximate posterior can be written as a product
of factors depending on disjoint subsets of Θ = {θ1, . . . , θM}
[10, 11]. Assuming that each factor depends on a single element
of Θ then

q(Θ) =
M∏
i=1

qi(θi). (13)

It can be shown that the optimal form of qj(θj) denoted by
q∗j (θj) that minimizes D(q||p) is given by [11]

log q∗j (θj) = E{log p(y,Θ)}q(Θ\j) + const. (14)

We use the notation q(Θ\j) to denote the approximate posterior
of all the elements of Θ except θj . We obtain a set of coupled
equations relating the optimal form of a given factor to the other
factors. To solve these equations, we initialize all the factors and
iteratively refine them one at a time using (14).

3.1. Approximate Posterior

Returning to the context of the log spectral model, we assume
an approximate posterior q(Θ) that factorizes as follows

q(Θ) = q(s)q(zs)q(n).

Using (14) we obtain expressions for the optimal form of the
factors. We obtain

1.

q∗(s) = N (s;μ∗
s ,Σ

∗
s) (15)

with

Σ∗
s =

[
ψ−1 +GT

s ψ
−1Gs +ψ

−1Gs

+ Gsψ
−1 +

Ms|L|∑
i=1

γiΣ
s−1
i

]−1

μ∗
s = Σ∗

s

[
(I+GT

s )ψ
−1(y − g([s0,n0])

− Gnμ
∗
n +Gss0 +Gnn0)

+

Ms|L|∑
i=1

γiΣ
s−1
i μs

i

]

2.

q∗(n) = N (n;μ∗
n,Σ

∗
n) (16)

398

Authorized licensed use limited to: Dedan Kimathi University of  Technology. Downloaded on November 23,2022 at 08:05:09 UTC from IEEE Xplore.  Restrictions apply. 



with

Σ∗
n =

[
GT

nψ
−1Gn +Σ−1

n

]−1

μ∗
n = Σ∗

n

[
GT

nψ
−1(y − μ∗

s − g([s0,n0])−Gsμ
∗
s

+ Gss0 +Gnn0) +Σ−1
n μn

]

3.

q∗(zs) =
Ms|L|∏
i=1

(γi)
zs,i (17)

where
γi =

ρi∑Ms|L|
i=1 ρi

and

log ρi = −1

2
(μ∗

s − μs
i )

TΣs−1
i (μ∗

s − μs
i )

− 1

2
log |Σs

i | − 1

2
Tr(Σs−1

i Σ∗
s) + log πs

i .

3.2. The VB Algorithm

To run the algorithm, the observed utterance is divided into K
frames and each frame is enhanced. The linearization point is
critical to the performance of the algorithm. As in [5, 6] we
linearize the likelihood at the current estimate of the posterior
mean [μ∗

s ,μ
∗
n]. The overall algorithm is summarized in algo-

rithm 1.

for k = 1, . . . ,K do
Initialize the posterior distribution parameters
{μ∗

s ,Σ
∗
s ,μ

∗
n,Σ

∗
n, γi};

for n = 1 to Number of Iterations do
Set [s0,n0] = [μ∗

s ,μ
∗
n];

Compute G = [Gs,Gn] and g([s0,n0]);
Update {μ∗

s ,Σ
∗
s ,μ

∗
n,Σ

∗
n} using (15)-(16);

Update γi using (17);
end

end
Algorithm 1: VB algorithm

4. Experimental Results
In this section we present experimental results that verify the
performance of the algorithms and compare their performance
in terms of speech enhancement and speaker identification. For
the simulations we use the TIMIT database which contains
recordings of 630 speakers drawn from 8 dialect regions across
the USA with each speaker recording 10 sentences. The sam-
pling frequency of the utterances is 16kHz with 16 bit resolu-
tion. In order to train the speaker models we used 8 sentences
and used the other 2 for testing. We assume an AR order of
8 with 8 mixture coefficients. To obtain training data for the
AR models we divide the speech into 32ms frames and com-
pute the AR coefficients corresponding to these frames using
the Levinson-Durbin algorithm. We then use the EM algorithm
to determine the GMM parameters. Log spectra are generated
every 10ms using a 25ms window which corresponds to 400
samples at 16kHz. The FFT length is 512 resulting in a fea-
ture vector of length 257. Using the feature vectors extracted
from training speech, we train speaker GMMs with 8 mixture

coefficients. We also train speaker models using Mel Frequency
Cepstral Coefficients (MFCCs) for identification. Here we use
13 coefficients obtained from 32ms frames with 50% overlap.
Speaker GMMs are trained using the EM algorithm with the
number of mixtures set at 32.

