

DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY UNIVERSITY EXAMINATION 2021/2022 SECOND YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING, BACHELOR OF SCIENCE IN TELECOMMUNICATION INFORMATION AND ENGINEERING & BACHELOR OF EDUCATION IN TECHNOLOGY (ELECTRICAL AND ELECTRONIC ENGINEERING) EEE 1204/ETI 1204 MATERIAL SCIENCE

DATE: DECEMBER 2021

TIME: 2 HOURS

INSTRUCTIONS

- i. This examination contains **FIVE** questions.
- ii. **QUESTION 1** carries 30 marks while the **OTHER FOUR QUESTIONS** carry 20 marks.
- iii. Attempt **QUESTION 1** and any other **TWO QUESTIONS**.
- iv. All symbols have usual meaning unless otherwise stated.

QUES	[30 Marks]	
a)	Explain briefly the difference between the foll	owing:
	i. Dielectric and superconductors.	[2 Marks]
	ii. Self-interstitial defect and interstitia	al solid solution defect. [2 Marks]
b)	Explain what is meant by anisotropy in materia	Il properties. [1 mark]
c)	Briefly explain what determines the characteris	stic color of
	i) a metal, and	[1 Mark]
	ii) a transparent non-metal	[1 Mark]

d) Lead (Pb) metal has a face centered cubic crystal structure, atomic number = 82, atomic radius = 0.1750 nm and atomic mass 207.2 g/mol. Given that the Avogadro Number is 6.022×10^{23} atoms/mol;

i)	Give its electronic configuration. Hint: Use Diagonal Rule	[1 Mark]
ii)	Sketch the unit cell,	[1 Mark]
iii)	Determine its edge length a	[1 Mark]
iv)	Determine the number of atoms in the unit cell	[1 Mark]
v)	Determine the atomic packing factor,	[2 Marks]

- 2
- a) Using sketches, briefly explain the following defects: i) Grain boundary

 10^{-5} eV/atom·K and Avogadro number = 6.022 x 10^{23} atoms/mol.

for Fe are 7.65 g/cm³ and 55.85 g/mol, respectively.

QUESTION THREE

g) The size and shape of the hysteresis curve for ferromagnetic and ferrimagnetic materials is of considerable practical importance. Using a well labelled sketch of a hysteresis loop,

f) State any **FOUR** industrial applications of electrical properties.

- i) State any **THREE** differences between a soft and a hard magnetic material. [4] Marks]
- [2 Marks]
- h) Consider a parallel-plate capacitor having an area of 2500 mm² and a plate separation of 2 mm, and with a material of dielectric constant 4.0 positioned between the plates. By taking permittivity of a vacuum as 8.85×10^{-12} F/m,
 - i) Calculate the capacitance of the capacitor?
 - ii) Determine the electric field that must be applied for 8.0 x 10^{-9} C to be stored on each plate. [2 Marks]

QU	JESTION TWO [2	0 Marks]
a) b) c)	What are the main reasons for adoption of composites as engineering materials? Distinguish between fluorescence and phosphorescence? In terms of electron energy band structure, discuss the difference in electrical	[3 marks] [2 Marks] conductivity
	between metals, semiconductors, and insulators. [3 Ma	arks]
d)	Body centred cubic (BCC) crystal structure is one of the metallic structures.	
	i) Using well-labelled sketch, derive an expression for the relationship be	tween r and
	lattice parameter <i>a</i> .	2 Marks]
	ii) Derive an expression for the atomic packing factor (APF).	[2 Marks]
	iii) State at least TWO materials which have BCC crystal structure	[1 Mark]
e)	A BCC iron has lattice parameter of 0.2866 nm. Assuming that monochroma	tic radiation
	having a wavelength of 0.1790 nm is used and the order of reflection is 1, calcula	ite;
	i) the interplanar spacing for the (220) set of planes, [1.5 Marks]
	ii) the diffraction angle for the (220) set of planes.	[2 Marks]

f) Calculate the equilibrium number of vacancies per cubic meter in iron at 850°C. The energy for vacancy formation is 1.08 eV/atom. Furthermore, the density (at 850°C) and atomic weight

- - ii) State any **ONE** application of the soft and hard magnetic materials.

e) Express the [101] direction into the Miller–Bravais index system for hexagonal crystals

vi) Determine the theoretical density.

