DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY

UNIVERSITY EXAMINATIONS 2021/2022

YEAR TWO SEMESTER ONE EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN POLYMER CHEMISTRY

SCP 2101 CHEMICAL THERMODYNAMICS AND POLYMER CHEMISTRY
DATE: NOVEMBER 2021
TIME: 2 HOURS
INSTRUCTIONS: ANSWER ALL QUESTIONS
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K} \mathrm{~mol}^{-1}=0.08211 \mathrm{~atm} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1} \quad \mathrm{G}=\mathrm{G}^{\mathrm{o}}-\mathrm{RTln} \mathrm{K}_{\mathrm{p}}$

$$
-\frac{R}{c_{v}} \ln \frac{V_{2}}{V_{1}}=\ln \frac{T_{2}}{T_{1}} \ldots \ldots
$$

QUESTION ONE [25 MARKS]

a) Define the following:
i. System
ii. State function
iii. Path function
b) (i) $\mathrm{G}=\mathrm{H}-\mathrm{T}$ S, Explain how this equation can be utilized to determine the state of equilibrium at different temperature ranges based on H and S accompanying the change
ii) The standard Free energy of formation of $\mathrm{NO}_{2(\mathrm{~g})}$ and $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ are 51.30 and 102 Kj mol^{-1} respectively

For the reaction

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}=2 \mathrm{NO}_{2 \mathrm{~g})}
$$

At 298 K , Calculate G^{o} and K_{p} for this
c) 1 mole of an ideal gas occupying a volume of 1 litre expands isothermally, in a reversible process to a volume of 5 litres at 298 K .
(i) Determine w, q and ΔE for this process
(ii) If the expansion was done irreversibly against an external pressure of 1 atm. what would be the value of w.

QUESTION TWO [15 MARKS]

(a) Define heat capacity
(b) Explain why the temperature of a gas falls in the adiabatic expansion of an ideal gas
(c) Given that $H=E+P V$

$$
\begin{equation*}
\text { Show that } C_{p}=C_{v}+R \tag{5marks}
\end{equation*}
$$

(d) 2 moles of an ideal gas at $25^{\circ} \mathrm{C}$, and a pressure of is 2 litres is expanded adiabatically to a volume of 5 litres.
Calculate the final Temperature and work done by the gas
(6 marks)

QUESTION THREE [15 MARKS]

3) a) i) Define a spontaneous reaction and comment on their reversibility (2 marks)
ii) Explain why during a phase transition the Temperature remains constant
iii) Define entropy and hence state the second law of thermodynamics
b) Given the following reactions at 298 K

$$
2 \mathrm{C}+3 \mathrm{H}_{2}=\mathrm{C}_{2} \mathrm{H}_{6} \quad \mathrm{H}=-84.68 \mathrm{Kj} / \mathrm{mol}
$$

And S° for $\mathrm{C}=5.9, \mathrm{H}_{2}=130.5$, and $\mathrm{C}_{2} \mathrm{H}_{6}=229.7 \mathrm{j} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
i) Calculate G and hence determine if the reactions are thermodynamically feasible

QUESTION FOUR [15 MARKS]

a) Differentiate between
i. Homogeneous and a heterogeneous polymer so
ii. Ideal and a regular solution
b) Define Viscosity
(2 marks)
c) What is Osmotic pressure
(3 marks)
d) Calculate the molar mass of a substance if at $27^{0} \mathrm{C}$ its solution containing $6.0 \mathrm{~g} / \mathrm{l}$ has an osmotic pressure of 3 mm Hg

