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Abstract- This paper presents a feature domain approach 
to the problem of robust speaker verification in noisy acoustic 
environments. We derive a variational Bayesian algorithm that 
enhances the log spectra of noisy speech using speaker dependent 
priors. This algorithm extends prior work by Frey et aL where 
the Algonquin algorithm was introduced to enhance speech 
log spectra in order to improve speech recognition in noisy 
environments. Our work is built on the intuition that speaker 
dependent priors would work better than priors that attempt to 
capture global speech properties. Experimental results using the 
TIMIT data set and the MIT Mobile Device Speaker Verification 
Corpus (MDSVC) are presented to demonstrate the algorithm's 
performance. 

Index Terms- Speaker verification, variational Bayesian infer­
ence. 

I. INTRODUCTION 

The performance of speaker verification systems is affected 
by noise and mismatch between training and operating condi­
tions. Therefore, systems that are robust to noise continue to 
be of interest (for example see [1]). 

There are two main approaches to noise robust speaker 
recognition namely the model-domain approach and the 
feature-domain approach [2]. In the model-domain approach, 
speaker models are adapted to account for the various acoustic 
environments in which the system will be used [3]. Another 
model-domain approach involves training different models for 
different acoustic conditions. In [1] the authors present a 
system based on multicondition training where the speaker 
models are derived from speech distorted by different types 
of noise at various signal-to-noise ratios (SNRs). 

In the feature domain approach, the speech or features 
derived from the speech such as log spectral parameters are 
enhanced to mitigate the effects of noise on the features. 
Speech enhancement is an important area of research and there 
are a number of techniques such as spectral subtraction and 
statistical model based speech enhancement algorithms [4]. 
Cepstral mean subtraction (CMS) and RASTA processing are 
frequently used to mitigate channel effects in the log spectral 
domain [5]. However, these techniques fail to exploit any prior 
information about the features. Recently, methods that rely 
on prior speech and interference models have been proposed 
[6], [7]. Using these priors, the clean speech features are 
estimated using Bayesian techniques. The Algonquin speech 
enhancement algorithm [8], [9] and some extensions [10], [11], 
[2] apply a variational inference technique to enhance noisy 

reverberant speech using a speaker independent mixture of 
Gaussians speech prior in the log spectral domain. 

Another feature domain approach that has recently received 
significant attention is nuissance attribute projection (NAP) 
which was originally developed for use in support vector 
machines[12]. Recent work has extended NAP for use in fea­
ture compensation [13]. Here, the space in which the features 
live is assumed to contain a smaller subspace of nuissance 
attributes due to noise and channel distortion. A projection 
matrix applied to the observations can zero components in the 
direction of the nuissance space. This is similar to the approach 
introduced by Kenny et al. [14], [15] which is a model-domain 
technique. Here the means of a background Gaussian mixture 
model are adapted at enrollment time to determine the speaker 
dependent means. The technique is similar to the classical 
maximum a posteriori (MAP) adaptation technique used in 
state of the art speaker verification systems and is known 
as eigenvoice MAP. In eigenvoice MAP, the background 
model means are modified using a linear combination of the 
eigenvoice vectors which span the speaker space. 

In this work we extend the Algonquin speech enhancement 
algorithm to use speaker dependent log spectrum priors and 
derive a variational Bayesian algorithm for inference. In addi­
tion to cleaning features in a manner that bears resemblance 
to Algonquin, our novel algorithm tackles the problem of 
performing speaker verification jointly with enhancing the 
speech. This allows speaker specific model information to 
be utilized to help clean the speech. In our earlier work, an 
acoustic domain variational Bayesian (VB) speech enhance­
ment algorithm was derived which relied on speaker dependent 
speech priors in the autoregressive parameter domain [16]. Mel 
Frequency Cepstral Coefficients (MFCCs) obtained from the 
enhanced speech were shown to improve speaker identification 
in noisy acoustic environments. In this work, we enhance 
the log spectra using speaker dependent priors since the log 
spectra are 'closer' to the MFCC domain which is the most 
desirable domain for speaker recognition. 

Variational inference methods have emerged as a powerful 
class of approximate inference techniques. In this approach 
inference is viewed as an optimization problem where an ap­
propriate cost function is minimized [17]. Variational Bayesian 
inference [18], belief propagation (BP) and expectation prop­
agation (EP)[19] fall in this category. 