[3 Marks]

[2 Marks]

[2 Marks]

[20 Marks]

[3.5 Marks]

[2 Marks]

Take Boltzmann's constant = $8.62 \times$

	ii) Twin boundary	[2 Marks]
b)	Sketch the following Miller directions and planes.	
	i) [121], [213]	[2 Marks]
	ii) (122)(021)	[2 Marks]
c)	A cylindrical coil of wire made up of 200 turns is 20 cm long and c	an carry a current of
	10 A. Based on the data provided;	
	i) Calculate the magnitude of the magnetic field strength H get	nerated by the coil?
		[1.5 Marks]
	ii) Compute the flux density B if the cylindrical coil is in a vac	uum given that the
	permeability of a vacuum is 1.257×10^{-6} H/m.	[1.5 Marks]
	iii) Compute the flux density inside a bar of titanium that is pos	
	if the susceptibility for titanium $Xm = 1.81 \times 10^{-4}$. Comm	ent on the answer in
	comparison to ii) above.	[2.5 Marks]
	iv) Compute the magnitude of the magnetization M.	[1.5 Marks]
d)	In respect to Bohr model on electronic structure of solids,	
	i) Explain the concept of quantized energies.	[2 Marks]
	ii) Determine the energy emitted and the wavelength of the	-
	hydrogen during an n=4 to n=2 electron transition. Take P	
	6.626×10^{-34} Js and the Rydberg constant to be 2.18×10^{-18} J	
	iii) State the region in which the emitted light in ii) falls into	-
	spectrum	[0.5 Mark]

QUESTION FOUR

- a) With aid of a sketch of a typical compound, describe how covalent bond is formed. [2 marks]
- b) Explain the term metal alloy and explain the reason for alloying a pure element.[2 Marks]
- c) In respect to electronic structure of atoms,
 - i) Illustrate the meaning of the terms' wave/particle duality [3 Marks]

[20 Marks]

- ii) Calculate the de Broglie wavelength of an electron travelling at a velocity of $1.0 \times 10^7 \text{ ms}^{-1}$ and has a mass of $9.109 \times 10^{-28} \text{ g}$. [2 Marks]
- d) A copper wire with a diameter of 3 mm, length of 2 m and electrical conductivity of 6.0×10^7 $(\Omega \cdot m)^{-1}$ is use for electrical installation. Based on the data given;
 - i) Compute the resistance of a copper wire? [2 Marks]
 - ii) What would be the current flow if the potential drop across the ends of the wire is 0.05 V? [1.5 Marks]
 - iii) What is the current density? [2 Marks]
 - iv) What is the magnitude of the electric field across the ends of the wire? [1.5 Marks]

e) The fraction of non-reflected radiation that is transmitted through a 10-mm thickness of a transparent material is 0.90. If the thickness is increased to 20 mm, what fraction of light will be transmitted?

OU	EST	ION	FIVE
XV			

[20 Marks]

- a) A solid solution consists of atoms of at least two different types. From this statement,
 - i) Using a neat sketch, explain what you understand by the term substitutional solid solution [1.5 Marks]
 - ii) Explain the **FOUR** conditions that favour formation of substitutional solid solutions [4 Marks]
- b) i) Calculate the drift velocity of electrons in germanium at room temperature and when the magnitude of the electric field is 1000 V/m and mobility of electrons is $0.38 \text{ m}^2/\text{V-s}$

[2 Marks]

ii) Under these circumstances, how long does it take an electron to traverse a 25-mm length of crystal? [2 Marks]

c) Cobalt element has atomic mass of 58.9 g/mol, density of 8.90g/cm³ and a net magnetic moment per atom of 1.72 Bohr magnetons. By taking the permeability of a vacuum μ_0 and Bohr magneton μ_B of 4 x10⁻⁷ (1.257 × 10⁻⁶) H/m and 9.274×10⁻²⁴ A.m² respectively and Avogadro number to be 6.022x10²³ atoms/mol; calculate:

i)	the saturation magnetization,	[2.5 Marks]
ii)	the saturation flux density for cobalt	[1.5 Marks]

- d) At room temperature the electrical conductivity of PbTe is $500 (-m)^{-1}$, whereas the electron and hole mobilities are 0.16 and 0.075 m²/V-s, respectively. Compute the intrinsic carrier concentration for PbTe at room temperature. [3 Marks]
- e) Consider the section of a (110) plane within an FCC unit cell represented in Figures 5e (a) and (b). Calculate the planar density of that plane. Take R = 0.1241nm. (R is the radius of the atom) [3.5 Marks]

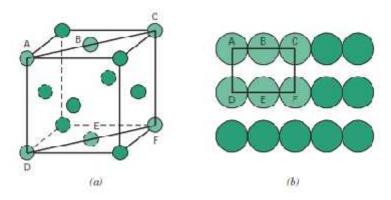


Figure 5e

END...ALL THE BEST...