As with any iterative algorithm, initialization is very impor-
tant and it affects the quality of the final solution. In our exper-
iments, the following initialization scheme was found to work
well: We initialize the posterior mean of the speech log spec-
trum to the log spectrum of the noisy speech frame. The poste-
rior covariance of the speech log spectrum was initialized as the
identity matrix. We initialize the posterior mean of the noise
log spectrum to the all zero vector. The posterior covariance
of the noise log spectrum was initialized as the identity matrix.
Finally we initialize the parameters of q(zs) as γi =

1
Ms|L| .

For our experiments, the algorithm was run for 5 iterations
and the posterior mean of the speech log spectrum at the final
iteration was used as the enhanced log spectrum of that frame.
From the enhanced log spectrum we derive the spectral magni-
tude and derive the corresponding speech using the noisy phase.
The enhanced speech is used to measure the speech enhance-
ment performance. To quantify the algorithm’s enhancement
performance we measure the input and output SNR. If s, r and ŝ
denote the clean, noisy and enhanced signals respectively, then
the input and output SNRs are defined as

SNRin = 20 log
‖s‖

‖s− r‖ , SNRout = 20 log
‖s‖

‖s− ŝ‖ .

We also derive MFCCs from the enhanced log spectra and use
these to determine speaker identification performance.

The VB-AR algorithm is ran as described in [8, algorithm
1]. From the enhanced speech we compute the SNR improve-
ment and derive MFCCs for identification.

We now present enhancement and identification results for
all the test utterances in a library averaged over 100 random
libraries of four speakers drawn from the TIMIT database.
We performed experiments to investigate the average SNR im-
provement and speaker identification rates as a function of in-
put SNR. Figure 1 shows the SNR improvement (SNRout −
SNRin) versus input SNR while figure 2 shows the identifi-
cation rates averaged over 100 random sets of four speakers
each. We compare the SNR improvement of our algorithm to
the SNR improvement obtained using the Ephraim-Malah en-
hancement algorithm [12] and using a Kalman smoother when
the true AR coefficients are assumed known. The latter provides
an upper bound to the performance of our VB-AR algorithm.
We compare the identification rates of the algorithms to those
obtained when 1) MFCCs are obtained from the noisy signal
and 2) MFCCs are obtained from the Ephraim-Malah enhanced
signal.

We are also interested in the perceptual quality of the
speech enhanced using our algorithms. To this end we evalu-
ate the Perceptual Evaluation of Speech Quality (PESQ) score
of the enhanced utterances. The PESQ score is highly corre-
lated to the mean opinion score (MOS) which is a subjective
measure of speech quality [13]. To evaluate the MOS, listeners
are asked to rate speech quality on a scale ranging from 1 to 5
with 1 being the worst and 5 the best [13]. In our experiments
60 files corrupted at input SNRs ranging from 0-10 dB were en-
hanced using our algorithms and Ephraim-Malah. For each file
we compute both the input and output PESQ score. Figure 3
shows the PESQ scores and best-fit lines for our algorithms and
Ephraim-Malah.
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Figure 1: SNR improvement versus input SNR.

Figure 2: Speaker identification versus input SNR.

5. Discussion and Conclusions
From the experimental results presented in the previous sec-
tion we see that both the AR and log spectral algorithms im-
prove speaker identification performance and enhance the noisy
speech. From figure 1 we see that the VB-AR algorithm out-
performs Ephraim-Malah by approximately 1 dB over the input
SNR range of -5 to 10 dB. Also at 0 and 5 dB the SNR impov-
ement obtained by the VB-AR algorithm is within 1 dB of the
performance obtained when the true AR coefficients are known.

Of the two VB algorithms, the AR algorithm outperforms
the log spectral algorithm in both enhancement and identifica-
tion. This could be due to the non linearity introduced by work-
ing in the log spectral domain and difficulty in learning accurate
speaker models in this domain.

From figure 2 we see that the VB-AR algorithm outper-
forms Ephraim-Malah in terms of identification rate by up to
approximately 5% at 0 and 5 dB. Both VB algorithms outper-
form noisy MFCCs at all SNRs considered and this confirms
that the algorithms improve identification performance in noisy
environments. From the PESQ scores, we see that the percep-
tual quality of the enhanced speech is improved with the VB-
AR algorithm outperforming both Ephraim-Malah and the VB-
log spectral algorithm.

Figure 3: Comparison of perceptual quality performance.
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