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Abstract— Via multiterminal information theory, we present
fundamental rate delay tradeoffs that delay mitigating codes
must have when utilized over multipath routed and network
coded networks. We formulate plotting the rate delay tradeoff as
a calculus problem on a capacity region of a related abstracted
broadcast channel. This calculus problem simplifies to an integer
programming problem, which for small numbers of packets may
be solved explicitly, or for larger values of packets, may be
accurately approximated through the calculus of variations by
relaxing the integer constraint. We prove the utility of our tech-
niques by plotting the rate delay tradeoff for networks in which
the packets experience independent exponentially distributed
propagation and queuing delays while traversing the network.

I. INTRODUCTION

Imagine a typical multipath routed network in which a

particular source hands M packets x1, . . . ,xM of equal

size and all headed to the same destination in order to the

lower network layers for transmission at time 0. Because of

queuing and propagation delays along the different routes,

the packets (x1, . . . ,xM ) arrive at the sink at different time

instants (t1, . . . , tM ), possibly giving a different order. We

will model the source to destination effects of the multi-path

routed network transmission, then, as selecting these arrival

times t1, . . . , tM randomly according to some joint distribution

pt1,...,tM
.

Denote by π(i) the index of the transmitted packet that

is the i received packet, so that the packets arriving at the

receiver in order are xπ(1),xπ(2), . . . ,xπ(M), with1 tπ(1) <
tπ(2) < . . . < tπ(M), which we denote by τ i = tπ(i). We can

then think of the probability distribution p(t1, . . . , tM ) on the

arrival times as being composed of a probability distribution

p(π) on the arrival order and a probability distribution on the

ordered arrival instants p(τ1, . . . , τM ).
Suppose further that the network source node under con-

sideration wishes to use the packets x1, . . . ,xM to convey

some temporally ordered data to the receiver. For instance,

the source node may wish to convey a digital multimedia file

that is the output of a multimedia source encoder which after

compressing the source returns data organized into temporally

ordered frames s1, s2, . . . , sN corresponding to successive

chunks of time from the multimedia signal. Assuming that the
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1Since we are using continuous time, and thus continuously distributed
arrival instants, the probability that any of two or more of the arrival instants
must be zero, so we ignore that case in our discussion.

source encoder has done a good job of compressing, the data

in s1, . . . , sN will be independent. Most practical multimedia

source encoders such as MPEG movies order data in this

way. Alternatively, the source node may be controlling the

destination network node remotely through the network, with a

sequence of temporally ordered instruction frames s1, . . . , sN

which must be executed in order. As another possibility,

the source node may be engaged in a voice over IP (VoIP)

conversation with the receiver. Indeed, almost any connection

oriented network source application could be considered as

relevant for what we are about to discuss.

All of these temporally ordered source signals share the

common characteristic that later data (i.e. with higher frame

indices) is not useful until earlier data (i.e. with lower frame

indices) has been received. However, since the effective point

to point channel that the multi-path routed network creates

reorders packets, were we simply to transmit the source data

directly as is over the network channel, we would have to wait

at the receiver, storing packets in a buffer, and reordering them

as we played them out. Alternatively, one could consider a

single source multicast network coded network employing ran-

dom linear network coding [1], [2]. In this case (x1, . . . ,xM )
arriving at the sink will be random linear combinations of

original transmitted packets (letting M be the dimension of the

global encoding vector), and we will have to wait, buffering

the received packets, until all M innovative (i.e. with linearly

independent encoding vectors) packets have been received

before we can start decoding even the earliest source frame

s1.

While buffering has been extensively studied as a technique

for connection oriented transmission over networks, we wish

to consider here an alternative approach based on (forward

erasure correction) coding. In particular, rather than simply

copying (and possibly repeating) the source data s1, . . . , sN

into the transmitted packets, we propose to use a linear code,

which we call a delay mitigating code to create the data in

the transmitted packets from the source packets in such a way

as to minimize (an appropriately defined notion of) the delay

incurred while playing the source out at the receiver.

