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ABSTRACT 

 
Data acquired from the hyperspectral airborne sensor DAIS-7915 over Antequera in southern Spain was processed 
to yield a quantitative soil swelling potential map based on three physicochemical soil properties currently used in 
engineering as measures of soil swelling namely cation exchange capacity (CEC), coefficient of linear extensibility 
(COLE), and Saturated moisture content (SP). The method adopted was the use of the statistical procedures of 
cluster analysis and factor analysis to obtain spectral parameters with a potential to classify the soils into classes 
based on existing classification thresholds of the three properties where laboratory, field and image extracted pixel 
spectral data analysis were used.  Applying this on a pixel-by-pixel basis revealed images that described spatially 
and qualitatively the surface distribution of these properties and thus swell potential differences among the soils in 
the area. The results gave an indication of the possible use of airborne spectral data for swell potential estimation.  
                                                                                
Keywords: Physicochemical properties, Absorption feature mapping, Derivative analysis, Factor analysis, Clay 
minerals 
 
 
 

1.0 INTRODUCTION 
 

Soils possess discrete spectral absorption bands resulting mainly from chemical activity of constituent minerals, 
organic matter and pore water [1]. Works based on laboratory field and airborne soil spectral reflectance has 
demonstrated their potential to provide information on soil properties among which are [2] quantitative estimation 
of moisture, organic matter and clay fraction [3], [4]. Airborne high spectral resolution sensors such as Airborne 
Visible Infrared Imaging Spectrometer (AVIRIS) and Digital Airborne Imaging Spectrometer (DAIS), have also 
been used to obtain soil surface compositional information [5] [6]. 

New remote sensing satellites such as HYPERION with 220 contiguous spectral bands in the 400-2500nm 
spectral range offer a new range of instruments that will in future make it possible to obtain such information from 
space allowing for easier establishment of soil properties by comparing pixel spectra and laboratory spectra with 
known quantitative information on these properties, providing faster and less expensive methods. This paper reports 
on the results where laboratory and field spectral data together with physicochemical soil properties namely; cation 
exchange capacity (CEC), saturated moisture content (SP) and coefficient of linear extensibility (COLE) are used to 
establish spectral parameters with a potential to derive information on soil swelling properties after which airborne 
DAIS hyperspectral data with a much lower number of spectral bands was used to try and obtain the same 
information. 
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Study Area 

The study area is to the south of Spain (figure 1) and lies between latitudes 4031/ 10// E and 4 051/ 10//E and 
longitudes 37000/ 04// N and 37 0 10/ 04// N and is about 45km North of Malaga covering a strip of 3 by 21 km 
between the Municipalities of Antequera, and Campillos in a Northwest -Southeast direction.  It falls within the 
continental Mediterranean type of climate and has a dry summer with an overall mean annual temperature of 17.6oC 
and a rainfall concentrated between the months of October to April. The soils are rich in 2:1 type of clay minerals 
with interstratified illite/smectite and illites dominant. The soil formation has been greatly influenced by the 
geological and geomorphological processes thus the degree of development has a high correlation with the 
physiographic position. The main sources of parent material are multi-coloured marls, gypsum, dolomites and 
dolomitic limestone. Others include dolomitic breccias, limestone, white marls, bioclastic sandstone, conglomerates 
and calcareous sandstone. 

The hilltops comprise of well-drained soils that are shallow and apparently well drained appearing as 
pockets spread out through the area. Texture ranges from sandy clay loam, to clay with colour generally dark. On the 
hillsides, old Alfisols occurs, and are subjected to erosion resulting in the exposure of the Petrocalcic/Calcic horizons 
and in some cases the bedrock, with the Calcic horizons playing an important role in shaping the landscape. The soils 
are well drained with textures ranging from loamy sand to clay loam on the surface and colour ranging from dark 
brown to reddish brown. On the foot slopes, remnants of the Alfisols are still predominant and are moderately deep to 
deep well-drained soils having a texture of sandy clay loam to clay and dark yellowish brown to yellowish brown 
colour. In the piedmont, young soils have developed over old Alfisols due to depositional and erosional processes 
which are shallow to moderately deep well drained soils with a sandy clay loam, to clay texture and a colour that 
varies from very dark brown to yellowish brown. The plain is composed of fluvial and lacustrine deposits. The soils 
developed from the lacustrine deposits are moderately deep and well drained, are strongly calcareous with sandy 
clay to clay texture and dark brown to brown in colour. Where occurring in depressions, the soils are imperfectly to 
moderately drained, shallow to deep with textures between sandy clay loams to clay loam. Along Guadalhorce river 
lies the alluvial plain where the soils are too recent to develop argillic horizons but on the higher terrace, the soils 
are deep with Vertic properties cracking at some time of the year. Textures are silty clay to clay and colour dark 
brown to brown.  
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2.0 MATERIALS AND METHODS 