Variational Bayesian methods have been successfully ap­
plied to several signal processing problems such as source 
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separation [20] and parameter estimation [21]. This provides 
motivation for the work presented here where variational 
Bayesian (VB) techniques are used to improve speaker ver­
ification performance in noisy environments. 

The rest of the paper is organized as follows. In section 
II we present the problem formulation and characterize the 
joint distribution of the parameters and observations in our 
model. In section III we give a brief introduction to variational 
Bayesian inference and present the variational approximation 
to the true posterior. Experimental results on the TIMIT data 
set and the MIT Mobile Device Speaker Verification Corpus 
are presented in section IV. Section V presents a discussion 
and concludes the paper. 

II. PROBLEM FORMULATION 

We consider the enhancement of log-spectra of observed 
speech in order to improve the performance of speaker ver­
ification systems by using speaker specific speech priors in 
the log spectrum domain. In [22] an approximate relationship 
between the log spectra of observed speech and clean speech 
is derived. We assume that the clean speech is corrupted by a 
channel and additive noise. We have 

y[t] = h[t] * s[t] + n[t], (1) 

where y[t] is the observed speech, h[t] is the impulse response 
of the channel, s[t] is the clean speech n[t] is the additive noise 
and * denotes convolution. 

Taking the DFT and assuming that the frame size is of 
sufficient length compared to the length of the channel impulse 
response we get 

Y[k] = H[k]S[k] + N[k], 
where k is the frequency bin index. Taking the logarithm of 
the power spectrum y = log IY[:W it can be shown that [22] 

y � s + h + log(l + exp(n -h -s)) (2) 

where s = log IS[:]I2, h = log IH[:J12 and n = log IN[:JI2. 
The approximate observation likelihood is given by 

p(yls,h,n) =N(yls+h+log(l+exp(n-h-s)),-zt,) (3) 

where -zt, is the covariance matrix of the modelling errors 
which are assumed to be Gaussian with zero mean. 

In this work we assume that we can mitigate channel effects 
using methods such as mean subtraction and concentrate on 
mitigating the effects of additive distortion. In this case the 
observation likelihood becomes 

p(yls, n) = N(yls + log(l + exp(n -s)), -zt,). 
To complete the probabilistic formulation we introduce priors 
over sand n. For a given speaker J! the prior over s is given 
by 

Ms 
p(slJ!) = L 7rlmN(s; J.Lem' �em) (4) 

m=l 
where J! E £ = {I, 2, ... ,I£I} with £ being the library of 
known speakers. 

We find it analytically convenient to introduce an indicator 
variable Zs that is a Ms 1£1 x I random binary vector that 
captures both the identity of the speaker and the mixture 
coefficient 'active' over a given frame. We have 

and 

MslCI 
p(slzs) = II [N(s; J.L�, �n rS,i, (5) 

i=l 

MslCI 
p(zs)= II (7rnZs,i. 

i=l 
(6) 

We assume that the noise is well modelled by a single 
Gaussian. That is 

p(n) = N(n; J.Ln, �n). (7) 

This simplifies the derivation of the posterior and is sufficient 
for the noise types considered here. Extension to the Gaussian 
mixture model case is straightforward. 

We can now write the joint distribution of this model as 

p(y, s, zs, n) = p(yls, n)p(slzs)p(zs)p(n). (8) 

Inference in this model is complicated due to the nonlinear 
likelihood term. To allow us to derive a tractable variational 
inference algorithm we linearize the likelihood as in [8], [9]. 

Letg([s,n]) = log(l+exp(n-s)). We linearizeg(.) using 
a first order Taylor series expansion about the point [so, no]. 
We have 

g([s, n]) � g([so, no]) + V'g([so, no])([s, n]-[so, no]) (9) 

And the linearized likelihood is 

fJ(yls, n) = N(yls + g([so, no]) + G([s, n] -[so, no]),-zt,) 
(10) 

Where G = [Ga, Gn] � V'g([so, no]) with 

d. [- exp(n6 - S6) -exp(n� - s�) 
] lag 1+ exp(n6 - S6)'···' I + exp(n� - s�) 

d. [ exp(n6 - s6) exp(n� - s�) 
] lag 1+ exp(n6 - S6)'···' I + exp(n� - s�) 

where N is the dimension of the Log-spectrum feature vector. 
We can now derive a variational Bayesian inference algo­

rithm to enhance the observed log spectrum. 

