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Abstract
For more than a century, river discharge has been measured indirectly through observations 
of water level and flow velocity, but recently the number of gauging stations worldwide 
has decreased and the situation is particularly serious in African countries that suffer more 
than others from discontinuous and incomplete monitoring. As one of the most vulnerable 
regions in the world to extreme weather events and global warming, African countries need 
adequate and reliable monitoring. Decades of available Earth Observations data represent 
a tool complementary to the hydro-monitoring network and, in recent decades, they have 
demonstrated their potential, especially for data-poor regions. In this paper, a review of 
methods for hydrological and hydraulic modeling and for estimating river discharge by the 
use of satellite data, specifically radar altimetry and optical sensors, is provided, with par-
ticular focus on their role in the climate changes monitoring. More emphasis is placed on 
their relevance on African basins highlighting limits and advantages.

Keywords Remote sensing · Radar altimetry · Discharge · Hydrological models · African 
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CC  Climate change
CCI  Climate change initiative
CNES  Centre National d’Etudes Spatiales (French Space Agency)
DEM  Digital elevation model
ENSO  El Nino Southern Oscillation
ENVISAT  Environmental satellite
EO  Earth observation
ERS  Earth remote sensing satellite
ESA  European Space Agency
GCM  Global climate model
GCOS  Global Climate Observing System
GeoSFM  Geospatial streamflow mode
GIEMS-2  Global Inundation Extent from Multi-Satellites
GR4J  Modèle du Génie rural à 4 paramètres Journalier
GRACE  Gravity recovery and climate experiment
GRDC  Global Runoff Data Center
H  Height
HBV  Hydrologiska Byråns Vattenbalansavdelning
ICESat-2  Ice, cloud and land elevation satellite-2
IND  Niger inner delta
IOD  Indian ocean dipole
Landsat  Land remote sensing satellite
LSM  Land surface model
MERIS  Medium resolution imaging spectrometer
MGB  Modelo de grandes bacias
MNDWI  Modified normalized difference water index
MODIS  MODerate resolution Imaging Spectroradiometer
NASA  National Aeronautics and Space Administration
NDWI  Normalized difference water index
NIR  Near-infrared
NRT  Near real time
NSE  Nash–Sutcliffe efficiency
OLCI  Ocean and land colour instrument
P  Precipitation
Q  Discharge
RC  Rating curve
RS  Remote sensing
SAR  Synthetic aperture radar
SRTM  Shuttle radar topography mission
SWAT   Soil and water assessment tool
SWOT  Surface water and ocean topography
TMPA  TRMM multi-satellite precipitation analysis
TRMM  Tropical rainfall measuring mission
TWS  Terrestrial water storage
UKSA  United Kingdom space agency
VS  Virtual station
WL  Water level
WMO  World Meteorological Organization
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Article Highlights

• African countries are vulnerable to extreme weather events and global warming, and 
suffer from incomplete monitoring of river discharge

• Decades of Earth Observations data represent a tool to compensate for the reduction in 
the hydro-monitoring network and to model physical processes

• A review of methods is provided for hydrological and hydraulic modelling, and for esti-
mating river discharge, by using satellite data in Africa

1 Introduction

As a result of the changes observed in the climate over the years, such as rising tem-
peratures and shifting precipitation patterns, rivers have undergone and are undergoing 
major changes, locally increasing the hydrological stress. The risk of catastrophic floods 
or droughts has increased, threatening public health, weakening economies, decreasing 
the quality of life in many places and interfering with ecosystems (Besada and Wer-
ner 2015). For some decades, the Global Climate Observing System (GCOS 2016) has 
established the importance of river flow in the hydrological cycle, considering it among 
the essential climate variables, due to its role in linking atmospheric, oceanic and ter-
restrial processes. Environmental, and especially fresh water, monitoring is therefore a 
key component in addressing various aspects, such as understanding continental hydrol-
ogy and the water cycle, managing water supplies, assessing flood risks and hydropower 
generation, to name a few. For the hydro-meteorological monitoring, instruments, such 
as stream gauges, represent an irreplaceable resource for measuring river discharge 
in situ, thanks to their high quality, reliability and consistency. They remained the pri-
mary means of observation until the end of the twentieth century (Fekete et al. 2015). 
However, the in situ monitoring network is not evenly distributed all over the world, and 
some territories are better sampled than others. Moreover, with increasing modeling and 
sensing capacities together with local and global phenomena knowledge (Addor et  al. 
2020), initiatives have been launched to tackle this issue and build cooperation networks 
(Beven et al. 2020; Dixon et al. 2020). This uneven distribution of the in situ network 
is particularly flagrant in Africa, which presents a consequent deficit of gauges when 
compared to Northern Hemisphere territories. This is mainly due to (i) the high cost of 
in situ network installation and maintenance, (ii) security and political instability issues, 
(iii) transboundary basins, due to the lack of international cooperation agreements in 
many regions and (iv) lack of qualified staff able to ensure the maintenance of existing 
gauges or those recently installed in the frame of international programs. Hence, capac-
ity building must be leveraged out together with any improvement of the in situ monitor-
ing network. This is the aim of the international WMO-HYCOS program (https:// hydro 
hub. wmo. int/ en/ world- hydro logic al- cycle- obser ving- system- whycos). The insufficient 
sampling of African watersheds, and more generally of watersheds on the tropical belt 
(GRDC 2021), is a real issue for understanding climate change (CC) impacts on fresh-
waters and ensuring a safe, conscient and shared use of inland waters. The advent of 
satellite remote sensing of surface hydrological variables has brought new complement-
ing capabilities. Earth Observations (EO) derived from remote sensing platforms play 
a central role to fill the gap of ground observations (Santos da Silva et al. 2014), and 
allow to track the human impacts on the environment from a new perspective (Abdalla 

https://hydrohub.wmo.int/en/world-hydrological-cycle-observing-system-whycos
https://hydrohub.wmo.int/en/world-hydrological-cycle-observing-system-whycos
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et al. 2021). For the past two decades, hydrology in general has benefited from the suc-
cession of the different satellite missions and the extensive and temporally continuative 
availability of the remote sensing data. The traditional approaches have been adapted 
and tailored to make the most of EO data. Therefore, modern hydrology faces a major 
dilemma between the unprecedented availability of data with a large spatial–temporal 
coverage and their difficult diffusion and acceptability to users and stakeholders for use 
in specific applications. Regardless, it is undoubted the availability of a large number 
of different sensors (characterized by low to high spatial resolution and wide temporal 
coverage) that satellite measures can offer especially in areas with scarce measurement 
networks (Famiglietti et al. 2015; Papa et al. 2022, this issue). The use of satellites for 
the discharge assessment, especially in data-scarcity contexts, is of paramount interest 
not only for scientific applications but also for problems related to water resource man-
agement and flood risk prevention.