 

2.1 Data Acquisition 

Four data sets were used in this analysis consisting of 1) soil physicochemical properties 2) laboratory spectral data, 
3) field spectral data and 4) DAIS image data. 
 

2.1.1 Field soil data sampling  

Sampling sites were selected based on previously determined cation exchange capacity (CEC) values, in an existing 
soil database of the area, in the Soil Science Division of the International Institute for Geo-Information Science and 
Earth Observation (ITC), Enschede, in the Netherlands. The sample sites were selected to represent the range of 
soils within the area based on these CEC values. At each site three bulk and six clod samples were collected from 
the surface soils (0-20cm) within a five-meter radius at the same time in June 2001 when airborne hyperspectral 
data was acquired. Proper location of the selected sites was done using the global positioning system (GPS) in order 
to obtain samples as near to the existing data as possible. Other ancillary information, of each field spectra-
measuring site, i.e. description of the soil, and percentage cover of both soils and vegetation was also recorded. 
Extra sites were randomly selected and added to the previously selected sites, resulting in a total of fifty sites. 
 

Figure 1. Location map showing soil parent material 
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 4 

 
2.1.2. Physicochemical data 

This consisted of the estimation of the particle size distribution (PSD) cation exchange capacity (CEC), coefficient 
of linear extensibility (COLE) and saturated moisture (SP) content. Particle size analysis was by the pipette method 
while CEC was through the mechanical extractor method [7]. The Atterberg limits were by BS1377: Part 2:1990 
method [8]. COLE was through the clod test method [9] while saturation moisture content was the difference in 
weight between saturation and oven dry states of the samples. The clay content was used to normalize the CEC to 
give cation exchange activity (CEAc) and the combination of the three properties used to group the soils within 
certain established thresholds within which they are assigned to a swelling potential class and a dominant clay 
mineral type.  
 
 
 
 
2.1.3 Spectral data acquisition 

In the laboratory spectra of split samples of those used for the physicochemical tests (passing the < 2 mm sieve and 
oven dried at 1050C) were obtained using the PIMA (Portable Infrared Mineral Analyser) upgrade spectrometer and 
GER 3700. Both have an average spectral resolution of 10 nm with the PIMA covering the spectral range between 
1300 nm and 2500 nm and GER 3700 the range between 400nm and 2500nm. Field measured spectra data at 
selected sites during the flight represented the field spectral data.  

The DAIS hyperspectral data was acquired on 28 June 2001 at an altitude of 10 000 feet (providing a pixel 
size of approximately 5 m×5 m) with a sensor that is sensitive to the visible (VIS), near infrared (NIR), short wave 
infrared (SWIR) and thermal infrared (TIR) spectral regions (0.4–14 nm) consisting of 79 channels with a 
bandwidth ranging from 0.9 nm in the VIS to 60 nm in the TIR. The image scene covered an area of 21km by 3 km 
in a northwest southeast direction. For this paper only the reflective portion of the electromagnetic radiation was 
used covering the VIS-SWIR (0.4–2.5 mm) spectral region with 72 spectral bands.  
 
 
 
 
 
2.2 Data analysis 

2.2.1 Spectral analyses 

Analysis of the spectral data was by use of several currently applied techniques found to adequately represent 
information in the spectra i.e. absorption feature mapping [10] and the derivative analysis where finite 
approximation method was used [11].  

 
2.2.2 Swelling potential categorization  

The soils were classified into three swelling potential classes based on various classification thresholds (table 1) 
established over the years by different workers on the measured properties. These thresholds are a result of 
normalizing the measured properties with the clay content giving a relative measure of the clay influence on the 
various properties to that of sand and silt contents.  
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2.2.3 Statistical analysis 

 K-means cluster algorithm was used to first establish spectral parameters with a potential to give information on the 
measured soil properties suing the laboratory and field spectral data. The method is based on identifying homogeneous 
groups of cases within a heterogeneous data [16] establishing cluster centres to represent each class difference with the 
other clusters.  The clusters were set at 3 and the initial centres as the three established thresholds in table 1. Resulting 
spectral parameter assignments were made based on their association with each of these categories and assumed to 
provide information on differences in the measured properties among the soils giving spectral thresholds and assumed 
to show variation in abundance of the various mineralogical assignments. 