To achieve the goal of exhaustively characterizing and

designing such delay mitigating codes, we wish to identify

in Section II the fundamental performance limits via multi-

terminal information theory by performing rate delay calculus

on the capacity region of an associated abstracted degraded

broadcast channel. Because the uniform permutation channel

[3] and uniform network coded channel [4] share the same

capacity region for this degraded broadcast channel, they share

the same fundamental rate delay tradeoffs. After identifying

these fundamental rate delay tradeoffs, one may focus on rate
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X = (X1, . . . , XM )

Y1 = Xπ(1)

YM = (Xπ(1),Xπ(2), . . . , Xπ(M))

Y2 = (Xπ(1), Xπ(2))

ΠW = (W1, . . . ,WM )

Ŵ1

(Ŵ1, Ŵ2)

(Ŵ1, . . . , ŴM )

...

p(π)

Fig. 1. The permutation channel reinterpreted as a abstracted degraded
broadcast channel for the purpose of analyzing rate delay tradeoffs.

optimal code design, showing that, despite the asymptotic

(and thus delay notion defeating) block lengths employed

in proving the degraded broadcast channel capacity region,

surprisingly there exist codes with very short block lengths

exhibiting the desired rate delay tradeoffs. While we do not

focus on the types of codes to use here beyond the fact

that they are time-shared maximum distance separable (MDS)

erasure codes of different rates which we determine, [3] and

[4] discuss how priority encoded transmission (PET) [5], [6]

and a slight variant that uses rank-metric MDS component

codes [7] for the network coded case provide practical codes

achieving the rate delay tradeoffs we provide. Thus, the point

of this article is to provide the necessary analysis for an end

user who needs a particular bounded delay to determine the

component code rates of a time shared erasure (PET) code in

order to satisfy this delay. These rates can then be used in

any of the previous related references to obtain the practical

capacity achieving codes.

II. FUNDAMENTAL RATE-DELAY TRADEOFFS

To tackle the tradeoffs between rate and delay in such a

channel, let us first focus on the distribution p(π) on the

permutation determining the arrival order π by determining

the region R of possible amounts of information that may be

decoded upon each successive packet arrival at the sink. In par-

ticular, denote by Ri the amount of new information that can

be decoded after i packets have arrived at the sink per block of

packets transmitted at the source. Collect these rates Ri into

a vector r. We can determine the region R of rate vectors r,

and thus mutually satisfiable rates as the capacity region of an

abstracted degraded broadcast channel shown in Figure 1. Dif-

ferent receivers in the abstracted broadcast channel correspond

to the cumulative packets received upon each successive packet

reception at the sink: for instance the observed values at the ith
receiver are yi := (π(1),xπ(1), π(2),xπ(2), . . . , π(i),xπ(i)).
Note that the network, like many practical networks, through

the header indicates the identity of the transmitted packet.

That this broadcast channel is degraded may be seen from

the fact that the time reversed observations form a Markov

chain through erasure operations yM → yM−1 → · · · → y1.

The capacity region of the generic degraded broadcast channel

is known [8] to be the the closure of the convex hull of

the region R of rates satisfying R1 ≤ I(y1;U1), R2 ≤
I(y2;U2|U1), . . . , RM ≤ I(yM ;UM |UM−1) for a se-

quence of dummy discrete random variables U1 → · · · →
UM with bounded range set cardinality. Here UM is a vector

composed of the inputs to the permutation channel, so that

U1
M := x1,U2

M = x2, . . . ,UM
M = xM . In the particular case

R2

R1

10 2
0

1
p = 0, 1
p = 1/8, 7/8
p = 1/4, 3/4
p = 3/8, 5/8
p = 1/2

Fig. 2. The permutation channel’s capacity region for M = 2, with p the
probability that the packet numbered 1 arrives first at the receiver.

of the permutation channel, the generic degraded broadcast

channel capacity region expression can be simplified to

R1 ≤
∑

π

p(π)
(
H(Uπ(1)

M )−H(Uπ(1)
M |U1)

)
, . . .

Rk ≤
∑

π

p(π)
(
H(Uπ(1)

M , . . . ,Uπ(k)
M |Uk−1)

−H(Uπ(1)
M , . . . ,Uπ(k)

M |Uk)
)

, . . .