In this paper, we critically investigate the current methods for modeling and estimating 
river discharge, focusing on the support provided by satellite data, the main advantages to 
be expected from them, and the aspects related to the future roadmap even in consideration 
of climate changes. In particular, more emphasis is placed on their relevance on African 
basins highlighting difficulties and benefits.

This paper is organized as follows: Sect. 2 provides an overview on the methods used 
to estimate river discharge by ground and satellite observations; Sect. 3 contains a review 
of the river hydraulic models applied in the African basins and with the use of remote sen-
sors. Section 4 provides some examples for investigating the dynamic of the river flow in 
African rivers in a context of climate change. Section 5 discusses conclusions and future 
perspectives.

2  River Discharge by Ground and Earth Observation: A Working 
Combination?

River discharge is defined as the volume of water flowing through a river channel in a 
unit time (cubic meter per second). For more than a century, river discharge has been indi-
rectly estimated in rivers through ground measurements of water depth, water flow velocity 
and channel cross section width at different measuring points (bathymetry). Only in recent 
years, new techniques and approaches are involving satellite observations as a supporting 
tool to ground observations. In this section, an overview is given on the use of traditional 
in situ stream gauges and different satellite using radar and optical sensors data.

2.1  Estimation of River Discharge at In Situ Stations

In situ stations traditionally deliver daily or sub-daily estimates of river discharge at cho-
sen locations. Such estimates are conversions of water level readings or measurements (by 
stream gauges or level loggers) through a previously inferred stage/discharge relationship. 
However, establishing a rating curve at a given cross section is not straightforward, because 
of: i) the possible non-univocity of the height/discharge (H/Q) relationship depending on 
the type of the control and morphology of the river, ii) the difficulty of retrieving H/Q pairs 
in extremely low and high flows, iii) the natural heterogeneity and the possible changes of 
the cross section shape, iv) the multiple possibilities for the mathematical formulation of 
the rating curve, and v) the technological changes for measuring H/Q pairs.
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The hydraulic characteristics of stream channels, i.e., depth (d), width (w) and velocity 
(v), are measured quantitatively at ground observation stations, and these parameters vary 
with discharge as simple power functions at a given river cross section. Consequently, the 
structure primarily used for river discharge measurements is the channel cross section. The 
total instantaneous water flux (Q), in  m3/s or  ft3/s, through the cross section, approximated 
as rectangular, can be estimated using Eq. (1).

All discharge measurements rely on this simple relation. However, in natural channels, 
measuring discharge remains a challenge, as the variations of w, d and v with Q are uncer-
tain. Hence, a single discharge measurement actually comes from the discretization of the 
cross section into elementary stripes, where those are considered homogeneous and an 
integration, along the cross section, of the elementary discharges. The measurement of this 
discretized stripes can be made whether from current-meter or by ADCP (acoustic Doppler 
current profiler). While current-meters imply strong hypothesis on the distribution of hori-
zontal velocities within the cross section, on the direction of the flow and on its steadiness 
during the measure, the ADCP allows a finer representation of the cross section in a shorter 
timeframe which ensures the stability of river discharge during the measurement (Mueller 
et al. 2009). Thanks to the ADCP method, unique features of rivers were revealed, as the 
220 m depth and 4 m/s flow velocity in the lower Congo (Oberg et al. 2009) and it permit-
ted the manutention of in situ rating curve on large rivers along the time.

Despite the growing need of information on surface water availability fostered by the 
populational increase, the number of gauges has drastically decreased worldwide in the 
last decades (GRDC 2021). This is also true in Africa, where the GSIM database (Do et al. 
2018) accounts for more than 900 hydrometric stations before the 1960s, only half with 
data until the year 2000 (among which the majority is in South Africa) and only one hun-
dred with data after 2015. This sparsity and unequal distribution over the African continent 
raise issues for understanding climate change impact on surface water and designing flood 
early warning systems or hydraulic structures. Given this rarefaction of in  situ gauges, 
remote sensing approaches for estimating discharge have been leveraged out in the last dec-
ades. As expressed above, in a given section the discharge is a function of local hydraulic 
variables that can partially be measured from space. However, an attempt to leave out any 
of the parameters contributes to an error in the final estimate of discharge. Therefore, a sat-
ellite multi-mission approach with the capability of estimating w, d and v could be the ideal 
option. Yet, depending on channel properties and visibility from space, approaches based 
on approximations can provide accurate estimates of discharge. The accuracy requirement 
is also a function of the basin of interest and the purpose of the use of satellite data. Conse-
quently, the acceptable assumptions and simplifications will vary geographically.

2.2  Hydro‑Monitoring Network in Africa

Based on the recent report of GRDC (2021), the number of stations on the hydro-moni-
toring networks is decreasing in the recent years. If this can be a global problem, for the 
African countries the situation is exacerbated by the already low density of active moni-
toring network and by the lack of funds to maintain the hydrological services and train 
the technical staff (Hanna et al. 2011). However, recently, Tramblay et al. (2020) collected 
data of 1529 stations from GRDC and SIEREM database (Dieulin et al. 2019) in a unique 
dataset with minimum 10 full years of daily river discharge data in the period 1950 and 