III. VARIATIONAL BAYESIAN INFERENCE 

In variational Bayesian inference, we seek an approximation 
q(8) to the intractable posterior p(8IY) over the model 
parameters 8 which minimizes the Kullback-Leibler (KL) 
divergence between q(8) and p(8IY) with q(8) constrained 
to lie within a tractable approximating family (in our case 
8 = {s, zs, n}). The KL divergence D( qllp) is a measure of 
the distance between two distributions and is defined by [23] 

J q(8) D(qllp) = q(8) log p(8IY) d8. 

To ensure tractability, the approximating family is selected 
such that the approximate posterior can be written as a product 
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of factors depending on disjoint subsets of 8 = {01, ... ,OM} 
[18], [24]. Assuming that each factor depends on a single 
element of 8 then 

M 
q(8) = II qi(Oi). (11) 

i=l 
It can be shown that the optimal form of qj ( OJ) denoted by 

qj(Oj) that minimizes D(qllp) is given by [24] 

10gqj(Oj) = JE{logp(y, 8)}q(8\i) + const. (12) 

We use the notation q(8\j) to denote the approximate pos­
terior of all the elements of 8 except OJ. We obtain a set of 
coupled equations relating the optimal form of a given factor 
to the other factors. To solve these equations, we initialize all 
the factors and iteratively refine them one at a time using (12). 

A. Approximate Posterior 

Returning to the context of our model, we assume an 
approximate posterior q(8) that factorizes as follows 

q(8) = q(s)q(zs)q(n). (13) 

The factorization used in this work differs from that in 
Frey et al. [8] by enforcing independence between the mixture 
coefficient indicator variable and the clean log spectra. Thus 
instead of a mixture of Gaussians posterior over the clean log 
spectra we have a single Gaussian. Additionally, the algorithm 
has been designed to jointly verify the speaker and enhance 
the speech using this information. In [8] the factiorization is 

M 
q(8) = q(n) L Pmq(slm) (14) 

m=l 
where Pm is the posterior probability of the mth mixture 
component. The optimal forms of the approximate posterior 
when the factorization (14) is assumed are as follows 

M 
q(8) = N(n; J-t�, ��) L PmN(s; J-tr;"*, �r;"*). 

m=l 
The update equations resulting from this factorization are 
presented in [9]. 

Using (12) we obtain expressions for the optimal form of 
the factors for the factorization used in this work given by 

(13). We obtain 

1) 

with 

�; [-zt,-1 + G; -zt,-lGs + -zt,-lGs 
Msl.c1 1 + Gs-zt,-l + L 'Yi�:-l]-i=l 

J-t; �; [(I + G;)-zt,-l(y -g([so, noD 
GnJ-t� + Gsso + GnnO) 
Msl.c1 

+ L 'Yi�:-l J-tf] i=l 

(15) 

2) 

(16) 

with 

�� [G�-zt,-lGn + �;;-lr1 

J-t� �� [G� -zt,-l(y -J-t; -g([so, noD -GsJ-t; 

3) 

+ Gsso + GnnO) + �;;-1 J-tn] 

where 

and 

log Pi 

Msl.c1 
q*(zs) = II birs,; 

i=l 
Pi 'Yi = "Msl.c1 . ui=l P. 

1 
-"2(J-t; -J-tf)T�:-l(J-t; -J-tf) 

(17) 

� log I�:I - �Tr(�:-l�;) + log7ff, 

B. The VB Algorithm 

To run the algorithm, the observed utterance is divided into 
K frames and each frame is enhanced. The linearization point 
is critical to the performance of the algorithm. As in [8], 
[9] we linearize the likelihood at the current estimate of the 
posterior mean [J-t;, J-t�l. The overall algorithm is summarized 
in algorithm 1. 

for k = 1, ... ,K do 

end 

Initialize the posterior distribution parameters 
{ * �* * �* }. J-ts' s' J-tn' n' 'Yi , 
for n = 1 to Number of Iterations do 

end 

Set [so,nol = [J-t;,J-t�l; 
Compute G = [Gs, Gnl and g([so, noD; 
Update {J-t;, �;, J-t�, ��} using (15)-(16); 
Update 'Yi using (17); 

