DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY
UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR
FOURTH YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 4212: HYDROLOGY II

DATE: 23 ${ }^{\text {RD }}$ SEPTEMBER 2021
TIME: 11:00AM-1:00PM

INSTRUCTIONS TO CANDIDATES

- Cell phones are NOT allowed in the examination room
- This paper contains FOUR (4) questions
- Attempt QUESTION ONE (1) and any other TWO questions
- Question one (1) carries 30 Marks while the rest carry 20 Marks each
- Use a scientific non-programmable calculator
- Erasers, pens and pencils will be required
- ALL workings MUST be shown on the provided answer booklets
- Carefully read and abide by the rubric on the answer booklet
- All symbols have their usual meaning unless otherwise stated

QUESTION ONE (1) (30 MARKS)

a) Describe two types of surface runoff (5 mks)
b) Describe two types of flow in the unsaturated zone that lead to runoff generation (5 mks).
c) Discuss TWO factors by which hydraulic conductivity contrast affect runoff generation (5mks).
d) Hydrograph separation method separates runoff into two parts. Describes those parts (5mks).
e) Describe_TWO factors that affect storm hydrograph (5 mks).
f) Describe TWO structural categories of rainfall-runoff models (5 mks).

QUESTION TWO (2) (20 MARKS)

The hydrograph below illustrates the flow rate (discharge) or a streamflow in response to a storm in a watershed that drains $1 \mathrm{~km}^{2}$. (a) Compute the volume of event flow of the watershed between $0-15$ hours. Report answers in (10mks)
Cubic meters: \qquad
mm : \qquad
(b) Calculate ET given $\mathrm{P}=10 \mathrm{~mm}$ (5 mks)
(c) Describe five factors that affect runoff generation in a catchment. (5 mks)

Fig Q2.

QUESTION THREE (3) (20 MARKS)

The following table provides exceedance and non-exceedance probability values of various floods.

Table Q3. Relationship between return period and annual exceedance and nonexceedance probability.

Return Period $($ Years $) \mathbf{T}$	Annual exceedance probability (\mathbf{p}) i.e. $\mathbf{1 / T}$	Annual non-exceedance probability (1-p)
2	0.5 or 50%	0.5
5	0.2 or 20%	0.8
10	0.1 or 10%	0.9

25	0.04 or 4%	0.96
50	0.02 or 2%	0.98
100	0.01 or 1%	0.99

a) What is the probability (in percent) for a 50 -year flood over a 10 -year period? (10 mks)
b) What is the probability (in percent) for a 100-year flood over a 50 -year period? (10mks)

QUESTION FOUR (4) (20 MARKS)

a) Discuss FOUR methods of flood control (15 mks)
b) Briefly describe TWO steps of systems hydrologic modeling (5 mks)