(1)Q = w ⋅ d ⋅ v
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2018. This represents the largest ever built database of daily discharge data in Africa, and 
it can be considered here as the only source of data currently available and updated over 
the African continent. Because the strict conditions related to the national authorities, the 
sharing of original and real time data is not possible (Do et al. 2018), while it is allowed 
to distribute hydrological indices (e.g., minimum, mean and maximum daily streamflow, 
baseflow magnitude, slope of flow duration curve, to cite a few), that have been collected 
in ADHI, African Dataset of Hydrometric Indices (Tramblay et al. 2021). These metadata 
can be proficiently used in the modeling of different hydrological processes or for basin 
classification in Africa, for example. In terms of river discharges, the stations are quite 
well distributed (see Fig. 1) in the West and South Africa, whereas over the Congo and 
Nile basins, in which the mean flows represented by circles are quite large, the gauged sta-
tions are in a limited number. Looking at the climate of African countries these stations 
include most of the variety of climate types. According the Koppen–Geiger classification, 
most of the stations, 687, are located in the west and central Africa, in the Savannah area 
(Aw), whereas the Sahel region and Southern Africa are included in 207 stations over the 
Steppe-hot (Bsh) climate zone. A number of stations is located in the temperate with dry 
winter classes (Cwa and Cwb) related to the southern region (187 and 125 stations) and in 
the Desert-hot class (Bwh) of the northern and southern boundaries of the Sahara Desert 
(98 stations). Mediterranean climate of north and south Africa is represented by 87 stations 
under a temperate climate with dry hot summer. The diversity of climates zones sampled 
by the in situ stations indicates that CC studies may be undertaken based on such database. 
However, a strong limitation to that end is the length of records. Indeed, the WMO recom-
mends the use of a 30-year period to define climate normals, and such a long period is 
accessible only on a fraction of the database. Moreover, WMO also recommends that long-
term CC impacts assessment is computed over the 1961–1990 period, period for which the 
decline of the in situ monitoring network had already begun.

In this context, EO from space can help bridge the gap between past observations and 
current climate and surface water availability. Furthermore, most of sensors now offers 
records long enough to estimate trends and perform CC studies, at the condition of being 
brought in a compatible manner to that of in situ measurements.

2.3  Radar Altimetry for Understanding the River Flow: Past, Current and Future 
Missions

To date, the most widely used technology for estimating river discharge from space is radar 
altimetry. Altimeters provide the water level (WL) above a certain reference (see Papa et al. 
2022 for more details) that is used as in the traditional discharge monitoring, to derive 
river discharge through a rating curve, established by fitting a Manning’s like power-law 
to multiple simultaneous estimates of WL and discharge. Once the rating curve is estab-
lished, the water levels measured by satellite can be converted into discharge. Generally, 
the WL derived from radar altimetry is available at a virtual station (VS, defined as the 
intersection between the satellite ground track and the river) not located in correspond-
ence of in situ discharge measurements. This implies that methods are needed to estimate 
discharge at the VS location on a time span that overlaps with the one of the satellites. The 
most straightforward method is using distributed hydrological models (see §4.1). The main 
advantages of satellite altimetry WL when compared to traditional in situ networks are that 
satellites do not see boundaries and that the observations are all made in an absolute refer-
ence system, that makes hydraulic studies possible (see §4.2). After decades of research, 
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the satellite altimetry constellation now entered the operational era, with ESA’s Copernicus 
program, with promises of long-term monitoring of inland waters from space.

WL data derived from a single mission will at best give a temporal resolution of 
10 days, i.e., Jason-3, at worst 27 days (for the current flying missions). The number of 
VSs is also directly linked to this temporal resolution, with an inverse relationship (the 
shorter the revisit time, the bigger the spatial distance between each ground track, see 

Fig. 1  Climatology of Africa according to the Koppen–Geiger climate zones classification and location of 
the stations included in the ADHI database (Tramblay et al., 2021). The circles represent the mean flows 
(reported on the left) based on HydroAtlas database (Linke et al., 2019)
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Fig. 2). Altogether, there are now almost thirty years of WL from satellite altimetry. This 
forms a unique archive of observations of continental waters, even though several chal-
lenges are still to overcome (see Papa et al. 2022). An ensemble of the past, current and 
future altimeter missions summarized in Fig. 1 can potentially improve the temporal reso-
lution and spatial coverage of the resultant WL data. Therefore, a multi-mission approach 
is key to increase the acceptability among users and the possibility of merging with in situ 
databases of altimetry derived river discharge. Schwatke et al. (2015) developed a method 
that is based on an extended outlier rejection and a Kalman filter approach that incorpo-
rates cross-calibrated multi-mission altimeter data from Envisat, ERS-2, Jason-1, Jason-
2, TOPEX/Poseidon, and SARAL/AltiKa. An automated selection of raw data based on 
physical criteria is employed in Hydroweb (Crétaux et al. 2011; Santos da Silva et al. 2010) 
together with bias estimates to provide coherent multi-mission estimates of WL (mainly 
for Jason-2, Jason-3 and Sentinel3-A and B missions). Thanks to these methodologies, a 
number of studies have employed the satellite multi-mission databases to estimate river 
discharge (since the pioneering study in an African basin from Coe and Birkett 2004 on 
Lake Tchad basin, to recent ones such as Papa et al. 2010; Paris et al. 2016; Tourian et al. 
2016; 2017; Bogning et al. 2018; Scherer et al. 2020; Pujol et al. 2020; Malou et al. 2021). 
Despite the huge contribution provided by multi-mission approaches, the combination of 
different altimetry measurements represents still a challenge because of the inter-satellite 
biases (Normandin et al. 2018) which impede a straightforward combination of water level 
measurements (Tourian et al. 2022). The inter-satellite bias depends not only on the mis-
sion but also on the atmospheric corrections (Fernandes et al. 2014) or the retracker algo-
rithm (Kitambo et al. 2021), and therefore it cannot be considered global, but it needs to 
be estimated at regional scale. For rivers, a hydraulically and statistically merging (Tourian 
et al. 2016) can be considered a solution to solve the inter-satellite bias and to improve the 
temporal resolution even if accuracy may be compromised. In particular, the study of Tou-
rian et al. (2016) uses auxiliary measurements of average river width and slope, within a 
simple empirical hydraulic equation (based on Bjerklie et al. 2003) to estimate the average 
flow velocity and the time lag (due to streamflow between the altimetric virtual stations and 

Fig. 2  Timelines for the past (in orange), present (in green) and future (for SWOT) altimetry missions. On 
the extreme right, the revisit time of the satellite mission and the inter track of the orbit at equator
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the selected location along the river). Each measurement is shifted of the estimated time 
lag and stacked at the selected location. The stacked time series is normalized between the 
3rd and the 85th percentiles and the outliers are removed by Student’s t test with a monthly 
a sliding time window. The time series is finally rescaled according to the statistical water 
level distribution of the selected location.

Once dedicated to ocean monitoring, satellite altimetry is now taking the direction of 
continental waters monitoring, thanks to the advent of spatial hydrology. This change is 
materialized by the NASA/CNES/ASC/UKSA SWOT mission to be launched in late 2022, 
whose objective is to observe all rivers whose width exceeds 100  m (requirement, with 
a goal of 50  m). An intense activity is ongoing that involves researchers from different 
research laboratories to find methods that jointly use satellite derived water level, slope and 
river width for the final objective to estimate river discharge estimation also in ungauged 
river basins (Biancamaria et al. 2016).