The second stage involved the use of factor analysis to establish quantitative assignments to the 
simultaneous variation in the spectral parameters and physicochemical properties by assigning the factor scores of 
the factor with strong assignments from the measured properties to a normalized scale. Factor analysis is based on 
common factors analysis, where elements on the principal diagonal are the communalities, which means that only 
the common variance of the variables are analyzed. Thus it has the advantage of removing the unique factors of 
each variable and optimizing the information content based on the common factors. The method is often used in 
data analysis to study correlations among large numbers of interrelated quantitative variables by grouping the 
variables into a few factors where variables in a factor are more highly correlated with one another than to those in 
another factor. This enables interpretation of factors in terms of their contributing variables. Here the factor with 
maximum contribution from the measured physicochemical properties was assigned to represent compositional 
differences and thus to varying swelling potential levels. Spectral parameters with strong loadings from this factor 
were assumed to show strong correlation to the compositional factors contributing to the differences in the 
measured physicochemical values. 
2.2.4 Image data analysis 

The atmospheric correction was performed with the Atmospheric/Topographic Correction (ATCOR4) model for 
wide FOV airborne imagery [17]. The visible (VIS) to near infrared (NIR) i.e. 0.49-1 µm, short wave infrared 
SWIR-1 (1.5-1.8 µm) were good, however problems existed with the spectrometers in the region 1.948-2.179 µm 
that made the data not useful. There was noise in 2.317 – 2.395 µm region that was minimized by use of the moving 
average smoothing technique prior to analysis. The procedures employed on the laboratory data were repeated on 
the image data where extracted pixels spectra at each of the soil sampling locations were used together with the 
resampled field and laboratory spectra for the statistical analysis. Resulting spectral assignments were then used on 
a pixel-by-pixel basis on the whole image. 
 
 
 
 
 
 

Table 1. Classification based on various schemes  [12][13] [14][15] 

Class COLE CEAc Saturation moisture Estimated mineralogy 

Low  <0.05 <0.2 <30 Kaolinite>50 

Moderate 0.05-0.15 0.2-0.6 30-45 Illite>25 

High >0.15 >0.6 >45 Smectites>50 

224



 6 

3.0 RESULTS 

 
 

Table 2 gives the summarised 
range and statistics of the 
measured physicochemical 
properties, showing a relatively 
wide variation in these 
properties. The mean for SP 
(50%) was relatively high as 
would be expected for clay 
soils, CEAc (0.41) and COLE 
(0.053) were moderate thus 
classifying the soils as of 
moderate activity. The clay 
content was relatively high with 
an average of 46% and ranging 
between 27% and 71%.  
 
 
 
 
 
 
 
Table 3 provides the 
cluster centres based 
on the absorption 
feature parameters of 
the laboratory and 
field spectra and the 
physicochemical 
properties. Figure 2 
shows the spread of 
samples in each 
cluster from their 
cluster centres based 
on the Euclidean 
distance where only a few samples seem to be significantly different from their means and in the 3rd cluster, thus 
showing each cluster to properly represent the assigned threshold. The 1st derivatives peak intensity at various 
wavelengths regions around the water and hydroxyl absorption features were found to give similar results. The 
results show that though other sources of variability between the soils are likely, the spectral variability seemed to 
give a good indication of the compositional differences and thus provide a good source of information on the 
swelling potential of the soils based on the three measured properties and the previously assigned minerals. 
Samples of high swell potential and assigned to abundant smectite in table 1 grouped in the second cluster whereas 
those of moderate and low potential grouped in the first and third clusters respectively proving the spectral 
parameters potential. 
 
 

 

Table 2. General information on engineering indices 

Property Minimum Maximum Average Standard 

Deviation. 

