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Introduction

•Robust speaker recognition remains an important problem in statistical signal
processing.

•Speech enhancement and speaker identification have traditionally been studied
separately but we believe that there are a number of advantages to considering
them jointly within a Bayesian framework.

• This allows us to take advantage of the power of Bayesian methods to handle
parameter and model uncertainty.

Problem Statement

•Most current approaches to robust recognition rely on a speech enhancement
frontend which employs cepstral mean subtraction.

•Using a Bayesian formulation we derive a variational Bayesian algorithm to per-
form enhancement and identification jointly.

•We can now take advantage of rich speaker dependent speech priors in the en-
hancement task and appropriately model noise in the identification task.

Probabilistic and Graphical Model
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•Prior over AR coeffifients is speaker dependent p(ak|`) =
∑Ma

m=1 πa
`mN (ak; µa

`m,Σa
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• The joint distribution for this model is
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•We would like to compute the posterior p(z1:K
a |r1:K)

Bayesian Inference

• The posterior p(Θ|r1:K) is a central quantity in Bayesian inference.

•We can obtain parameter estimates such as Θ̂MMSE =
∫

Θp(Θ|r1:K)dΘ.

• These integrals are often intractable.

•We use VB to obtain an approximation q(Θ) to the intractable posterior
p(Θ|r1:K) which minimizes the Kullback-Leibler (KL) divergence between q(Θ)
and p(Θ|r1:K) with q(Θ) constrained to lie within a tractable approximating family.

•We assume an approximate posterior q(Θ) that factorizes as follows

q(Θ) =
∏

k

q(sk)q(ak)q(zk
a)q(τ k

ε )q(τ k
η )

VB Algorithm

• In the VB E-step the current source estimates are determined using a Kalman
smoother using the current estimates of the posterior parameters.

• In the VB-M step, the current source statistic estimates are used to update the
parameters of the posterior distributions in the following order: a

k, τ k
η , τ k

ε , and z
k
a.

Experimental Results

• Initial tests use a library of 4 speakers from TIMIT, an AR order of 8 and 10
mixture coefficients.

•We introduce a silence model as an extra speaker.

•We compute blockwise MAP speaker estimates and estimate the speaker via

q(` = i) ∝ exp
(

∑K
k=1 log q(`k = i)

)

.

• The noisy signal (top) enhanced signal and the speaker assignment(bottom).
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•Blockwise speaker posterior probabilities.
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•Recognition performance for 10 speaker library.
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•SNR improvement performance for 10 speaker library.
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