Meanwhile, a number of ESA projects (FDR4ALT, Cryo-TEMPO, HYDROCOASTAL, 
St3TART) is aiming to re-process past missions with up-to-date algorithms and corrections 
and/or elaborating current missions (Sentinel-3 and Cryosat-2) focusing on inland waters 
to guarantee a continuous and consistent monitoring of rivers. These activities represent a 
valid and tangible support for non-expert altimetry users intended to employ satellite data 
for hydrological and hydraulic applications.

2.4  Optical and SAR Sensor Data as Tools for Supporting the River Flow Estimations

Besides the use of satellite altimetry, optical and the SAR imagery sensors can serve the 
purpose of detecting and measuring surface water. The use of sensors as MODIS, Landsat 
or Sentinel-1 and 2 is becoming more and more widespread on this topic, due to high data 
availability, as well as suitable spatial and temporal resolutions, increasing the number of 
algorithms and techniques properly developed to emphasize their quality with respect to 
the other source of remote measures (Huang et al. 2018).

Optical remote sensing imagery offers the possibility to easily discriminate water from 
land due to the lower reflectance of water, compared to that of other land cover types, in 
infrared channels. This simple concept has been implemented in numerous methods for 
extracting water areas both by using infrared band to derive a water map (Frazier and 
Page 2000) or through the use of water indices. The latter are calculated from two or more 
bands, to identify the differences between water and non-water areas, e.g., normalized dif-
ference water index NDWI (McFeeters 1996), or modified NDWI (mNDWI; Xu 2006). 
These indices are largely applied to extract surface water areas, flood inundation extent or 
width of the river. There is a well-known relationship between flow volume and inundation 
extent (Frazier et al. 2003; Frazier and Page 2009), and several studies have been carried 
out to develop empirical relationships between water extent remotely observed and ground 
observed river discharge (Leauthaud et al. 2013; Ogilvie et al. 2015; Overton 2005; Sagin 
et al. 2015; Townsend and Walsh 1998; Smith & Pavelsky 2008; Gleason and Smith 2014).

Although the combination of in situ and satellite observations is successful, river dis-
charge estimation is critical for many sites due to the scarcity and sometime absence of 
gauge stations, making difficult the monitoring of surface water variation. From space, it is 
possible measure water levels, channel width, channel slope and flow velocity, but it is still 
necessary to develop accurate models or specific relationships between these variables to 
estimate river discharge (Bjerklie et al. 2003).
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A different concept is studied by Brakenridge et al. (2005) who found a strong correla-
tion between river discharge and MODIS band 2 (NIR band) radiance ratio, suggesting 
another approach for discharge estimation. Following this approach, Tarpanelli et al. (2013, 
2017, 2019) extended and deepened the analysis demonstrating the big effectiveness to cal-
culate the reflectance ratio between a land pixel, C, located near the river in an area free of 
surface water even during high flooding and a water pixel, M, located in the bank of the 
river in an area subject to liquid surface enlargement. The ratio (C/M) was employed as a 
sensitive and consistent measurement of surface water and has been tested for several satel-
lite sensors, e.g., MODIS, MERIS, OLCI, Sentinel-2 (Tarpanelli et al. 2020; Sahoo et al. 
2020; Hou et al. 2020; Shi et al. 2020).

The combination of remotely sensed data with in situ data has the main advantage to 
help water monitoring transfer from point-based to region-based. This is the case of the 
study of Tarpanelli et al. (2017) in Niger-Benue River in which the relationship between 
the reflectance ratio calculated several km upstream, allowed to accurately predict the dis-
charge at the Makurdi station. The use of daily MODIS products guarantees a continuity 
suitable to address the operational activities and provides accurate results with a lead-time 
of four days, that is a sufficient time to warn the population and plan the evacuation of the 
settlements. This example is valid and reproducible only in large basins when the concen-
tration time is longer than the lead-time.

Concerning the use of SAR imagery, a few studies investigated how the geometric vari-
ation of the flow areas or river width extracted by the SAR images can be used for estimat-
ing the river discharge (Smith et al. 1995, 1996). The concept is again built on the relation-
ship between the physical variable (width or surface area) that changes during the high/low 
flows and the advantage with respect to the optical sensors, is the availability of the images 
also during flood peak in cloudy sky or during night time. However, the complexity of the 
processing does not foster the use of SAR for temporal analysis.

2.5  Multi‑Sensor Approaches for River Discharge Estimation

Nowadays, the large availability of satellite data coming from several sensors represents 
an unprecedented opportunity to observe and monitor the rivers and hydrological pro-
cesses. The characteristics of the various sensors sum to explore combined products able 
to observe the Earth under different aspects, e.g., improved resolutions, improved sam-
pling frequencies, monitoring ungauged areas (Jung et al. 2013). The combination of opti-
cal and altimetry data is particularly powerful to derive useful information of river dis-
charge. Sichangi et al. (2016) developed two simplified empirical formulas to derive river 
discharge by the exploitation of river width from MODIS and river stage from altimetry 
(Envisat and Jason-2). The analysis over 14 gauged stations from 8 major rivers resulted 
with the combination of both (NSE ranging between 0.60 and 0.97).

The combination of MODIS and radar altimetry is analyzed by Tarpanelli et al. (2015) 
and Tarpanelli et al. (2019) through two different methods based on physical and machine 
learning approaches, respectively. In the physical approach, the radar altimetry is used to 
derive water level, whereas the reflectance ratio from MODIS is used as proxies of flow 
velocity (Tarpanelli et  al. 2020). The two variables are used in the traditional formula-
tion of hydraulic to determine the river discharge along the Po River, making the exercise 
to know or not the bathymetry of the river cross section. Errors of 36% and NSE equal 
to 0.75 are in line with similar studies showing that the method can provide good results 
also in absence of bathymetry. In the machine learning approach, the MODIS and MERIS 
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reflectance ratio are used along with a temporal series of altimetry (ERS-2, Topex/Posei-
don, Envisat, CryoSat-2 and Jason-2) to train and test two independent artificial neural net-
works (ANN) for the Po River (at Pontelagoscuro) and the Niger River (at Lokoja). The 
validation results confirm that the more sensors that are involved, the better is the obtained 
performance.

