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ABSTRACT 

This paper presents a method for smoothing GPS data from a UAV using Extended Kalman 

filtering and particle filtering for navigation or position control. A key requirement for navigation 

and control of any autonomous flying or moving robot is availability of a robust attitude estimate. 

Consider a dynamic system such as a moving robot. The unknown parameters, e.g., the 

coordinates and the velocity, form the state vector. This time dependent vector may be predicted 

for any instant time by means of system equations. The predicted values can be improved or 

updated by observations containing information on some components of the state vector. The 

whole procedure is known as Kalman filtering. On the other hand, the particle filtering algorithm 

is to perform a recursive Bayesian filter by Monte Carlo simulations. The key is to represent the 

required posterior density function by a set of random samples, which is called particles with 

associated weights, and to compute estimates based on these samples as well as weights. We 

compare the two GPS smoothening methods: Extended Kalman Filter and Particle Filter for 

mobile robots applications. Validity of the smoothing methods is verified from the numerical 

simulation and the experiments. The numerical simulation and experimental results show the good 

GPS data smoothing performance using Extended Kalman filtering and particle filtering. 

Keywords: GPS, Extended Kalman filter, data smoothing and estimation navigation, UAV, 

Mobile robots. 
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 INTRODUCTION 
 

This paper presents a method for smoothing data from a UAV using Extended Kalman filter 

and Particle filter for navigation or position control. A key requirement for navigation and 

control of any autonomous flying or moving vehicle is availability of a robust attitude 

estimate. Consider a dynamic system such as a moving vehicle. The unknown parameters, 

e.g., the coordinates and the velocity, form the state vector. This time dependent vector may 

be predicted for any instant t by means of system equations. The predicted values can be 

improved or updated by observations containing information on some components of the 

state vector. The whole procedure is known as Kalman filtering (Lewis et al., 2007; Xu, 
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2003; Rigatos, 2011). It corresponds to sequential adjustments in the static case. 

Consequently, optimal estimations of the unknowns on the basis of all observations up to the 

epoch t are obtained. The Global Positioning System was conceived as a ranging system from 

known positions of satellites in space to unknown positions on land, sea, in air and space. 

Effectively, the satellite signal is continually marked with its transmission time to that when 

received, the signal transit period can be measured with a synchronized receiver. Apart from 

point positioning, the determination of a vehicle’s instantaneous position and velocity, and 

the precise coordination of time were original objectives of the GPS. The most widely used 

algorithm for multisensory fusion is the Extended Kalman Filter (EKF); however this is 

based on linearization of the system dynamics, which results in a suboptimal application of 

the recursive estimation of the standard Kalman Filter. Moreover, the EKF follows the 

assumption of Gaussian process/measurement noise which does not always hold. These can 

seriously affect the performance of the state estimation and even lead to divergence. 

Consequently, the performance of a control loop that uses an EKF-based estimate of the 

system’s state vector can, in some cases, be unsatisfactory. To overcome the EKF flaws, a 

different approach to state estimation of nonlinear dynamical systems is proposed such as 

Particle Filter. The Particle Filter (PF) is a non-parametric state estimator which unlike the 

EKF does not make any assumption on the probability density function of the measurements. 

The concept of particle filtering comes from Monte-Carlo methods. The Particle Filter has 

improved performance over the established nonlinear filtering approaches (e.g. the EKF), 

since it can provide optimal estimation in nonlinear non-Gaussian state-space models. 

Particle filters can approximate the system’s state sufficiently when the number of particles 

(estimations of the state vectors which evolve in parallel) is large. The PF also avoids the 

calculations associated with the Jacobians which appear in the EKF equations. The main 

stages of the PF are prediction (time update), correction (measurement update) and 

resampling for substituting the unsuccessful state vector estimates with those particles that 

have better approximated the real state vector. Comparing EKF and PF methods, the latter 

require more sample points to approximate the state distribution. However, the PF is a 

nonparametric filter which can be applied to any kind of state distribution, while the EKF 

state estimators are still based on the assumption of a Gaussian process and measurement 

noise. Validity of the smoothing methods is verified from the numerical simulations and the 

experiments. The numerical simulation and experimental results show the good GPS data 

smoothing performance. We compare between the two GPS smoothening methods: Extended 
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Kalman Filter and Particle Filter for mobile robot applications. Validity of the smoothing 

methods is verified from the numerical simulations and the experiments. The numerical 

simulation and experimental results show the good GPS data smoothing performance using 

Extended Kalman filtering and particle filtering. 

SYSTEM FORMULATION 

It corresponds to the sequential adjustment in the static case. Consequently, optimal 

estimations of the unknowns on the basis of all observations up to the epoch t are obtained. 