RM ≤ H(UM |UM−1) (1)

which can be obtained by substituting into the definition of

mutual information the definitions of the received signals in the

abstracted degraded broadcast channel. From this expression

we can view the capacity region as the image under a linear

transformation whose coefficients are determined by the per-

mutation distribution of the set of all possible entropy vectors

created from joint entropies of subsets of the dummy random

variables U1, . . . ,U1
M , . . . ,UM

M . In the two special cases of

interest we presently discuss in sections II-.1 and II-.2, the

expression for the rate region can be simplified even further.

1) Special Case: Single Permutation: In the first special

case, only one permutation has any probability. It is easy to see

in this case that the amount of information we receive upon the

ith packet arrival is only limited by the cardinality of the set

that the packets lie in. In particular, if the packets x1, . . . ,xM

are each K bits long, then the rate region is specified by the

inequalities

p∑
i=1

Ri ≤ pK, ∀p ∈ {1, . . . ,M}

This rate region is plotted for the case M = 2 in Figure 2.

2) Special Case: Uniform Permutation Channel: In the

second special case, all of the permutations are equally likely,

and we call the associated permutation channel the uniform

permutation channel. Assuming again that all of the packets

x1, . . . ,xM are each K bits long, the rate region for this case

simplifies to
M∑
i=1

Ri

i
≤ K (2)

This rate region is plotted for the case M = 2 in Figure 2.

A. Network Coded Case

In the random linear network coded case where the packets

that arrive at time instants {τ i} are linear combinations of

the transmitted packets, we are again interested in a similar
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y1 := (g1,g
T

1 uM )

y2 := (g1,g
T

1 uM ,g2,g
T

2 uM )

yM := (g1,g
T

1 uM , . . . ,g
M

,gT

M
uM )

uM

Fig. 3. Point to point network coded channel as a degraded broadcast channel.

abstracted degraded broadcast channel (DBC), depicted in

Figure 3 where the different receivers correspond to successive

packet arrivals and the vectors gk correspond to the global

encoding vector of the kth received packet. The capacity

region of this DBC was solved in [4]. There it was shown

that when the global encoding vectors are chosen uniformly

from the set of innovative encoding vectors, this channel shares

the same capacity region as the uniform permutation channel

discussed in the previous section.

B. Rate Delay Calculus Problem Formulation

Now that we have determined the region R describing

the amounts of information available after each successive

packet arrival at the sink, we can incorporate the inter-arrival

statistics. In particular, in keeping with the connection oriented

context, let us suppose that the source decoder at the sink node

needs to decode a new frame si every Ts seconds. Then, the

overall rate at which data is decoded at the source decoder at

the sink is

ρ(r) :=
1

NTs

M∑
i=1

Ri

Continuing the assumption that we are working with a constant

bit rate source encoder, then this means we are trying to decode
1
N

∑M
i=1 Ri bits every Ts seconds.

A delay metric may then be associated with a rate vector

r. Here we choose a delay metric that penalizes the delay

incurred by every frame according to the expression

D(r) =
N∑

i=1

(
τg(i,r) − iTs

)+
, (x)+ :=

{
x x ≥ 0
0 x < 0

where g(i, r) := inf
{

k
∣∣∣∑k

n=1 Rn ≥ iTsρ(r)
}

so that g(i) is

the number of packets that must be received at the receiver

before we can decode the first i frames of the source.

At the heart of the idea of rate delay calculus is the intent

of finding the point ρ(d) in the coding achievable rate region

r ∈ R which maximizes the overall rate among all codes with

delay less than or equal to some bound d. Because the arrival

instants {τ i} are randomly distributed, so is the delay, so we

bound its mean, generating the rate delay tradeoff as

ρ∗(d) := max {ρ(r) |r ∈ R, E [D(r)] ≤ d}

C. Structural Properties of the Rate Delay Tradeoff in Uni-
form Permutation Case

In many common situations, e.g. when the packet arrival

times {ti} are i.i.d., the permutation distribution will be

uniform, yielding the corresponding rate region given by (2).