Different applications are carried out by Huang et  al. (2018) that tested the potential 
of satellite sensors combination to derive river discharge in the Upper Brahmaputra River 
characterized by narrow river channels in the high-mountain. They extracted river width 
from Landsat, Sentinel-1 and Sentinel-2 (1237 images) and water level from Jason–2/3 and 
SARAL/AltiKa satellite altimetry and retrieved values of discharges through three differ-
ent procedures: two power function equations by using single satellites and a third equa-
tion considering the combination of both. Results again confirm the higher accuracy of the 
combination of several hydraulic variables compared to considering single variables.

3  Complementarity of EO Datasets and Hydrological/Hydraulic 
Modeling for Understanding River Dynamics in Africa

As expressed before, hydrological and hydraulic models are powerful tools to i) have a 
basin-scale vision of freshwater availability, ii) link physical on site processes to EO data-
sets, iii) help managing the watersheds and iv) design mitigation solutions for future cli-
mate change impacts on continental waters. With the increasing computational capacity 
and availability of EO observation, the number of local and regional initiatives have expo-
nentially grown. In this section, we illustrate the way EO datasets are being used in and/
or together with hydrological and hydraulic models for the study of continental waters in 
Africa, especially regarding river discharge estimation, and highlight the strengths and per-
spectives of such tools.

A number of scientific publications, accessible to the public and research communi-
ties, have been carried-out in the last years involving both modeling and EO datasets for a 
better understanding of African Rivers. Figure 3 provides a geographic view of the major 
African basins where discharge estimates were performed using hydrological or hydraulic 
models and EO datasets, whether for model set-up, calibration or validation. This figure 
illustrates the basins where, to our best knowledge, more than two publications exist and 
are available in the public domain, and is not representative of all the studies led with EO 
datasets (in particular, several studies on flood mapping from space exist and can be found 
in Papa et  al. 2022). The absence of publicly available studies can be related to several 
reasons, such as a dense in situ network and/or strongly anthropized basin (in South Africa, 
for example), turning EO datasets not necessary or hydrological time-scales difficult to be 
reached by RS observation (as for small basins with a fast hydrological response). It is also 
evidenced in Fig.  3 that EO datasets are most commonly used for model set-up (in that 
case, static datasets like DEM and Land Cover datasets are the most used) and that hydro-
logical/hydrodynamic and hydraulic models are a versatile tool widely used for improving 
knowledge of African basins.
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3.1  On the Use of EO Datasets for Building Large Scale Hydrological Models 
and Deriving River Discharge

The increase of computational capacity in the last decades has fostered the use of local to 
large scale hydrological and hydrodynamic models for deriving river discharge in several 
areas of application. The range of possible applications for such models is wide, spreading 
from the understanding of local flood events and wetland management to transboundary 
water resources management. Population growth leads to an increase in water resources 
used, such as wetlands, lakes and rivers for agriculture, fisheries (Sakané et  al. 2011; 
McLean et al. 2014; Leemhuis et al. 2016), transportation (Damania et al. 2016; Solomon 
et al. 2021) and hydropower (Falchetta et al. 2019). Adequate yet data-demanding, hydro-
logical models allow modeling past and present behavior of surface waters, and also pos-
sible impacts of climate change on those resources. Whether physically based or concep-
tual-based models can be used to represent surface water flows and understand their link 
with climate and human activities, and EO datasets allow their application in data-scarce 
regions (Brocca et al. 2020; Dile et al. 2020, among others).

However, the studies on hydrological processes have been slowed down by the lack of 
resources and data (Hughes et al. 2015) while in the last two decades the understanding of 

Fig. 3  Main watersheds where studies of hydrology and hydraulics modeling making use of EO datasets 
have been undertaken; Colored basins are those where a hydrological or hydrodynamic model was set-up 
using EO data; vertical black lines indicate those basins where a hydraulic modeling was employed; Black 
dots provide the basins where EO data were used for model set-up; white dots provide the basins where sur-
face water observations were used; horizontal lines indicate that other RS variables have been used



Surveys in Geophysics 

1 3

African watersheds has been improved thanks to the advent of RS. Climate variables (pre-
cipitation, air temperature, etc.) are now routinely derived from space and efficiently com-
plement the lack of the traditional in situ data. As the main driver of hydrological extremes 
(Karamage et  al. 2018), precipitation plays an important role in these new EO datasets. 
Satgé et  al. (2020) provided an in depth analysis of 23 precipitation datasets, highlight-
ing the importance of the very few rainfall gauges to improve RS precipitation products. 
Several studies have made use of those precipitation datasets for basin-scale hydrological 
modeling. Bodian et al. (2016) used the GR4J model to evaluate TRMM 3B42 3-hourly 
satellite precipitation over the upper part of the Senegal basin, with simulated hydrographs 
very similar to observed ones. In their study of a Malagasy river (the Tsiribihina), Andri-
ambelosom et  al. (2020) use the long term ARC2 rainfall as an input of the distributed 
MGB model to link past observation and present datasets. In their study, Dos Santos et al. 
(2022) investigated the impact of precipitation uncertainty (through the analysis of sev-
eral precipitation datasets) for hydrological modeling of the Congo Basin using the SWAT 
model. Daily TMPA 3B42 rainfall was used in the MGB model set-up over the Niger basin 
by Fleischmann et al. (2018) to better understand the model’s response to hydrodynamics 
in the Niger Inner Delta (IND). In this study, an estimate of channel width within the IND 
was also obtained from LANDSAT optical imagery. The aforementioned studies also used 
DEM (STRM) and land cover from space, such as ECOCLIMAP (Masson et al. 2003) and 
ESA CCI LC (ESA 2017), as ones of the model’s static inputs. SRTM DEM was also used 
by Kwakye et al. (2020) as a basis for basin description into the conceptual HBV model. In 
such set-ups, EO datasets are also frequently used as a validation of model results. Huls-
man et al. (2020) made joint use of satellite altimetry WL and GRACE data to constrain 
a distributed hydrological model in the Luangwa River basin in Zambia, one of the major 
tributaries of the Zambeze River. They concluded that besides their different resolution, 
satellite altimetry and GRACE data can be combined in order to better identify adequate 
parameters sets of large scale hydrological models in data scarce regions. Jung et al. (2017) 
used several EO datasets to investigate the accuracy of their coupled LSM-flow routing 
model set-up in the upper Blue Nile basin. Bader et al. (2011) built and calibrated a water 
balance model of Lake Tchad using satellite altimetry WL and LandSat imagery. In their 
studies, Munzimi et  al. (2019) and Paris et  al. (2022) used several EO products for set-
up and calibration of two hydrological models, the GeoSFM model and the MGB model, 
respectively. EO datasets provided critical information that permitted better calibrations of 
the models. Satellite altimetry was especially used by Fleischmann et al. (2018), Bogning 
et  al. (2021), Paris et  al. (2022) and Datok et  al. (2020) for means of model validation, 
hence filling the gap of the in situ databases. The strength of such studies is to convert dis-
crete and localized datasets with different time resolution into daily distributed information 
of discharge. They provide an applicable framework for hydrological studies and for infer-
ring hydrological state of African watersheds from space.

