

DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY

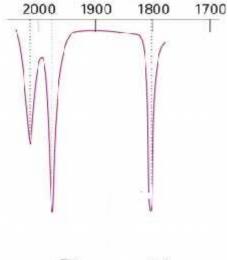
University Examinations 2021/2022

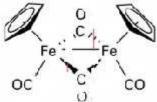
YEAR ONE SEMESTER ONE EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN LEATHER TECHNOLOGY & MASTER OF SCIENCE IN CHEMISTRY SLT 6117 ADVANCED COORDINATION CHEMISTRY/ SCH 6101 ADVANCED TRANSITION METAL COMPLEXES

Time: 3 Hours.

Date: SEPTEMBER 2021

INSTRUCTIONS: Attempt all questions QUESTION ONE (15 MARKS)		
a)	Using well labelled sketches differentiate between associative and dissomechanisms	ociative reaction [4 Marks]
b)	Differentiate between Fisher and Shrock carbenes.	[1 marks]
C) r(CO) ₆]+3Py [Ni(en) ₂ Ci ₃]+NiCi ₂ Co(NH ₃) ₆ ONO)Ci ₂	Name the species, draw the structures of, and give valence electron counts atoms in: (i) $Fe(CO)_5$, (ii) $[Fe(I]^5-C_5H_5)(CO)_2]^-$.	s to the metal [6 Marks]
-	STION TWO (15 MARKS) complete the following reactions	[4 Marks]


b) Sketch the valence bond treatment (VBT) for the [Ni(H2O)6]2+ ion. Can VBT predict what the magnetism of this complex ion is? Sketch the CF *d*-orbital splitting diagram for [Ni(H₂O)₆]²⁺. Can CFT predict the magnetism of the complex? [4 Marks]

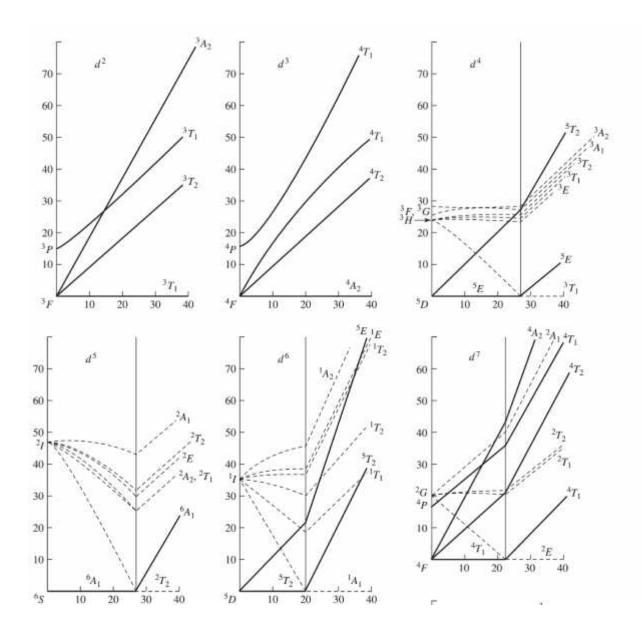

- c) Which of the following complexes would you expect to suffer from a Jahn–Teller distortion: $[CrI_6]^{4-}$, $[Cr(CN)_6]^{4-}$, $[CoF_6]^{3-}$ and $[Mn(ox)_3]^{3-}$? Give reasons for your answers.[4 Marks]
- d) Draw the structures for the corresponding names;
 - i) Bis(tetraaqua-u2-hydroxo iron(ii) chloride
 - i) dibromobis(ethylenediamine) cobalt(III) nitrate

iii)cis-bis(oxalato)dichlorochromium(III)

[3 Marks]

The diagram below shows an IR spectra of the compound drawn alongside. Assign the absorption peaks appropriately and explain your answer [4 Marks]

QUESTION THREE (15 MARKS)


- a) Use the appropriate Tanabe–Sugano diagram to explain why $[Mn(H_2O)_6]^{2+}$ is essentially colorless in aqueous solution. What is the term symbol for the ground state of this complex cation? [6 Marks]
- b) Sketch the MO diagram for the square planar $[Cr(CO)_6]$

[6 Marks]

c) The complex cation [Co(CO)₃(PPh₃)₂]⁺ has only a single ν (CO) stretching frequency in the IR. Suggest a plausible structure for this compound. [3 Marks]

QUESTION FOUR (15 MARKS)

- a) What do you understand by π acceptor ligands? Give two examples [3 Marks]
- b) Which of the following obey the 18-electron rule? Show your working
 i) Fe(CO) ii) [Rh(bipy)₂Cl]⁺? [2 Marks]
- c) Explain why an electronic transition for high-spin $[Mn(H_2O)_6]^{2+}$ is spin-forbidden, but for $[Co(H_2O)_6]^{2+}$ is spin-allowed. [4 Marks]
- d) Discuss the important industrial applications of charge transfers (MLCT/LMCT) in Metal complexes [6 marks]