Since the delay metrics D(r) depend on r only through g(i, r),
we can break the optimization of r up into two coupled

optimization problems, so that the optimal rate vector r∗ is

the solution to

ρ∗(r∗) = max
h(i)|E[D(h(i))]≤d

max
r∈R|g(i,r)=h(i)

[ρ(r)] (3)

subject to Ri ≥ 0 and (2). Next, by rewriting the constraint

h(i) = g(i,y) as

h(i) = inf

{
k

∣∣∣∣∣
∑k

n=1 Rn∑M
i=1 Ri

≥ i

N

}

we can see that ρ(r) depends only on the magnitude (‖ · ‖1)

of r, while h(i) depends only on the direction r points in.

The constraint (2), on the other hand, depends on both its

magnitude and direction. This observation motivates a change

of variables to γi ≥ 0 and ρ such that
∑M

i=1 γi = 1 and

Ri = NTsργi. The optimization in (3) can then be written as

max

{
ρ

∣∣∣∣∣NTsρ

M∑
i=1

γi

i
≤ K,

M∑
i=1

γi = 1, g(i, r) = h(i) ∀i
}

From the constraints, we see that the maximum value of ρ is

easily determined as

ρ(r) =
K

NTs

(
M∑
i=1

γi

i

)−1

(4)

and the problem is thus transformed into the minimization of∑M
i=1

γi

i over the parameters {γi}.
Since several successive values of h(i) may be equal with

h(i) ≥ h(i − 1), starting with k1 = max{k|h(k) = h(1)}
recursively define the sequence kj = max{k|h(k) = h(kj−1+
1)}, j = 2, 3, . . .. Because the cost

∑M
i=1

γi

i penalizes lower

index γi more than higher index γi, and γi must be positive

and sum to one, to simultaneously satisfy the constraints and

minimize the cost we must choose the only non-zero γis

to be γh(k1) = k1
N , γh(kj) = kj−kj−1

N , j ∈ {2, 3, . . .}.
Undoing the change of variables, with γh(kj) so determined,

the corresponding values of Rh(kj) are determined using

Rh(kj) = ργh(kj) with ρ given by (4).

We have thus shown that the rate delay tradeoff, although

correctly posed as a continuous optimization, in the uniform

case can be found as the solution to an integer programming

problem in the decoding deadlines {h(i) ∈ {1, . . . ,M}|i ∈
{1, . . . , N}, h(i + 1) ≥ h(i)}.

D. Variational Approximation based Rate Delay Tradeoff for
Large M,N

For reasonably small values of M,N , this structural trans-

formation in the previous section to an integer program-

ming problem over h(i) allows direct calculation of the

rate delay tradeoffs by explicit enumeration over all possible

non-decreasing sequences h : {1, . . . , N} → {1, . . . ,M}.
However, for larger M,N this explicit enumeration becomes

computationally unfeasible, requiring an approximate solution.

Such an approximate distribution can be obtained by turning

the integer programming problem into a variational calculus
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problem over a family of non-decreasing continuous functions,

whose solution, via Lagrangian techniques, can be found as

a solution to an algebraic equation. Towards this end, given

the selected delay metric D({h(i)}) ∈ [0,∞) of interest,

we first define a normalized rate and delay, which for all

N,M, Ts, {h(i)} lie in between 0 and 1. The normalized rate

can be written as

ρ̄({h(i)}) =
NTs

MK
ρ =

⎛
⎝M

∑
j

kj − kj−1

N

⎞
⎠
−1

The normalized delay can be obtained by noting that all of

the delay metrics we are considering must be monotone non-

decreasing in h(i), and thus the greatest delay is obtained with

h(i) = M, ∀i ∈ {1, . . . , N}. Thus, to obtain a normalized

delay lying in between 0 and 1, we need only to divide the

non-normalized delay metric of choice by its value at h(i) =
M, ∀i ∈ {1, . . . , N}

d̄({h(i)}) :=
D({h(i)})

D({h(i) = M ∀i ∈ {1, . . . , N}})
In order to approximate the solution to the integer pro-

gramming problem by the solution to a variational calculus

problem, first define a zero order hold piecewise continuous

function z : [0, 1] → [0, 1] such that h(i) = Mz(i/N)

z(x) =
N∑

k=1

h(k)
M

1 k−1
N ≤x< k

N

We can then rewrite the normalized rate as the functional

ρ̄[z(·)] =
(∫ 1

0

1
z(x)

dx

)−1

The normalized delay is then (if need be approximated by) a

functional d̄[z(·)] of z(·) as well. We presently consider two

special cases where the normalized delay functional can be

further specified with ease.