Beside climate change impact mitigation, the most critical aspect involving surface 
waters in Africa remains the day-to-day use that is made of rivers -navigation, electric-
ity and human consumption- and the consequences of extreme events. Africa recently suf-
fered several droughts (e.g., the 2021 global drought in eastern Africa) and floods (e.g., 
Niger River in 2020 and Ubangui River in 2019) that affected populations living in the sur-
rounding of the rivers. Attempts have been made to provide simple methodologies merging 
hydrological models and free and open-access satellite data that could provide decision-
makers intelligible and valuable information on unmonitored catchments. As pointed out 
by Trambauer et al. (2013) and Hawker et al. (2020), regional to continental-scale hydro-
logical models have the potential to provide useful information for drought and flood 
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monitoring and even forecasting. However, continental and global models have important 
limitations regarding their capacity to faithfully represent local phenomena, regional ones, 
informed with EO data, represent a valuable alternative. The global model GLOFAS (Har-
rigan et al. 2020) is one of the global models used routinely to provide operation discharges 
all over the world. Informed with global EO datasets, it provides long term discharge time 
series of African rivers. However, the lack of in situ data and the uncertainty lying within 
satellite data still turns difficult the use of such global models for analyzing large scale 
trends (Harrigan et al. 2020). Some studies have been undertaken to take advantage of the 
recently reached—after decades of research—operational status of the last satellite altim-
eters Sentinel3A&B (COPERNICUS program) and Jason-CS (NASA/CNES) that promise 
to deliver WL observations from space in NRT and with insurance of data continuity for 
the upcoming decades. Based on this, tools were developed to convert EO observation into 
discharge in NRT, thus fulfilling some of the gaps of deficient in  situ observational net-
works. Applying a methodology first built upon the Amazon basin experience, Bogning 
et al. (2021) built “altimetric stage/discharge rating curves” where the stage is WL derived 
from satellite altimetry and the discharge is simulated discharge from MGB model, bring-
ing back to life the historical observation at Lambarene gauge (Ogooué River, Gabon). A 
similar approach was successfully applied to a smaller watershed, namely the Tsiribihina 
River watershed, in Madagascar. In this watershed, not monitored anymore for decades, 
Andriambelosom et al. (2020) managed to re-activate the monitoring thanks to RCs built 
from modeling and satellite altimetry. In those two basins, due to unfavorable sizes and 
configurations, few RCs were estimated and the re-monitoring was successful only for the 
downstream part of the basin. However, the configuration was different in the Congo River 
basin. In their study, Paris et al. (2022) successfully estimated hundreds of RCs located all 
over the basin. The WL time series were taken from Hydroweb, and the discharges were 
simulated with MGB model. Since WL are provided in NRT (i.e., few hours to days after 
the satellite overpasses the river), it is possible to have an estimate of discharge and equiva-
lent depth (through the RC parameters) all over the basin in NRT. In mean, those RCs 
provide more than 26 observations of CRB surface water every day. Such a simple frame-
work could be applied in all African basins suffering from a lack of observational data in 
order to provide a spatialized view of water resources in NRT, without the need of any 
model run (beside the previous one used for inferring the RCs). It could be deployed with 
few efforts within a simple framework and would also be a good basis for more refined 
methods. A proposal of workflow would be: 1) run and calibrate a hydrological model on 
the target watershed (on a period overlapping with the altimetry era and with some in situ 
data available) to obtain distributed discharges; 2) extract WSE time series from altimetry 
in the basin; 3) compute stage / discharge relationships everywhere. At this step, each new 
WSE observation provide an estimate of discharge and depth, with no need of running any 
model. They can even be used, for sub-watersheds with a concentration time of some days 
to weeks, as a basic flood early warning system. Yet, the solution can be improved when 
not performing well enough (see possible reasons in Paris et al. 2016), in particular with 
the ancillary datasets from EO as exposed above. In case of particular local problematics, 
the framework can be completed as shown hereafter: 1) use of other EO datasets to derive 
discharge from space or/and 2) implement an assimilation system that will propagate the 
discrete daily estimates of discharge from space all over the basin or/and 3) use the esti-
mated discharge as an informer for a locally relevant hydraulic model (see an application of 
such framework in Malou et al. 2021) that will convert level and discharges into flood risk 
and areas or in refined depths.
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Also, the density of VSs now makes it possible to infer a priori RCs at newly monitored 
locations, such as VSs of future missions. In the aforementioned studies, the RCs were 
deliberately built on as little data as possible, namely only WL at VSs and correspond-
ing simulated discharge. The discharges estimated through this methodology will probably 
gain in performance when using WL together with slopes and widths, as provided by the 
forthcoming SWOT mission. In fact, in addition to the use of the official river discharge 
product, SWOT will provide water surface elevation, slope and width measurements to be 
used 1) for evaluating independent discharge estimates 2) for model calibration and vali-
dation and 3) in assimilation systems to improve models outputs (Andreadis et al. 2007; 
Biancamaria et al. 2011; Li et al. 2020). With the proliferation of global datasets on river 
hydraulic structures, waterfalls and global simulations of river hydraulics (Yamazaki et al. 
2011) the idea of use SWOT measurements even for hydraulic models at global scale seems 
quite close. Some studies have focused on the impact of assimilation SWOT data for opera-
tional use (see Munier et  al. 2015, on the upper Niger River basin) while other focused 
more on maximizing the use of the data (e.g., Revel et al. 2019, on the Congo River basin). 
In their study, Haile et al. (2016) successfully calibrated the HEC-HMS model with TMPA 
rainfall data in the Benue river basin (Niger river tributary) in order to build a flood-fore-
casting system fed by EO data (climate and rainfall). They recommend that riparian coun-
tries improve their data-sharing policies and that climatic predictions are improved.