SP 28 76 50 0.33 

CEAc 0.12 0.7 0.41 0.12 

COLE 0.01 0.108 0.053 0.39 

Clay % 27 71 46.1 11.9 

Table 3. Final Cluster Centers 

Clusters

1 2 3
Asymmetry 1400 1.0796 .8989 1.0336

Depth 1900 0.0481 0.0865 0.0399
Wave position 2200 2207.30 2218.29 2206.37

Asymmetry 2200 0.96 0.62 1.15
CEAC 0.41 0.6 0.23

SP 52.7 75.9 28.2

LE/% clay 0.05 0.09 0.02
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However though there is a 
clear separation between low 
and high value classes based 
on both the measured 
physicochemical properties 
and spectral parameters, this 
cannot be said to be the case 
for the moderate value group 
as evident from the distance 
between the cluster centres 
(table 4) probably showing 
two clusters as more 
appropriate. The 
classification error of the 
individual samples was 
observed at below 16%. This 
resulted in the use of two 
clusters for the image data with 
much better results as will be 
discussed later. 
 
 
The laboratory results were 
applied on the DAIS image data 
with much lower spectral band 
pass where re-sampled field and 
laboratory data together with 
extracted pixel spectra of the 
various sampling sites were 
used and gave an indication of 
similar differences among the 
soils by giving clear separation 
between the samples into two 
clusters based on the 1st 
derivative analysis results where 
several wavelengths were 
established to give peak 
intensities with a potential to 
place the samples into the 
cluster memberships (p< 0.01). 
They included; 1606nm, 
1698nm, 2151nm, 2252nm 
2193nm, 2304nm and 2342nm 
whose peak positions are all in 
spectral regions, which have 
been assigned to spectral 
anomalies in clay minerals reflectance and to the presence of Al-OH and Mg-OH in dioctahedral and trioctahedral 
clays [18].  Table 5 provides the final cluster centres after 25 iterations of both the spectral parameters and the 
measured properties among the soil samples whereas figure 3 gives an illustration of the samples distribution in terms 

Table 4 Distances between Final Cluster Centers 

Cluster 1 2 3

1 25.392 14.298

2 25.392 38.724

3 14.298 38.724
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Figure 2. Variation in distance to cluster centers among used soil samples

Table 5. Final Cluster Centers 
Cluster

 1st derivative peak 1 2

R_551 10.966 17.812
R_1606 3.047 -1.874
R_1698 2.745 1.414
R_2151 -2.518 1.220
R_2193 -6.867 -3.548
R_2252 -7.649 -5.872
R_2304 -10.441 -4.502
R_2342 -2.331 -8.026

COLE .07 .02
SP 67.33 42.25

CEC 32.67 16.50
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 8 

of distance from their 
respective cluster centres 
where only a few 
samples are seen to be at 
great distances from their 
centres thus appearing as 
offshoots in what is 
generally a distribution 
well within short 
Euclidean distances. 

 

 
 
 
 
 
 
 
 
 
 
Figure 4 gives an 
illustration of the 
resampled average 
spectra of soils in each 
of the two clusters 
where it is 
significantly evident 
that the spectrum of 
cluster 1, comprising 
of the higher value 
soils shows a 
generally lower albedo 
at all wavelengths 
relative to that of 
cluster 2. This is as 
would be expected for 
soils with significant 
contents of the high swelling smectites whose possession of structural water and formation of complexes with 
organic matter due to their generally lower positions in the landscape, could explain the lower reflection relative to 
those in the second cluster presumed to consist of the much lower swelling potential minerals soils whose albedo is 
generally higher based on their better drainage and probably less presence of organic matter complexes.  It is 
important to point out here that of the samples used in this classification only less than 10% were misclassified thus 
showing the selected spectral assignments as good in the characterization of the soils on the basis of the three swell 
indicator properties.  
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Figure 3. Variation in distance to cluster centers in used soil samples with DAIS 
extracted pixel data
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Figure 4. Average spectra of low and high properties value soils 
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The second stage involved 
quantization of these 
relationships based on the 
factor analysis statistical 
procedure where the factor 
extraction was done with 
criteria that the minimum 
acceptable eigenvalue must be 
greater than 1 [19].  The first 
two factors explained more 
than 87% of the variance where 
factor 1 grouped the measured 
physicochemical properties 
with some of the spectral 
parameters both of which had 
high factor loadings.  The 
second factor only had high 
loadings from mainly spectral 
parameters not found in the 
cluster analysis to closely relate 
to the measured properties and 
thus was interpreted to consist 
of insignificant information as 
to their variability (figure 5).   
 