The time dependent state vector X[t] comprising the unknown parameters of the dynamic 

system may be modeled by a system of differential equations of the first order as  

T

zyxzyx tatatatvtvtvtztytxtX )](),(),(),(),(),(),(),(),([][ 
    (1) 

2)()1( 2TaTvtxtx xx 
      (2) 

2)()1( 2TaTvtyty yy 
      (3) 

2)()1( 2TaTvtztz zz        (4) 

Ttatvtv xxx  )()()1(
       (5) 

Ttatvtv yyy  )()()1(
       (6) 

Ttatvtv zzz  )()()1(                                                               (7) 

Consider the following dynamical system: 

][][][][]1[ tWtGtXtFtX        (8) 

And the observation equation: 

][][][][ tVtXtHtY          (9) 

where, 
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Where W[t] is the noise input and V[t] is the measurement noise. We shall adopt the 

following assumptions for the process and measurement noises. 

  0][E tW ,   0][E tV        (13) 
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is the Kronecker delta 
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The filter equation is given by 
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]|[ˆ]|[]|1[ˆ ttXttFttX         (17) 

1]}-t|[tˆH[t]-K[t]{Y[t]  ][ˆ]|[ˆ XtXttX      (18) 

where the Kalman gain is  

  1

][][]1|[ˆ][][]1|[ˆ][


 tRtHttPtHtHttPtK TT

    (19) 

33][  ItR
         (20) 

The estimated covariance matrix is  


2

2

][]|[ˆ][]|1[ˆ

v

wT tFttPtFttP




     (21) 

where 

]1|[ˆ][][]1|[ˆ]|[ˆ  ttPtHtKttPttP 　      (22) 

and 

 1,1,1,0,0,0,0,0,0diagGGT    

 1,1,133 diagI                                                                 (23) 

KALMAN FILTERING ALGORITHM 

In the discrete-time case, the state space model of the system is assumed to be expressed as: 

  (   )    ( )    ( ) (24) 

  ( )     ( )   ( ) (25) 

where     is     matrix,  ( ) is the normality white noise with mean  0 and variance  ( ), 

 ( ) is the system noise and observation noise with mean 0 and variance  ( ). It is assumed 

that the process noise and the measurement noise  ( )  ( ) are uncorrelated each other. 

Now the problem is to estimate the state x(k) based on the sequence of output measurement 

y(1), y(2), …, y(k).The advance estimate of state  ( ) at   is 

  ̂ ( ) (   ̂( |   )) (26) 

The posteriori estimate of state   ( ) at   using the data from at     is 

  ̂( ) (   ̂( | )) (27) 

Kalman Filter (KF) has prediction step and updating step. The KF recursion is as follows: 

1) Prediction step. 
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Compute the estimate of state  ̂ ( ) at k from one sampling before posteriori estimate of the 

state  ̂(   ). 

  ̂ ( )    ̂(   ) (28) 

Compute the prediction error covariance   ( ) from one sampling before error 

covariance (   ) and measurement noise covariance  ( ) 

   ( )   ( )   (   )   (29) 

2) Updated step 

Compute measurement error  ̃( ) from measurement sensor value and estimate value, 

  ̃( )   ( )   ̂ ( ) (30) 

measurement error covariance   ( ). 

  ( )     ( )    ( ) (31) 

        Kalman gain  ( ), 

  ( )           (32) 

  posteriori estimate of the state  ̂( ), 

  ̂( )    ̂ ( )   ( ) (33) 

  and noise covariance  ( ). 

  ( )     ( )      ( ) (34) 

 

PARTICLE FILTERING ALGORITHM 

The estimation examples so far have assumed that the error in sensors such odometry and 

landmark range and bearing have a Gaussian probability density function. In practice we 

might find that a sensor has a one sided distribution or a multimodal distribution with several 

peaks. The functions we used in Kalman filter such as eq. (24)-(25) are strongly non-linear 

which means that sensor noise with a Gaussian distribution would not result in a Gaussian 

error distribution on the value of the function. The probability density function associated 

with a robot’s configuration could have multiple peaks to reflect several hypotheses that 

equally well explain the data from the sensors. Particle Filtering (PF) is a method for state 

estimation that is not dependent on the probability density function of the measurements. The 

Monte-Carlo estimator makes no assumptions about the distribution of errors. It can also 

handle multiple hypotheses for the state of the system. We maintain many different versions 

of the vehicle’s or UAV’s state vector. When a new measurement is available we score how 
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well each version of the state explains the data. We keep the best fitting states and randomly 

perturb them to form a new generation of states. Collectively these many possible states and 

their scores approximate a probability density function for the state we are trying to estimate. 

Apply the state update to each particle moving each particle according to the measured 

odometry. If 𝑓(・) 𝑔(・) are linear and random vectors     are Gaussian random variables, 

they are same as KF.  