1) Normalized Delay Functional for Constant Inter-Arrival
Times: [3] determines the normalized delay functional in the

special case when N = M and the packets arrive at evenly

spaced, non-random, time instants, so that τ i = iTs. In that

special case, the normalized delay functional can be written

as

d̄({h(i)}) :=
∑M

i=1(h(i)− i)+∑M
i=1(M − i)

=
2M

M − 1

M∑
i=1

(h(i)− i)+

M2

d̄[z(·)] =
2M

M − 1

∫ 1

0

(z(t)− t)+dt (5)

2) Normalized Delay Functional for IID Arrival Times: As

another special case, the form of the normalized delay func-

tional may be further specified when the uniform permutation

selection arises from i.i.d. arrival times ti distributed according

to a distribution with density pt and cumulative distribution

Pt. The asymptotic theory of order statistics ([9] Theorem 10.3

pp. 288) asserts that M− 1
2

(
τMz − P−1

t (z)
)

has an asymptotic

normal distribution with variance
z(1−z)

(pt(P
−1
t (z)))2 (as M → ∞,

with z fixed):

M− 1
2

(
τMz − P−1

t (z)
) → N

(
0,

z(1− z)(
pt(P−1

t (z))
)2

)
(6)

This holds whenever 0 < pt(P−1
t (z)) <∞ (an easy to satisfy

condition, indeed). This implies that the limiting form of the

delay functional for the mean sum delay metric is

d̄[z] =

∫ 1

0

(
P−1

t (z(w))− wNTs

)+
dw∫ 1

0
E

[
(τM − wNTs)

+
]
dw

. (7)

Here, the denominator may also be approximated through the

asymptotic distribution of the extreme values ([9], Ch. 11),

which, after scaling can take only one of three forms.

3) Find Approximate Rate Delay Tradeoffs via Variational
Calculus: Once we have selected the delay metric and ob-

tained the normalized delay functional d̄[z], the idea is to

obtain the approximate rate delay tradeoffs for large M by

solving the calculus of variations [10] problem

ρ̄∗(d̄∗) := max
z:[0,1]→[0,1]�d̄[z]<d̄∗, ∂z(t)

∂t ≥0

ρ̄[z] (8)

where z is no longer constrained to be a piecewise constant

function, and, in fact, is now considered among the class of

continuously differentiable non-decreasing functions. For large

M , which are the cases which we would like to calculate

because the explicit enumeration of h(i) is too difficult, the

intervals on which z was to be piecewise constant should be

very small, so one would expect to get a good approximation

for these cases. Using monotonicity of the function 1
x , we may

observe that the solution to (8) may alternatively be determined

as the solution to

ρ̄∗(d̄∗) :=

(
min

z:[0,1]→[0,1]�d̄[z]<d̄∗, ∂z(t)
∂t ≥0

∫ 1

0

1
z(t)

dt

)−1

(9)

For those special cases (e.g., the constant inter-arrival time

and mean sum delay metric cases above) when the normalized

delay function d̄ may be written as

d̄[z(·)] =
∫ 1

0

Q(t, z(t))dt (10)

then the solution to the variational problem (8) must satisfy

the algebraic equation

− 1
(z∗(t))2

+μ
∂Q(t, x)

∂x

∣∣∣∣
x=z∗(t)

+α(t)1 ∂z(t)
∂t =0

= 0 ∀t ∈ [0, 1]

with μ, z(0) such that d̄[z∗] ≤ d̄∗ and α(t) obviously selected

so as to make z∗ constant on intervals where it is constant

(and thus we need not actually solve for it). The rate delay

tradeoff is then given by ρ̄∗(d̄∗) = ρ̄[z∗̄
d∗ ].