C. Computational Complexity 

The computational complexity of the algorithm is dom­
inated by the cost to update the posterior distribution of 
the clean speech log spectra. From equation (15) we see 
that the computation of J-t; is dominated by the term 

Et!:ll.c1 'Yi�:-l J-tf. Since the model covariance matrices are 
diagonal, evaluation of each term has a computational com­
plexity of O(N) where N is the dimension of the log spectral 
features. Thus each update of the mean parameters has a 
computational cost of O(Msl£IN) which is linear in the 
number of mixture coefficients. 
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IV. EXPERIMENTAL RESULTS 

In this section we present experimental results that verify 
the performance of the algorithm. For the simulations we use 
the TIMIT database and the MIT Mobile Device Speaker Ver­
ification Corpus (MDSVC)[25]. The experiments investigate 
the equal error rate (EER) improvement obtained when the 
VB log spectral enhancemnent algorithm is used in speaker 
verification systems in noisy environments. To obtain noisy 
speech from TIMIT data, we add additive white Gaussian 
noise and realistic factory noise. 

The TIMIT data set contains recordings of 630 speakers 
drawn from 8 dialect regions across the USA with each speaker 
recording 10 sentences [26]. The sampling frequency of the 
utterances is 16kHz with 16 bit resolution. In order to train the 
speaker models we used 8 sentences and used the other 2 for 
testing. The MIT Mobile Device Speaker Verification Corpus 
is a data set that is designed to test speaker verification systems 
with limited enrollment data in noisy acoustic conditions. The 
speech data consists of recordings of speakers saying ice cream 
flavor phrases and names. The recordings are done in an office, 
hallway and street intersection in order to provide realistic 
noisy speech. 

A. System Descriptions 

I) Baseline System: The basic task is to determine whether 
a given speaker is speaking in a particular speech segment. 
Thus given a speech segment X we test the following hy­
potheses 

• HO: X is from speaker S 
• HI: X is not from speaker S 

Here the target speakers are modelled using speaker specific 
GMMs and a universal background model (UBM) is used to 
test the alternate hypothesis HI. The likelihood ratio is com­
pared to a threshold in order to determine which hypothesis 
is correct. For each trial we compute the score 

Score = logp(XITargetModel) - logp(XIUBM). (18) 

where X are the features computed from the test utterance. 
For the baseline system we use 13 dimensional MFCCs 
generated every 1 Oms using a 25ms window as features. Using 
the feature vectors extracted from training speech, we train 
speaker GMMs with 32 mixture coefficients. 

2) Log Spectrum System: This system uses the log spec­
trum of the speech frames as features. Log spectra are gen­
erated every 10ms using a 25ms window which corresponds 
to 400 samples at 16kHz. The FFT length is 512 resulting 
in a feature vector of length 257. Using the feature vectors 
extracted from training speech, we train speaker GMMs with 
8 mixture coefficients. 

3) Variational Bayesian System: For this system, we form 
a library consisting of the target speaker and the UBM and 
run algorithm 1 to enhance the noisy log spectra. As with 
any iterative algorithm, initialization is very important and it 
affects the quality of the final solution. In our experiments, the 
following initialization scheme was found to work well: We 

initialize the posterior mean of the speech log spectrum, p,;, 
to the log spectrum of the noisy speech frame. The posterior 
covariance of the speech log spectrum, :E;, was initialized as 
the identity matrix. We initialize the posterior mean of the 
noise log spectrum, p,�, to the all zero vector. The posterior 
covariance of the noise log spectrum, :E;, was initialized as the 
identity matrix. Finally we initialize the parameters of q(zs) 

1 as 'Yi = MsICI. 
Since we update the posterior parameters one at a time, we 

need to specify a parameter update schedule. The parameter 
update schedule is as follows: 

1) Update the parameters of q*(n). 
2) Update the parameters of q*(s). 
3) Update the parameters of q*(zs). 

This schedule was observed in simulation to be numerically 
stable. 

For our experiments, the algorithm was run for 5 iterations 
and the posterior mean of the speech log spectrum at the final 
iteration was used as the enhanced log spectrum of that frame. 
Using the enhanced log spectra for a given utterance, scores 
for each verification trial are computed using (18). 

