

DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY UNIVERSITY EXAMINATIONS
 2021/ 2022 ACADEMIC YEAR
 SPECIAL/ SUPPLEMENTARY EXAMINATIONS - MAY 2022

BACHELOR OF TECHNOLOGY IN BUILDING CONSTRUCTION (B. Tech. 3.2)

COURSE CODE: ECE 5111
COURSE TITLE: THEORY OF STRUCTURES IV

INSTRUCTIONS TO CANDIDATES

$>$ Attempt any THREE (3) questions
$>$ Scientific non-programmable calculators may be used
$>$ Clearly state any assumptions made

TIME: 2 HOURS

This paper consists of 4 printed pages

Question 1 (20 mks)

Draw the shear and bending moment diagrams of the beam shown in Figure Qn 1 below using the slope - deflection method. $E=70 \mathrm{GPa}, I=800 \times 10^{6} \mathrm{~mm}^{4}$
(20 mks)

Figure Qn 1

Question 2 (20 mks)

a. Draw the influence lines for the reaction at support B of the beam shown below in Figure Qn 2. Determine the influence line ordinates at 3 m intervals. $E l$ is constant. Take $E=200 \mathrm{GPa}$ and $I=20.1 \times 10^{6} \mathrm{~mm}^{4}$ (10 mks)

Figure Qn 2
b. Draw the influence lines for the shear and bending moment at point C of the beam shown in

Figure Qn 2. Determine the influence line ordinates at 3 m intervals

Question 3 (20 mks)

Determine the reactions R_{A}, R_{B} and M_{A} for the beam shown in Figure Qn 3 below using the method of consistent deformations, and draw the shear force and bending moment diagrams. Let $P=100 \mathrm{kN}, L=10 \mathrm{~m}, a=6 \mathrm{~m}, E=200 \mathrm{GPa}$ and $I=198 \times 10^{6} \mathrm{~mm}^{4}$

Figure Qn 3
Page 2 of 4

Question 4 (20 mks)

Draw the shear force and bending moment diagrans for the beam shown in Figure Qn 4 below using the least work method. $=200 \mathrm{GPa}, I=198 \times 10^{6} \mathrm{~mm}^{4}$

Figure Qn 4
Question 5 (20 mks)
Determine the reactions and draw the shear and bending moment diagrams of the beam shown in Figure Qn 5 below using the moment - distribution method. Let $E=200 \mathrm{GPa}$ and $I=476 \times$ $10^{6} \mathrm{~mm}^{4}$

Figure Qn 5