All the aforementioned studies have provided an interesting insight on how to ade-
quately use EO to infer discharge from space in order to better understand the large scale 
behavior of African watersheds and the possible impacts of CC on water availability and 
distribution, and also to provide NRT estimates of discharges in poorly monitored basins. 
However, one common limitation of the aforementioned large scale hydrological models is 
their incapacity to adequately represent all the very local processes that can originate flood 
events or the fine scale variations of hydrodynamics and cross section areas, turning nec-
essary the use of more refined hydraulics (Trigg et al. 2016; Archfield et al. 2015; Alfieri 
et al. 2021). Hydraulic models have then been used stand-alone or coupled with hydrologi-
cal models for applications on representing floods in terms of levels or extents.

3.2  Informing Regional to Local‑Scale Hydraulic Models with EO Datasets

If remote sensing and in particular Satellite Earth Observations have enabled large-scale 
hydraulic modeling to take place in Africa, the move toward using remote sensing for 
hydraulic modeling started with the release of the Shuttle Radar Topography Mission 
or SRTM (Farr et al. 2007). SRTM is the most widely used digital elevation model and 
reduced the need for expensive manual surveys. However, while SRTM addressed one of 
the key inputs required in hydraulic modeling, it did not useful for monitoring of water lev-
els that is key in ensuring that hydraulic models are accurate. In Africa, obtaining historical 
information on water levels and or discharge is extremely difficult for a large number of 
reasons; however, Earth Observations are able to alleviate this problem through satellite 
altimetry and observation of inundation extents. One of the first applications of satellite 
altimetry to calibrate and or validation hydraulic model in Africa was in the Niger River 
Basin (Neal et al. 2012). Neal et al. (2012) used the ICESat laser altimeter to obtain water 
level information that was otherwise not available, in both the calibration and validation 
of a hydraulic model for the Niger inland delta. Schumann et al. (2013) also used the ICE-
Sat laser altimeter to calibrate a hydraulic model for the lower Zambezi River; however, 
they also used optical imagery from Landsat to produce inundation maps to evaluate the 
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accuracy of their model. Komi et al. (2017) used inundation extents for MODIS to validate 
the outputs from a hydraulic model for the Oti River basin. O’Loughlin et al. (2020) cali-
brated a hydraulic model for the middle reach of the Congo River using water elevations 
estimate from both ERS-2 and Envisat radar altimeters. Haque et al (2020) compared the 
inundation extents from a hydraulic model built for the Niger Inland Delta to inundation 
extents obtained from MODIS imagery. In a recent study, Kittel et al. (2021) used Cryo-
Sat2 WL observation to calibrate a steady-state hydraulic model on several reaches of the 
Zambezi River basin. Recently, Lamine et  al. (2021) merged satellite altimetry together 
with optical and DEM data through BAM-AMHG properties to retrieve discharges in a 
30-km reach around Niamey (Niger), highlighting the applicability of their methodology 
for poorly monitored reaches of African rivers.

Despite their importance for people and climate, large African rivers are among the 
most insufficient monitored systems in the world. Hydrologic and hydraulic modeling, 
constrained and informed by EO datasets, have enabled the study of those river systems, 
the understanding of freshwater distribution and the adequate representation of regional 
to local hydrological processes. This opens a wide path for hydrological studies of climate 
change impacts on African rivers and permits a better understanding of recent extreme 
events in a CC point of view.

4  EO and Models for Understanding Dynamics of Fresh Water 
in African Rivers in a Changing Climate

4.1  Combination of EO Datasets for Deriving Large Climate Trends

As a key resource for sustaining life and society, fresh water is among the most important 
components of the water cycle and the rising of average temperatures affects the rate of 
evaporation and precipitation patterns, contributing to intense and frequent storms, with 
increased runoff and hence, frequent flooding as well as intensify drought-affected areas. 
African countries are among the most affected by climate changes, because of high rates 
of population growth and the high declines in agricultural production, as well as the low 
resilience to the natural hazards, i.e., floods and droughts. Floods may destroy farmlands 
and crops, causing undernourishment and starvation (Tosam and Mbih 2015), and in the 
extreme cases can hit settlements causing fatalities and affected people. Standing water 
may increase the incidence of malaria and dengue fever. Droughts affect hygiene as prefer-
ence is given to cooking water and little is left for washing and cleaning facilitating the 
spread of infectious diseases.

Therefore, climate change mitigation is a crucial task of the first order, as well as politi-
cally and ethically complex. For the health sector, the challenge involves identifying the 
primary health threats posed by climate change and ensuring that strategies are devel-
oped to mitigate the risk (McMichael 2013). Water management falls entirely under this 
umbrella and requires urgent measures to manage the water resource through the adoption 
of climate change adaptation strategies. The first major step is the adoption of an inde-
pendent, continuous, and reliable monitoring system to control the past and current condi-
tions of rivers and lakes. Unfortunately, the traditional hydro-monitoring network in Africa 
underlines the scarcity in data (see §3.2). By the study of Crochemore et al. (2020), Afri-
can countries appear among the most suffering in terms of data availability and this lack 
avoid routine flood forecast evaluations (Lavers et al. 2019). The lack of data is certainly 
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detrimental to an objective assessment of change. However, the use of radar altimetry 
represents a very important resource for the evaluation of the dynamic of fresh water in 
African rivers (Becker et al. 2018). For example in the study of Kitambo et al. (2021) the 
intense activities of monitoring carried out by the collaboration with the regional partners 
of the Congo Basin Water Resources Research Center (CRREBaC) and the Environmen-
tal Observation and Research project (ORE HYBAM, https:// hybam. obs- mip. fr/ fr/ websi 
te- under- devel opment- 2/) allowed to demonstrate the benefits of using in  situ and earth 
observation datasets (i.e., radar altimetry and Global Inundation Extent from Multi-Satel-
lite, GIEMS-2) to improve our understanding of the water flow in the Congo River basin. 
This study will permit to infer whether the trends in the Congo basin, revealed from in situ 
data by Laraque (2015), are stable, increasing or decreasing.