E. Example Rate Delay Tradeoffs for Common Arrival Time
Distributions

In order to get greater practical insight, we now consider

the rate delay tradeoff for a two common arrival time distribu-

tions, constant periodic packet arrivals, and IID exponentially

distributed packet arrival times.
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1) Constant Inter-arrival Times: [3] investigates the case

τ i = iTs and N = M . The normalized delay function and

functional has already been given for this case in (5), and the

asymptotic rate delay tradeoff is given by

ρ̄∗(d̄∗) =

(
1− log

(√
M − 1

M
d̄

))−1

, d̄∗ =
M

M − 1
e2− 2

ρ̄∗

which is proved and plotted together with the exact rate delay

tradeoffs in [3].

2) Trading Rate for Average Sum Delay with Exponential
Arrival Times: Consider the case where the arrival times

ti are i.i.d. exponential random variables with parameter λ.

Symmetry suggests that the permutation distribution p(π) will

be uniform, thereby selecting the capacity region solved in

II-.2. If we are alternatively considering the network coded

context, we assume that the global encoding vectors are chosen

such that the global encoding matrix (after M packet arrivals)

is sampled uniformly from the set of invertible M × M
matrices over the finite field in use, and the ti is the arrival of

the kth network coded packet.

For small values of M and N numerical calculation of the

rate delay tradeoffs through enumeration of h(i) is possible,

and some normalized rate and normalized delay tradeoffs are

shown for some example cases in Figure 4. For larger values

of M and N , an approximation is necessary, and we use the

variational technique discussed in Section II-D to get close

approximations to the rate delay tradeoff. Specializing (7) for

i.i.d. exponential arrival times the normalized delay functional

for large M is well approximated by

d̄[z] :=

∫ 1

0

[−λ−1 log (1− z)− wNTs

]+
dw∫ 1

0
E

[
(τM − wNTs)

+
]
dw

which may be used to obtain the solution to the calculus of

variations problem as M gets large. This gives a rate delay

tradeoff (for normalized delay requirement d̄ ∈ [0, 1]):

ρ̄∗(d̄) :=

(
c
√

d̄

1− exp(−λNTsc
√

d̄)

+
1

λNTs
log

(
exp(λNTs)− 1

exp(λNTsc
√

d̄)− 1

))−1

(11)

where for large M c ≈
√

2 log(M)−γ
3λ2NTs

− 1
3λ , with γ ≈

0.5772156649, which comes from the limiting form of the

extremum. This is derived with a few steps of calculus to find

the associated optimal decoding deadline function, which takes

the form

z∗(w) :=

{
1− exp(−λNTsc

√
d̄) w ≤ c

√
d̄

1− exp(−λNTsw) w > c
√

d̄

III. CONCLUSIONS

We have provided a general technique for obtaining the

optimal fundamental rate versus mean sum normalized delay

tradeoffs in multipath routed and network coded networks.

We did this by introducing a related degraded broadcast
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Fig. 4. Rate delay tradeoff for N = 3, 5, 7 and i.i.d. exponential arrival
times.

channel whose capacity region we obtained through multi-

terminal information theory. We demonstrated the utility of our

technique by applying it to obtain the rate delay tradeoffs in the

case where the packet propagation times were i.i.d. according

to an exponential distribution. An end user wishing to obtain a

code with maximal rate subject to a delay bound of δ may find

the associated point on our rate delay curve, and its associated

decoding deadlines z, {h(i)}, or rates r. These may then be

used as parameters of a (time shared erasure) PET code [5],

[6] in the permutation channel case as discussed in [3], or

a modified (time shared rank metric) PET code using rank

metric codes as discussed in [4] and [7] to get small block

length codes achieving the specified rate delay tradeoff.

REFERENCES

[1] D. S. Lun, “Efficient Operation of Coded Packet Networks,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2006.

[2] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, October 2006.

[3] J. M. Walsh and S. Weber, “Coding to reduce delay on a
permutation channel,” in 45th Allerton Conference on Communication,
Control, and Computing, Sept. 2007. [Online]. Available: http:
//www.ece.drexel.edu/faculty/jwalsh/publications/walsh/allerton07.pdf

[4] ——, “A Concatenated Network Coding Scheme for Multimedia
Transmission,” in Fourth Workshop on Network Coding, Theory,
and Applications (Netcod 2008), Jan. 2008, pp. 91–96. [Online].
Available: http://www.ece.drexel.edu/faculty/jwalsh/publications/walsh/
netcod08.pdf
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