We also derive MFCCs from the enhanced log spectra and 
use these to compute scores for each verification trial. Thus for 
the VB system we have two results: one using the enhanced 
log spectra and the other using the MFCCs derived from these 
log spectra. 

B. TIMIT Speaker Verification Results 

We now turn to experiments aimed at determining the 
speaker verification performance of the systems in noisy 
conditions. We assume that the TIMIT data is clean and the 
SNR only accounts for the additive distortion we introduce. 
In this work the input SNR is defined as 

Lt s2[t] 
10 log Lt(S[t] _ y[t])2· 

The UBMs were trained using the training data for a random 
300 speaker subset of the 630 speaker TIMIT data set. The 
MFCC UBMs and speaker models had 32 mixtures while the 
log spectra UBMs and speaker models had 8 mixtures. 

The verification experiments were performed with the test 
utterances corrupted by additive white Gaussian noise at 
various input SNRs. For each of the 630 speakers we have two 
test utterances yielding 1260 true trials. To generate impostor 
trials, a random set of ten speakers was selected from the 
remaining speakers and the corresponding test utterances used 
to generate 20 impostor trials per speaker. Thus there are a 
total of 12600 impostor trials. 

Table I shows the equal error rates (EER) obtained in our 
verification experiments for the three systems at various input 
SNRs. Figure 1 shows the corresponding DET curves at 30dB. 
We see that the VB algorithm improves the performance of 
both the MFCC and log spectral systems. At 30dB the log 
spectral EER is reduced from 25.97% to 18.02% while the 
MFCC EER is reduced from 8.97% to 4.44%. 
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TABLE I 

SPEAKER VERIFICATION EER (%) FOR THE ENTIRE TIMIT DATA SET 
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SNR (dB) 
System 10 20 30 

MFCCs (Baseline) 46.35 24.44 8.97 
VB (MFCC) 31.11 13.97 4.44 
Log Spectra 51.11 42.06 25.97 

VB (Log Spectra) 42.94 28.73 18.02 
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Fig. 1. Speaker verification performance for the entire T1MIT data set at 
30dB. 

1) TlMIT Speaker Verification Results in Realistic Noise: 
We now tum to experiments aimed at demonstrating the 
performance of the algorithm in realisitic noisy conditions. To 
this end we add noise from the NOlSEX 92 data set [27] to 
the clean TIMIT data at various SNRs. This data set consists 
of recordings of various types of noise including factory noise 
and speech babble. The recordings are sampled at 19.98kHz 
and it is necessary to resample the recordings since TIMIT 
recordings are sampled at 16kHz. 

The experiments using the entire TIMIT data set were 
repeated using factory noise. Table II shows the equal error 
rates (EER) obtained in our verification experiments for the 
three systems at various input SNRs using factory noise. These 
results are similar to those obtained using white noise. We see 
a significant improvement in EER at 10dB and 20dB with the 
MFCCs obtained from enhanced log spectra yielding the best 
performance. 

TABLE II 

SPEAKER VERlFlCATlON EER (%) FOR THE ENTIRE TIMIT DATA SET IN 
FACTORY NOISE 

SNR (dB) 
System 10 20 30 

MFCCs (Baseline) 23.57 5.71 1.43 
VB (MFCC) 10.63 3.17 1.43 
Log Spectra 44.44 38.17 35.24 

VB (Log Spectra) 39.92 36.03 35.48 

C. MDS VC Speaker Verification Results 

In the MDSVC data set, each speaker records 54 utterances 
in two sessions, one for training and the other for testing. The 
54 utterances are recorded in three conditions: in an office, 
a hallway and a noisy street intersection. 18 utterances are 
recorded in each environment. The speaker models are trained 
using the 18 utterances recorded in an office since these are the 
closest to clean. Each utterance is approximately two seconds 
long. There are 48 target speakers in the data set with 22 
female speakers and 26 male speakers. There are 40 impostors 
with 23 male and 17 female. 

In our initial experiment we examine the performance 
of a baseline GMM-UBM speaker verification system. We 
investigate the EER performance of the system when the test 
utterances are recorded in the three different environments. 
Figure 2 shows the corresponding DET curves. We see that 
mismatch between training and testing data leads to perfor­
mance degradation. The EER increases from 8.6% to 25.5% 
when the training data is recorded in an office but the test 
data is obtained in a noisy street intersection. These EERs are 
comparable to those obtained in [1, Fig. 7]. 