 

We make an observation yt of feature t which has, according to the map, coordinate xt. For 

each particle we compute the innovation. Eq. (35) shows the error between the predicted and 

actual landmark observation. Select the particles that best explain the observation, a process 

known as resampling. A common scheme is to randomly select particles according to their 

weight. Particles with a large weight would correspond to a large fraction of the vertical span 

of the cumulative histogram and therefore be more likely to be chosen. The result would have 

the same number of particles. Some would have been copied multiple times, others not at all. 

Introduction to particle filtering theory and practice with positioning applications has been 

widely discussed (Gordon, 1993; Doucet, 2000, Doucet, 2001). The particle filtering 

algorithm is to perform a recursive Bayesian filter by Monte Carlo simulations. The key is to 

represent the required posterior density function by a set of random samples, which is called 

particles with associated weights, and to compute estimates based on these samples as well as 

weights. Its goal is to compute filtered estimates of x0:t taking into account all available 

measurement up to time t, z1:t. 

In practice, the solution is to recursively obtain a posterior probability density function 

p(x0:t|z1:t) of states at time t given all available measurements. Particle filter represents the 

posterior probability density function by a set of random samples with associated weight as 

follows: 

 (  |   )  ∑   
   (     

 )
  
   

(37) 

where each particle with index I has a state   
 ; δ(x) is Dirac delta function;   

  is associated 

weight with   
 ; Np stands for the particle number; z1:t denotes the measurements accumulated 

up to t. The weight is always positive,   
   , and sum over all weights is equal to 1. If 

computation load can bear, Np is expected large enough. The state of each particle is drawn 

 xt  𝑓(    )     (35) 

  t  𝑔(  )     (36) 
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randomly from the importance sampling distribution, and one choice for the distribution is a 

prior probability distribution. The state can therefore be represented as 

  
   (  |         

 )   (  |    
 )(38) 

Where (  |    
 )denotes the state transitionprobabilities. 

The sequential weight updated at each step can be calculated from 

  
      

   (  |  
 )(39) 

where the initial weight is set as   
      . 

(i) Decompose: to perform multi-scale decomposition for original data, and find out a 

prior distribution. Original data is a certain solution with respect to GPS data 

processing scheme, which is recognized as a compound signal composed of multipath 

bias, receiver noise and environmental noise. 

(ii) Initialize: to draw new particle  
 in terms of aprior distribution p(x0). 

(iii) Predict and update: to calculate state   
  and to update the weightfor each sampling 

state     
 . 

(iv)  Denoise and draw new particle: Firstly, denoising with threshold is performed. Then, 

new particle is to be drawn according to importance sampling. Finally, the new 

weight is calculated and normalized to sum to unit. 

(v) Resample and compute effective number of particles: In general, the threshold Nth is 

specified 2/3Np. The degree of degeneracy can be assessed by the effective number of 

particles approximately. Resampling is to be applied below a threshold. 

(vi) State output:  

(vii) Update with time and draw new particle. 

(viii) Set k to k+1, and then go to step 3). 

 

EXPERIMENTS AND DISCUSSIONS 

To evaluate the performance of proposed estimation algorithms, an experimental study is 

described.Table1 shows the specification of controller named Ardupilot Mega 2.6 with 

gyroscopes, accelerometer, barometer and geomagnetic sensor for positioning experiment. 

Table 2 shows the specification of GPS system with 5 Hz sampling rate. Figure 1 and 2 show 

Ardupilot Mega 2.6and GPS module. The sampling interval of GPS receivers is 5 s. The GPS 

resolution of positioning accuracy is 2.5m. Here, to evaluate proposed algorithm, the 

differential solution of GPS station was taken as study object. Figures 3 and 4 show the effect 
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of number of satellites in the observation error. Figure 3 is the error histogram of the fixed 

one point position data in case of the satellite signal number is 5 and Figure 4 is the error 

histogram of the fixed one point position data in case of the satellite signal number is 10. The 

attitude data in both cases has no white noise but non-normal distribution. XY position data 

in case of 5 satellites signals has non-normal distribution however in case of 10 satellites 

signals has normal distribution. When increasing number of satellite signals probability 

function of observation error approaches to normal distribution. Figures 5 and 6 show the 

GPS positioning data using EFK and PF with less than 7 satellites signals. Figure 5 shows 

XY plane estimated positioning data and Figure 6 shows Z direction estimated positioning 

data. We held the GPS sensor, walked straight as shown in Figure 7 and estimate the self-

position. Table 3 shows the estimated results between using EKF and PF. XY estimated 

positioning results with KF are better than ones with PF.  On the other hand, the estimated 

altitude positioning results with PF are better than ones with KF. The PF’s average error is 

smaller than the KF’s average error. Figures 8 and 9 show the GPS positioning data using 

EFK and PF with more than 10 satellites signals. Figure 8 shows XY plane estimated 

positioning data and Figure 9 shows Z direction estimated positioning data. We also held the 

GPS sensor, walked straight and estimate the self-position. Table 4 shows the estimated 

results between using EKF and PF. XY estimated positioning results with KF are better than 

ones with PF.  On the other hand, the estimated altitude positioning results with PF are better 

than ones with KF. However if the number of satellites is increasing, the estimated 

positioning error has not so much difference between with KF and with PF.  

