DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY

 SUPPLEMENTARY/SPECIAL UNIVERSITY EXAMINATIONS 2020/2021
FIRST YEAR SUPPLEMENTARY/SPECIAL EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING, BACHELOR OF EDUCATION IN TECHNOLOGY (ELECTRICAL AND ELECTRONIC) ENGINEERING, AND BACHELOR OF SCIENCE IN TELECOMMUNICATION AND INFORMATION ENGINEERING

EEE \& TIE 1202: CIRCUIT NETWORK THEORY

This paper consists of FIVE questions. Answer questions ONE and ANY OTHER TWO.

QUESTION ONE
 30 marks

a) Explain the two general approaches to network analysis giving examples
b) Given the circuit (Fig 1b) and $J=5 \mathrm{~A} ; E_{0}=20 \mathrm{~V} ; R_{1}=4 \Omega ; R_{2}=2.4 \Omega ; R_{3}=1.6 \Omega ; R_{4}=6 \Omega$., Find the values of all currents

Fig. 1b
c) Explain the Kirchhoff's first and second law
d) The equation of an alternating current is given by $i=42.42 \sin 628 t$. Calculate its i) Maximum value ii) Frequency iii) RMS value iv) Average Value v) Form Factor.
e) Write the polar form of voltage given by, $V=100 \sin \left(100 \pi+\frac{\pi}{6}\right) V$

Fig. 1f
f) Transform delta resistances R_{1}, R_{3}, R_{6} to star resistances $R_{1}^{*}, R_{2}^{*}, R_{3}^{*}$:(see fig 1f) and then solve for equivalent resistance given that $R_{1}=R_{4}=5 \Omega, R_{3}=R_{6}=4 \Omega, R_{5}=3 \Omega$,

QUESTION TWO

a) Given the circuit parameters of circuit Fig 2 a as: $\mathrm{R}_{1}=\mathrm{R}_{4}=5 \Omega, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{6}=4 \Omega, \mathrm{R}_{5}=3$ $\Omega, \mathrm{R}_{7}=6 \Omega, \mathrm{E}_{1}=42 \mathrm{~V}, \mathrm{E}_{2}=50 \mathrm{~V}, \mathrm{E}_{3}=40 \mathrm{~V}, \mathrm{E}_{4}=60 \mathrm{~V}, \mathrm{E}_{5}=\mathrm{E}_{7}=20 \mathrm{~V}, \mathrm{I}=4 \mathrm{~A}$
i. Write the system equation according to Kirchhoff's Current law for node 1,2, and 3.

2 marks
ii. Write the system equation according to Kirchhoff's Voltage Law for loop 1, loop 2 , and loop 3 .

3 marks
iii. Find the value of all currents using the current loop method.

10 marks

b) Two a.c. Voltages are represented by: $v_{1}(t)=30 \sin *\left(314 t+45^{\circ}\right), v_{1}(t)=60 \sin *$ $\left(314 t+60^{\circ}\right)$, Calculate the resultant voltage $\mathrm{v}(\mathrm{t})$ and express in the form $v(t)=$ $V_{m} \sin *(314 t+\varphi)$,

QUESTION THREE

Fig 3a.
a) Given that, the circuit parameters: $\mathrm{R}_{1}=20 \Omega, \mathrm{R}_{2}=80 \Omega, \mathrm{R}_{3}=100 \Omega, R_{4}^{\prime}=70 \Omega, R_{4}^{\prime \prime}=70 \Omega$, $R_{6}^{\prime}=24 \Omega, R_{6}^{\prime \prime}=16 \Omega, \mathrm{R}_{5}=150 \Omega, \mathrm{E}_{2}=100 \mathrm{~V}, \mathrm{E}_{3}=150 \mathrm{~V}, \mathrm{I}_{2}=0 \mathrm{~A}, \mathrm{I}_{3}=1 \mathrm{~A}$, find the value of all currents (I_{1} to I_{6}) using Nodal method where reference node is taken as $\mathrm{V}_{\mathrm{d}}(\mathrm{fig} 3 \mathrm{a})$.

16 marks
b) Write 4 ways of representing a.c. Voltage, given by a magnitude of 5 V and frequency 50 Hz .

4 marks

QUESTION FOUR

$\underline{20 \text { marks }}$

Fig 4a.
a) Solve for $I_{1}(t)$ and $I_{2}(t)$ in the circuit shown when the switch is closed at $t=0$, using the Laplace Transformation method (fig 4a)
b) Find the current $\mathrm{I}_{1}, \mathrm{I}_{2}$, and I_{3} shown in the circuit (fig.4b), If $\mathrm{V}=120 \mathrm{~B}, R_{1}=18 \Omega, R_{2}=30 \Omega, R_{3}=2$ Ω.

Fig 4b.

QUESTION FIVE

20 marks

a) Find the values of currents in the circuit (Fig 5a) using the Nodal method given that $E_{1}=20 \mathrm{~V}$, $E_{2}=24 \mathrm{~V}, E_{3}=12 \mathrm{~V}, R_{1}=R_{3}=R_{4}=2 \Omega, R_{2}=8 \Omega, R_{5}=R_{6}=4 \Omega$. And taking $\varphi_{1}=0$ (reference node)

Fig 5a.
b) For Fig 5b, Let the switch be closed at $\mathrm{t}=0$ so that the series RL circuit is excited by the DC voltage V. Find the equation for the current using the Classical method.

Fig 5b.
c) Discuss the steps to achieve Thevenin equivalent circuit.

