DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER EXAMINATIONS FOR THE
DEGREE OF BACHELOR OF EDUCATION TECHNOLOGY IN CIVIL ENGINEERING

UNIT CODE: ECE 3212

UNIT TITLE: HYDRAULICS II

DATE: $28^{\text {TH }}$ SEPETEMBER TIME: 2:00-4:00PM

INSTRUCTIONS TO CANDIDATES

- This paper contains FOUR (4) questions
- Answer any THREE (3) questions
- All questions has equal total marks
- All symbols have their usual meaning unless otherwise stated
\qquad

QUESTION ONE [30marks]

a. The impeller of a centrifugal pump has a diameter of 0.15 m and an axial width at the outlet of 16 mm . There are 16 blades shaped backwards and inclined at 25° to the tangent of the periphery. The flow rate through the impeller is $9 \mathrm{~m} 3 / \mathrm{hr}$ when it rotates at 750 revolutions per minute. Calculate the head developed by the pump when handling water and assuming one dimensional ideal flow theory and allowing for relative eddy between the blades determine the actual head developed.
[13
marks]
b. Discuss the phenomenon of slip in hydraulic machines.
[5 marks]
c. A wave in water 100 m deep has a period of 10 s and a height of 2 m . Determine the wave celerity, length, and steepness.
i. What is the water particle speed at the wave crest?
11. when it has propagated into a near shore depth of 2.3 m . Calculate the wave celerity and length
[9 marks]
d. Withexampleslist the two main classes ofturbines
[3 marks]

QUESTION TWO [30 marks]

a. A Kaplan turbine delivering 40MW works under a head of 35 m and runs at 167 rpm . Thehub diameter is 2.5 m and runnertip diameter is 5 m . The overall efficiency is 87%. Determine:
i) The blade angles at the hub and tip and at a diameter of 3.75 m .
ii) The speed ratio and flow ratio based on the tip velocity. Assume 1JH 9 9 \%
[22 marks]
b. A single acting reciprocating pump has a plunger of dia. 300 mm and stroke of 200 mm . if the speed of the pump is 30 rpm and it delivers $6.51 / \mathrm{s}$ of water. Find the coefficient of discharge and the percentage of slip of the pump.
[4 marks]
c. Based on the method by which mechanical energy is transferred to the fluid with examples elaborate on the two main classes of pump classification.
[4 marks]

QUESTION THREE [30 marks]

a. A Pelton turbine is required to develop 9000 kW when working under a head of 300 m . Theimpeller may rotate at 500 rpm . Assuming a jet ratio of 10 and overall efficiency of 85%, calculate the following assuming a speed parameter of 0.48 :
i. Quantity of water required.
11. Diameter of wheel
iii. Number ofjets
iv. Number and size of bucket vanes on the runner
v. The velocity triangles at inlet and outlet
[15marks]
b. A Francis Turbine delivers 16 MW with an overall efficiency of 85% and a hydraulic efficiency of 91% when running at 350rpm under a head of 100 m . Assume Internal Diameter is 0.6 of outer diameterand the width is 0.1 of the diameters. The flow ratio is 0.2 and blade blockage is 8% of flow area at the inlet. AssU171e constant flow velocity and zero whirl at exit. Determine the runner diameter and bladeangles.

QUESTION FOUR [30 marks]

a. The inlet of a draft tube of a reaction turbine is 2.5 m above the tail race level. The outlet area is 3times the inlet area. Velocity at inlet is $8 \mathrm{~m} / \mathrm{s}$. kinetic head recovery is 80%. Considering atmospheric head as 10 m water column, determinethe pressureatthedraft tubeinlet.
[7marks]
b. List the function of a draft tube marks]
c. A centrifugal pump is required to produce a flow of water at a rate of $0.0160 \mathrm{~m}^{3} / \mathrm{s}$ against a total head of 30.5 m . The operating characteristics of a pump at a speed of 1430 rpm and a rotor diameter of 125 mm is as follows:

Efficiency	0	48	66	66	45	$\%$
UA	0	0.0148	0.0295	0.0441	0.059	$\mathrm{M}^{3} / \mathrm{s}$
HA	68.6	72	68.6	53.4	22.8	M

Determine:
i. Correct size of pump and its speed to produce the required head and flow.
ii. If only the 125 mm pump is_available, what speed must it run to obtain the required head and flow.
iii. What is the efficiency and input power to the pump?
[20 marks]

Formula sheet

$$
\left.\begin{array}{cccc}
4 f / c^{2} & - & =- \\
g \cdot V \cdot & & -\overline{21}\{ & V
\end{array} \right\rvert\, V+U
$$

Stodda's

$$
W=\frac{8 \mathbb{q}}{O Z}=0 \text { at } z=-d
$$

$$
\left.\left.V^{\top}\right)^{\top}\right)^{\prime}=V_{1 \theta_{2}}+V_{j} \dot{j}_{2}
$$

$$
\begin{aligned}
& =\begin{array}{c}
2-\mathrm{V}^{2}+\mathrm{U}^{2}-\mathrm{U}^{2}-\left(\mathrm{I}_{2}^{2}-\mathrm{VV} 1^{2}\right) \\
22^{1}
\end{array} \\
& \mathrm{~T}=\mathrm{pQ}\left(\mathrm{r},-\mathrm{-}_{\mathrm{i}, 1}, \mathrm{l}-\mathrm{v}, ? \mathrm{r} 2\right)_{-}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{p} Q\left(\mathrm{v}_{2} 7_{2}-\quad \text { ' } 1 \mathrm{r} 1\right) \\
& V_{W_{f}^{\prime}}=u_{2}-V_{J \bar{n}} \cot (\mathrm{Jr}-/ 3)
\end{aligned}
$$

$$
\begin{aligned}
& 1 f_{1}
\end{aligned}
$$

$\begin{array}{ll} r J= & H m g \\ \text { man } \\ & V W 2 U 2 \end{array}$
$v_{2} \quad{ }^{71} 2 ~=H+h ;+h v+i^{v^{2}}$
$\begin{array}{r} \mathrm{cp}-g l i \cosh k(d+z) \quad(/ .--\quad- \\ l d \quad \mathrm{sm}, \mathrm{x}: \quad \mathrm{O}-1) \end{array}$
$2 \mathrm{cr} \quad \cos 11<$ $817 \quad 1317$
$w=-8 t+u-0 x \text { at } z=11$ $I-I$
$2 \frac{L T}{-\quad T}=-\frac{\cos (k \cdot X--0-l)}{2}$ 2Tid $\quad 0-2=g k$ tanhkd
$\mathbf{C}=\underset{2^{\prime} 1 \mathrm{~T}}{\stackrel{R}{2}-\tanh --}$

Page 7 of 9