Speaker Detection Performance 
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Fig. 2. Baseline GMM-UBM speaker verification system performance for 
test data drawn from different environments when training data was recorded 
in an office. These EERs are comparable to the baseline performance obtained 
in [1, Fig. 7]. 

In order to investigate the performance of the VB log spec­
tral algorithm on this data set, experiments were performed 
to determine the EER improvement obtained when the test 
speech was recorded in various locations with both the MFCC 
and log spectral models trained using office speech. Table III 
shows the EERs obtained by the three systems described in 
section IV-A. Figure 3 shows the corresponding DET curves 
when the test data is recorded at a noisy street intersection. 
We see that the VB algorithm significantly improves the EER 
from 25.51% to 17.93%. 
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TABLE III 

SPEAKER VERIFICATION EER (%) FOR THE MDS V C  DATA SET 

Location 
System Intersection Hallway 

MFCCs (Baseline) 25.51 18.94 

VB (MFCC) 17.93 16.97 

Log Spectra 37.88 32.32 

VB (Log Spectra) 34.09 26.26 

Speaker Detection Performance 
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Fig. 3. Speaker verification system performance for test data drawn from a 
noisy street intersection for the VB log spectral enhancement algorithm. 

V. DISCUSSION AND CONCLUSIONS 

The experimental results reported in the previous section 
verify that the proposed log spectrum enhancement algorithm 
does indeed improve speaker verification in noisy environ­
ments. Significant improvements in EER of up to about 
14% are obtained using MFCCs derived from enhanced log 
spectra when compared to MFCCs obtained directly from 
noisy speech. At 30dB the EER is reduced by about half from 
8.97% to 4.44%. Also, the MFCCs obtained from the enhanced 
log spectra give the best performance at all SNRs reported. 

Similarly, improvements in EER are obtained when training 
data is obtained in an office but test data is recorded at a noisy 
street intersection. This demonstrates mismatch compensation. 

REFERENCES 

[I] Ji Ming, T1. Hazen, J.R. Glass, and D.A. Reynolds. Robust speaker 
recognition in noisy conditions. IEEE Transactions on Audio, Speech, 
and Language Processing, 15(5):1711-1723, July 2007. 

[2] Li Deng, J. Droppo, and A. Acero. Estimating cepstrum of speech under 
the presence of noise using a joint prior of static and dynamic features. 
IEEE Transactions on Speech and Audio Processing, 12(3):218-233, 
May 2004. 

[3] R. Vogt and S. Sridharan. Experiments in session variability modelling 
for speaker verification. In IEEE International Coriference on Acoustics, 
Speech and Signal Processing, volume I, page I, May 2006. 

[4] P. Loizou. Speech Enhancement: Theory and Practice. CRC Press, 
2007. 

[5] H. Hermansky and N. Morgan. RASTA processing of speech. IEEE 
Transactions on Speech and Audio Processing, (4):578-589, 1994. 

[6] Hagai Attias, John C. Platt, Alex Acero, and Li Deng. Speech denoising 
and dereverberation using probabilistic models. In Advances in Neural 
Information Processing Systems 13. MIT Press, 2001. 

[7] Jiucang Hao, H. Attias, S. Nagarajan, Te-Won Lee, and T.J. Sejnowski. 
Speech Enhancement, Gain, and Noise Spectrum Adaptation Using 
Approximate Bayesian Estimation. IEEE Transactions on AudiO, Speech, 
and Language Processing, 17(1):24-37, Jan. 2009. 

[8] B. 1. Frey, T T Krist jansson, L. Deng, and A. Acero. ALGONQUIN 
Learning dynamic noise models from noisy speech for robust speech 
recognition. In Advances in Neural lriformation Processing Systems 14, 
pages 1165-1172, January 2002. 

[9] Krist jansson, T Speech Recognition in Adverse Environments: a 
Probabilistic Approach. PhD thesis, 2002. 

[10] Li Deng, 1. Droppo, and A. Acero. Recursive estimation of non stationary 
noise using iterative stochastic approximation for robust speech recog­
nition. IEEE Transactions on Speech and Audio Processing, 11(6):568-
580, Nov. 2003. 