The knowledge of the dynamics of the water heights of the river and their analogy 
with the river discharge enables us to extract information about climate trends. Spe-
cifically, in the studies conducted by Gudmundsson et al. (2019) and Crochemore et al. 
(2020) the West Africa experienced before 1980 a decreasing trend in the high and 
medium flows  (80th and  50th percentiles of river discharge), and an inverse positive trend 
pattern in the recent period (from 1990 to 2019) also confirmed by the study of Tram-
blay et al. (2020). This last period corroborates the already known “Sahelian Paradox” 

Fig. 4  Trend analysis of peak over threshold, POT. Columns illustrate the trend magnitude of high flow 
events (80th percentile), median flow (50th percentile) and low flow (20th percentile) for 1970–1999 and 
1990–2019 periods. The crosses in the images indicate sites with no significant trend; red and blues trian-
gles indicate sites with significant negative or positive trend, respectively (based on Fig. 15 in Belloni et al., 
2021)

https://hybam.obs-mip.fr/fr/website-under-development-2/
https://hybam.obs-mip.fr/fr/website-under-development-2/


 Surveys in Geophysics

1 3

(Descroix et al. 2013) according to which the increasing of river discharge is not linked 
to the increasing rainfall that in the same period seems to decrease, rather to the land 
use change. The same conclusions are obtained by the use of satellite altimetry data 
carried out by Belloni et al. (2021) over the same area (Fig. 4). Satellite altimetry water 
level data are set to update and fill long discharge datasets over different sites with the 
purpose to obtain long time series for the evaluation of climatic trend. The availability 
of several altimetry missions and several algorithms coming from different laboratories 
(DAHITI, THEIA) guaranteed an independent analysis that has been able to reach the 
same conclusions of the ground monitoring network, demonstrating the potential of the 
altimetry data also for climate change evaluation in rivers.

4.2  Understanding Recent Outstanding Events and Possible Future Trends Thanks 
to EO Datasets and Modeling

Given the decline of the in  situ observational network, there is a strong need of using 
hydrological models to infer and understand possible impact of climate change on major 
African basins. The several studies aforementioned have highlighted the difficulties in esti-
mating basin-scale hydrological state in a data-lack situation. To overpass this difficulty, 
one of the most straightforward solutions is to update model’s estimates through data 
assimilation. WL from satellite altimetry was used by Khaki and Awange (2020) to esti-
mate water storage variations. These variations were assimilated in a hydrological model of 
the Nile River and consequently improved the surface water simulations, and, by indirect 
feedbacks, the other components of the model. Consequently, EO data assimilation was 
used by Khaki and Awange (2021) to understand the 2019–2020 abnormal increase in Lake 
Victoria’s level. In their study, they used satellite altimetry and terrestrial water storage 
from GRACE-FO to understand and model the effect of large-scale ocean indices of Lake 
Victoria’s hydrology. They concluded that the 2019–2020 rise was triggered by the Indian 
Ocean Dipole (IOD) that caused an increase in TWS, leveraging changes in surface waters. 
The link between regional and global climate and surface waters was also investigated by 
Bogning et al. (2020) in the Ogooué River basin (Gabon). They used satellite altimetry to 
calibrate and validate the MGB hydrological model, and found that the inter-annual varia-
tions of ENSO (El Nino Southern Oscillation) plays a major role on river discharges in the 
basin. These conclusions could help understand the impact of CC on surface waters in this 
region. In their study, Näschen et al. (2018) used the SWAT model to infer the impact of 
vegetation change on basin hydrology.

They estimated the land use change from Landsat images between 1970 and 2014 in 
the Kilombero floodplain (Tanzania) and evidenced severe shifts in water balance due to 
these changes, emphasizing the fact that such interactions should be taken into account 
for ensuring that economic and population growth does not harm future food production 
capacity. The hydrological response to CC was also investigated by Aloysius and Saiers 
(2017). In their study, they forced the SWAT model of the Congo River basin, prepared 
with EO DEM data, with temperature and rainfall from 25 GCMs (global climate models). 
The outcome of their study is that most models predict a positive change in precipitation, 
P, subsequently leading to an increase in Q, in the equatorial regions, and a negative trend 
in P and Q in headwater catchments. This could consequently affect the compound hydro-
graph at Kinshasa and affect electricity and food production.
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5  Conclusions and Future Perspectives

In this paper, we reviewed the methods currently used to estimate and model river dis-
charge with the support of satellite data focusing on applications in Africa and in a cli-
mate change context. The overview offered in the paper emphasized the great advantage 
of having satellite data that are freely available, continuous over time, with a wide spatial 
coverage, and independent of any political aspect. The multiple applications reviewed in 
this paper tried to provide an overview of the possible way to analyze and manage the sat-
ellite data, from the direct use in the empirical formulas or the ingestion into more complex 
hydrological or hydraulic models with the final target to derive useful information about 
the flow in scarce data areas. In these situations that are typical of developing countries 
such as those in Africa, satellite data represent a rich source of data, sometimes exclusive, 
sometimes complementary to the existing in situ hydro-monitoring network. In fact, moni-
toring networks often suffer from problems of data availability and sharing and are not suf-
ficient to monitor the increasing number of extreme events that hit African countries, thus 
becoming the most vulnerable in the world. The main causes are linked to the low levels of 
socioeconomic growth and the lack of resources to mitigate and to recover from the effects 
of climate changes. A prioritized task for Africa is to improve climate resilience to achieve 
sustainable and equitable development and to guarantee quality of life of the people. The 
water availability has a central role in this aspect and the monitoring becomes one of the 
essential tools to manage the water resources and assess the flood and drought risks. A bet-
ter understanding of the hydrological regime of the sub-region would be very instrumen-
tal in helping policy makers and water resource managers to make important decisions on 
investment, development and management. The role of satellite and in situ data, together 
with the modeling and the data assimilation techniques, can offer a large support on this 
aspect and with the future perspective of high-resolution products the reproducibility of 
the implemented approaches for large basins to small regions appears increasingly feasible.

The ongoing initiative by the scientific community on existing or future satellite mis-
sions, as well as the exploration of new techniques and the recent advances in the machine 
learning methods, represents good opportunities:

• to improve the understanding of hydrological processes at various spatial and temporal 
scales,

• to play a determining role in the decision-making activities, and
• to maintain a long-term archive of hydrological data.

Moreover, the promotion and the dissemination of remote sensing is important for the 
process of developing and strengthening the skills, the processes and resources that Afri-
can organizations and communities need to survive and adapt to the climate change.
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