 
 
 
 
Spectral parameters with high factor loadings in factor 1 were interpreted to represent the reflectance spectral 
information on the measured properties among the samples. The factor loadings were; COLE (0.86), CEC (0.76), 
SP (0.92) and for the spectral parameters 551nm(-0.82), 1606nm(0.52), 1698nm(0.75), 2151nm           (-0.88), 
2252nm(-0.55) 2193nm(-0.7), 2304nm(0.94) and 2342nm(0.77). This confirmed the cluster membership 
assignments and led to the conclusion that the factor could be used to explain variation in the soil swelling 
properties among the used soil population, by assigning the soil samples to their factor scores.  

The results show the loadings to portray the information as coming mainly from wavelength positions 
associated with strong presence of clays rich in Al-OH (2151nm, 2193nm) and Mg-OH (2304nm) cited in many 
writing as a reflection of the strength of the combination of fundamental OH stretching (ν)  and  bending (δ) modes 
of OH-metal-OH bonds in the octahedral and trioctahedral positions respectively.  High albedo in clays has been 
assigned to one of the other significant positions (1698nm) also described by [20] as best for mapping clay content 
in surface soils and in several studies has been established to show strong correlation with CEC (one of the three 
measured physicochemical properties). The strong correlation with CEC has been attributed to CEC being closely 
related to soil constituents that do exhibit spectral behaviour namely clay type and content [21].  The position 
attached to   Fe-OH (2252nm) was relatively weaker in the results that probably reflect the presence of ferric iron 
association with well-drained and weathered soils. [22] attributed the reflection intensity at the 551nm region to 
iron hydroxides containing water and products of significant weathering, which could also probably explain its 
significance in the results. 

 
 

Figure 5. DAIS data reduction to obtain  spectral calibration wavelengths 
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At a vegetation cover as 
high as 15% surfaces 
have been described to 
appear as soil [23] 
whereas vegetation 
cover in excess of 40% 
makes the spectral 
behaviour that of 
vegetation. Based on 
these assumptions and 
prior to application of 
the above results on the 
whole DAIS scene, the 
image was classified into 
vegetated and scarcely 
vegetated/bare soil 
regions using the 
Normalised Difference 
Vegetation Index 
(NDVI) (figure 6) where 
masking of highly 
vegetated area assumed 
to consist of greater than 
40% vegetation cover 
was set at NDVI > 0.5 
that has been reported as 
appropriate  [24] when 
establishing soil surface 
properties.  All the other 
areas were used for the 
classification based on 
the previous 
assumptions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Criteia for masking Areas with heavy vegetation (NDVI >0.5) 
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Figure 7 shows the resulting 
classification of the image based on 
the obtained results where the factor 
scores established in the common 
factor based on the spectral and the 
measured properties were used to 
classify the entire image by assigning 
the selected spectral parameters 
weights based on their contribution to 
this factor and scaling the range 
between 0 and 1 thus areas with a 
value of 0-4 being mainly those of 
low measured property values, 0.4-0.7 
moderate and greater than 0.7 as of 
high values. The results to a great 
extent gave a relatively good 
indication of the measured property 
differences based on field knowledge 
where it was found to mainly classify 
the soils into low to moderate 
property values that are characteristic 
of the soils in the area.  

Misclassifications however 
did occur as would be expected 
probably due to variations resulting 
from other sources.  The results 
however seem to indicate that despite 
these other sources of variability, the 
composition differences influencing 
the soil physicochemical properties 
play a significant role in their spectral 
characteristics that can be used to 
obtain information on their 
differences probably confirming 
observation by [25] that soil patterns 
remain visible even in the presence of 
some vegetation and the fact that, drainage and moisture holding capacity differences among soils tend to influence 
their overall reflectance.  

The results show that in addition to absorption features, changes of the spectral slope can play a significant 
role in the estimation of soil properties from hyperspectral data with much lower spectral band numbers relative to 
those regularly used in the laboratory and field measurements, despite the atmospheric interference.  This has found 
use in other soil property estimations [5] making the obtained results significant. Thus though the hyperspectral 
data might not give as precise measurements as the laboratory procedures it could be a good tool for quick 
assessment on the surface properties and thus a start to more detailed assessment in the field or at a laboratory scale.  
It should be pointed out though, that caution should be taken when using such information since spectral noise 
could be introduced into the results based on the amplification of noise by derivative procedures, which could lead 
to irrelevant band assignments to compositional differences. 

