DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY

UNIVERSITY EXAMINATION 2021/2022
SECOND YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE
OF

BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING

 \&
BACHELOR OF SCIENCE IN TELECOMMUNICATION AND INFORMATION
 ENGINEERING

\&

BACHELOR OF EDUCATION IN ELECTRICAL AND ELECTRONIC TECHNOLOGY

EEE2205\ETI 2205: ELECTROMAGNETICS I

APRIL 2022
TIME: 2 HOURS

Instructions:

This examination paper contains five questions. Attempts question one and any other two question. Question ONE is Compulsory and carries $\mathbf{3 0}$ Marks. All the other questions carry 20 Marks each. Neatness, good handwriting, clarity and precise explanations must be observed.

Given data:

For free space assume the following data
Permittivity

$$
: \quad \varepsilon_{0}=\frac{1}{36 \pi} 10^{-9} \mathrm{Farad} / \mathrm{m}
$$

Permeability $\quad: \mu_{0}=4 \pi \times 10^{-7}$ Henry/m
Speed of electromagnetic wave : $v_{0}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
Electronic Charge $\quad: \mathrm{q}=1.6 \times 10^{-19} \mathrm{C}$
Planck's constant : h= $6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}$

QUESTION ONE

a) i) State Coloumb's Law as it applies to Electrostatic.
ii) Define electric field strength and electric potential at a general point in free space due to a point charge at origin.
(5marks).
b) Two charges each of 1 pC are located 1 m apart. At a point midway between and 50 cm above the line joining these two charges, find
i) Electric field and
ii) Electric potential.
(6marks).
c) Given the vector field $\mathbf{A}=\mathrm{i}(\mathrm{yz})+\mathrm{j}(\mathrm{zx})+\mathrm{k}(\mathrm{xy})$, Show that \mathbf{A} is
i) solenoidal and also
ii) irrotational
iii) Find the unit vector in the direction of A at the point $(1,1,1)$.
(7Marks).
d) Using Maxwell's Divergence equation involving charge density and flux density, in point form, obtain the following:
i) Poisson's equation and
ii) Laplace equation.
(5marks)
e) Calculate the work done in moving a 4 C of electric charge in an electric field $\mathrm{E}=\mathrm{ix}+\mathrm{j} 2 \mathrm{y} \mathrm{V} / \mathrm{m}$ from a point $(3,0,0)$ to another point $(0,3,0)$.
(7marks)

QUESTION TWO

a) Obtain an expression for ' \mathbf{E} ' in free space due to an infinite line charge of uniform linear charge density.
(6marks)
b) i)Derive a formula for capacitance per unit length of a co-axial cable.
ii) A co-axial cable with ratio of diameters of 2 is 10 Km long. If the breakdown strength of the dielectric used is $25 \mathrm{MV} / \mathrm{m}$ and the working voltage is 200 KV , determine the energy stored in the cable. Assume $\varepsilon_{r}=1$.
c) Two parallel conducting planes are situated at $\mathrm{y}=0$ and $\mathrm{y}=0.02 \mathrm{~m}$. Flux density D between the plates is $253 \mathrm{nC} / \mathrm{sq}$. m in y direction. Using one dimensional Laplac's equation, determine the conductor voltages if $\mathrm{V}=0$ at $\mathrm{Y}=0.01 \mathrm{~m}$.
(5marks)

QUESTION THREE

a) Derive boundary conditions for electrostatic fields E and D at the interface between two different charge free dielectric media.
b) Given that $D_{1}=4 a_{x}+3 a_{y}+6 a_{z}$ in a medium with $\varepsilon_{r 1}=3$. $\mathrm{X}=0$ is the boundary and the other medium has $\varepsilon_{r 2}=5$. Find D_{2}.
(6marks)
c) Using differential quantity, obtain the expression for the following:
i) Curved surface area of a cylinder and
ii) Volume of a sphere
(6marks)

QUESTION FOUR

a) i) Three different charges are moved from infinity to some final different positions in a region which was initially charge free. Obtain an expression for energy stored in this electronic system.
ii) Generalize your result in (i) above for ' n ' charges.
(8marks)
b) Three charges of values $1 \mathrm{nC}, 3 \mathrm{nC}$ and 6 nC are at the corners of an equilateral triangle of side 40 cm in free space. Determine the work required to move these charges towards the centroid of the triangle forming a new equilateral triangle of side 0.1 m . ($7 \mathbf{m a r k s}$)
c) Potential function in free space is given as $V=3 x+4 y$ volts. Find
i) Energy density and
ii) Energy stored in a sphere of radius 50 cm .
(5marks)

QUESTION FIVE

a) i) Define an electric dipole.
ii) Derive an expression for the potential at a point in the far field region of an electric dipole using spherical co-ordinates.
iii) Using (ii) above obtain an expression for E in space.
iv) Sketch equipotential lines of the dipole in $\mathrm{X}=0$ plane if dipole axis coincides with z-axis.
(11marks)
b) Write short notes on the following:
i) Theory of images
ii) Polarisation in dielectrics and
iii) Band theory to distinguish between three types of solid materials used in electromagnetic applications.