Table 1. Specification of ArdupilotMega 2.6. 

 

Computer ATMEGA2560 

Gyro  MPU-6000 

Resolution of accelerometer 0.0001g 

Resolution of gyro 0.0305deg/sec 

Barometer MS5611 

Resolution of barometer 0.012hPa 

Geomagnetic sensor HMC5883L 

Resolution of geomagnetic 

sensor 
0.92mG(1～2deg) 

Sourse voltage DC5V 

Dimension  150 mmX120 mmX20 mm 

Weight 71g 
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Table 2. Specification of GPS module. 

 

Positioning engine U-blox Co. Ltd LEA-6H 

Sampling rate 4Hz 

Warmup time 26sec 

Position accuracy 2.5m(CEP) 

SBAS position accuracy 2.0m(CEP) 

Source voltage DC2.7～3.6V 

Dimension  φ55 mmX 10mm 

Weight 35g 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  ArduPilotMega2.6. Figure 1 GPS module. 



Journal of Applied Sciences, Engineering and Technology for Development 

JASETD, Volume 2, Issue 2, Sept. 2017 

 

55 

MATSUSHITA et al.: Comparison of GPS Smoothening Methods Between 

Extended Kalman Filter and Particle Filter for UAV  

 

 

Figure 3 The histogram of noise when receiving 5 artificial satellites signals.(Left : 

Coordinate, Right : Altitude). 

 

Figure 4 The histogram of noise when receiving10 artificial satellites signal. (Left: Coordinate, Right: 

Altitude) 
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Figure 5 The estimation results of plane position when receiving less than 7 artificial satellites 

signals. 

 

Figure 6 The estimation results of altitude position when receiving less than 7 artificial 

satellites. 
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Table 3 The estimated positioning results when receiving less than 7 artificial satellites. 

KF error average [m] 1.629 

PF error average [m] 1.113 

KF maximum error [m] 5.733 

PF maximum error [m] 4.681 

KF error average of x coordination [m] 1.329 

PF error average of x coordination [m] 1.601 

KF error average of y coordination [m] 10.899 

PF error average of y coordination [m] 11.087 

KF altitude error average [m] 2.195 

PF altitude error average [m] 1.949 
 

 

 

       Figure 7: Experimental site. 
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Figure 8 The estimation results of plane when altitude position when receiving more than 10 artificial 

satellites. 

 

Figure 9 The estimation results of plane when altitude position when receiving more than 10 artificial 

satellites. 
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                    Table 4 The filtering results when receiving more than 10 artificial satellites. 

KF error average [m] 5.365 

PF error average [m] 5.720 

KF maximum error [m] 11.372 

PF maximum error [m] 11.524 

KF error average of x coordination [m] 1.077 

PF error average of x coordination [m] 1.072 

KF error average of y coordination [m] 5.099 

PF error average of y coordination [m] 5.519 

KF altitude error average [m] 2.914 

PF altitude error average [m] 2.827 

 

CONCLUSION 

This paper presents a method for smoothing GPS data from a UAV using Extended Kalman 

filtering and particle filtering for navigation or position control. The Extended Kalman Filter 

is a widely used estimation method in autonomous navigation systems. However, it is 

characterized by cumulative errors due to performing an approximate linearization of the 

system’s dynamics. The Particle Filter makes no assumptions on the forms of the state vector 

and measurement probability densities. In the particle filter a set of weighted particles (state 

vector estimates evolving in parallel) is used to approximate the posterior distribution of the 

state vector. To succeed the convergence of the algorithm, at each iteration resampling takes 

place through which particles with low weights are substituted by particles of high weights. 

Experiments were used to evaluate the accuracy of estimated GPS data which are based on 

estimation of the UAV’s state vector with Extended Kalman Filter and Particle Filter 

methods. It was shown that the KF is a reliable and computationally efficient approach to 

state estimation-based control, while Particle Filtering is well-suited to accommodate non-

Gaussian measurements. PF provide reliable solutions to nonlinear estimation and control 

problems, with the Particle Filter to require less a-priori knowledge about the statistical 

characteristics of the measurements and of the system’s state variables. This experiments 

show if the number of satellites is small such as less than 7, Particle Filter shows small 

observation error. However, if the number of satellites is larger than 10, there is not so much 

difference between with EKF and with PF. 
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