[II] Li Deng, J. Droppo, and A. Acero. Enhancement of log mel power spec­
tra of speech using a phase-sensitive model of the acoustic environment 
and sequential estimation of the corrupting noise. IEEE Transactions 
on Speech and Audio Processing, 12(2): 133-143, March 2004. 

[12] A. Solomonoff, C. Quillen, W M. Campbell. Channel Compensation 
for SVM Speaker Recognition. In In Proc. Odyssey: The Speaker 
and Language Recognition Workshop, pages 41-44, Toledo, Spain, June 
2004 . 

[13] F. Castaldo, D. Colibro, E. Dalmasso, P. Laface, C. Vair. Compensation 
of Nuisance Factors for Speaker and Language Recognition. IEEE 
Transactions on Audio, Speech, and Language Processing, 15(7): 1969 
- 1978, September 2007. 

[14] P. Kenny, G. Boulianne, P. Dumouchel. Eigenvoice Modeling with 
Sparse Training Data. IEEE Transactions on Speech and Audio Pro­
cessing, 13:345-359, May 2005. 

[15] P. Kenny, G. Boulianne, P. Ouellet, P. Dumouchel. Speaker and session 
variability in GMM-based speaker verification. IEEE Transactions on 
Audio, Speech and Language Processing, 15(4):1448-1460, May 2007. 

[16] Ciira wa Maina and John MacLaren Walsh. Joint Speech Enhancement 
and Speaker Identification Using Approximate Bayesian Inference. In 
Coriference on Information Sciences and Systems (CISS), Mar. 2010. 

[17] M. J. Wainwright and M. I. Jordan. A Variational Principle for Graphical 
Models. In S. Haykin, J. Principe, T. J. Sejnowski, and J. McWhirter, 
editor, New Directions in Statistical Signal Processing From Systems to 
Brains, pages 155-202. MIT press, 2005. 

[I8] Hagai Attias. A Variational Bayesian Framework for Graphical Models. 
In Advances in Neural Information Processing Systems 12, pages 209-
215. MIT Press, 2000. 

[19] Thomas P. Minka. Expectation Propagation for approximate Bayesian 
inference. In UAI '01: Proceedings of the 17th Conference in Uncer­
tainty in ArtifiCial Intelligence, pages 362-369, San Francisco, CA, USA, 
2001. Morgan Kaufmann Publishers Inc. 

[20] A. Taylan Cemgil, Cedric Fevotte, and Simon 1. Godsill. Variational 
and stochastic inference for Bayesian source separation. Digital Signal 
Processing, 17(5):891-913, 2007. 

[21] S.J. Roberts and WD. Penny. Variational Bayes for generalized autore­
gressive models. IEEE Transactions on Signal Processing, 50(9):2245-
2257, Sep 2002. 

[22] B. Frey, L. Deng, A. Acero, and T Kristjansson. Algonquin: iterating 
Laplace's method to remove multiple types of acoustic distortion for 
robust speech recognition. In Eurospeech, pages 901-904, January 2001. 

[23] T Cover and J. Thomas. Elements of Information Theory. John Wiley 
and Sons, 2006. 

[24] Christopher M. Bishop. Pattern Recognition and Machine Learning 
(Iriformation Science and Statistics). Springer-Verlag New York, Inc., 
Secaucus, NJ, USA, 2006. 

[25] R. Woo, A. Park, T J. Hazen. The MIT Mobile Device Speaker 
Verification Corpus: Data collection and preliminary experiments. In 
Proc. Odyssey: The Speaker and Language Recognition Workshop, pages 
1-6, San Juan, Puerto Rico, 2006. 

[26] J.S. Garofolo, L.F. Lamel, WM. Fisher, J.G. Fiscus, D.S. Pallett and N.L. 
Dahlgren. The DARPA TIMIT acoustic-phonetic continuous speech 
corpus CDROM , 1993. http://www.ldc.upenn.eduICatalog. 

[27] Andrew Varga and Herman J.M. Steeneken. Assessment for automatic 
speech recognition: II. NOISEX-92: A database and an experiment to 
study the effect of additive noise on speech recognition systems. Speech 
Communication, 12(3):247 - 251, 1993. 

Authorized licensed use limited to: Dedan Kimathi University of  Technology. Downloaded on November 23,2022 at 08:08:44 UTC from IEEE Xplore.  Restrictions apply. 