Figure 7. Classification based on spectral parameters and measured 
properties. 
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Comparing this with the parent material map (figure 8) show some correlation where the moderate to relatively 
high property values soils fall mainly into parent materials consisting of marls, clays and alluvial deposits. 
Sandstones and conglomerates seem to give low value soils. This probably confirms [21] conclusions that parent 
material is a key component in the resulting soil spectral characteristics and the results of [26] who found parent 
material to affect the spectral reflectance in all wavelengths when working with deltaic, alluvial and marine 
outwash soils.     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0 DISCUSSION 

 
The laboratory results show that soil compositional differences has great influence on their resulting spectral 
parameters which can be used to classify them on the basis of their associated property differences. The differences 
in the absorption feature parameters in terms of strength of the hydroxyl (OH) and molecular water features relative 
to the presence of clay minerals with a potential to influence the measured swelling potential indicator properties 

Figure 8. Parent material distribution map 
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were seen in the variations in depths, asymmetries and position shifts which as previously described is a function of 
the soil clay mineralogy and their structural differences which as seen in the established classification tables result 
in surface area differences a key to the variation in the soil physicochemical properties.  The clusters give an 
estimation of the discrete boundaries within which spectral parameters can be used to classify soils in terms of their 
swelling potential based on these classes and reflect the covariance between the soil physicochemical properties and 
their spectral response. Several reports have cited the potential of using spectral data to establish soil properties 
resulting from soil constituents with obvious spectral character and has been described as pronounced for CEC, one 
of the used properties, relative to others such as the particle size classes and bulk density [27].  

This seems to be evident even in the lower spectral band number of the airborne image data where the 
spectral derivatives gave significant information s to the compositional differences a fact that could be attributed to 
the manipulation enhancement of weak absorption [28] and suppression of physical influences [29], thus providing 
clearer information on the absorption mechanism by minimizing interfering properties such as the soil surface 
roughness and grain size distributions. The results are also in line with [30] observations of spectral data providing 
information on underlying processes bringing about the soil composition differences such as the soil internal 
drainage that has been described to influence reflectance. Thus the generally high reflectance at all wavelengths by 
the well-drained soils and lower reflection by the poorly drained soils could be attributed to this and has previously 
been documented by [25]. A clear evidence of this is in the two averaged spectra for the resulting clusters providing 
the discriminating spectral parameters for the image classification of which established significant wavelengths 
have all been described to provide important information on soil water and mineralogy [31] [32][33][34] further 
confirming the approach as viable in soil property studies.  

The results could therefore be taken to provide a strong case for the potential application of remote sensing 
to soil properties estimation more so those related to presence of clay minerals and their interaction with moisture 
that can be assigned to indicate differences in affinity for water. They give an indication of the potential role of 
reflectance spectroscopy as a primary or complementary tool in such determinations, though they also show the 
limitations of hyperspectral data relative to laboratory data in terms of information content.  

 
 
 

5.0 CONCLUSIONS 

 
The results show that both absorption feature parameters and other data manipulations that enhance potential 
differences in the reflectance among soils consist of information, which with proper calibration can be used to 
differentiate soils on the basis of their physicochemical properties. This could easily be attributed to the covariance 
between the soil properties without a primary response in the soil spectra (used indices) with those possessing such 
a response (the clay mineralogy and soil water) making it possible to use the spectral diagnostics of the primary 
response factors to obtain information on their co-varying properties. The resolving capacity of the airborne data 
was however insufficient to resolve some of the most diagnostic spectral parameters established in laboratory data 
to provide details as to the molecular structural differences among the compositional elements. This probably calls 
for the applications of higher bandwidths in the airborne data acquisition that would resolve some of these unique 
feature parameters and probably help in minimising on the possibility of including spectral noise in the analysis 
which as previously discussed is enhanced when using the derivatives. 

 It was clear though that surface spectral reflectance holds information representative of the soil 
compositional differences and with proper data manipulations could be used to derive related properties even 
though other sources of variability could have been in play. The results confirm reflectance spectroscopy as a tool 
that adds value to the existing soil properties classifications schemes by filling the information gap as to causative 
compositional factors by adding a physical basis of diagnostic differences of the clay mineral types in the reflected 
soil spectra. The results lay the foundation of establishing a faster method of characterizing soil in terms of their 
swelling potential and other related properties.  
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