DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY

EXAMINATIONS 2019/2020

BACHELOR OF SCIENCE IN ELECTRIC AND ELECTRONIC ENGINEERING (EEE) AND

 TELECOMMUNICATIONS AND INFORMATION ENGINEERING (TIE)
SPH 1222

PHYSICS II
Time:

Instructions

1. Answer QUESTION ONE and any other two questions
2. Use standard notation and SI units only
3. No casual free-hand diagrams

Some useful constants

(1) Charge of an electron $=1.6 \times 10^{-19} \mathrm{C}$
(2) Resistivity of nichrome $=1.2 \times 10^{-6} \mathrm{~m}$
(3) Speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(4) Mass of Proton $=1.0073$ a.m.u
(5) Mass of Neutron $=1.0087$ a.m.u
(6) 1 a.m.u $=931 \mathrm{MeV}$
(7) Plank's constant $=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}$
(8) 1 a.m.u $=1.66 \times 10^{-27} \mathrm{~kg}$
(9) Permitivity of free space $=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
(10) Mass of an electron $=9.1 \times 10^{-31} \mathrm{~kg}$
(11) Temperature coefficient of resistivity of copper $=3.86 \times 10^{-3} \mathrm{~K}^{-1}$

QUESTION ONE COMPULSORY

(30 marks)
(a) Define the following terms:

(i) Binding energy	(1 mark)
(ii) Electric potential (V)	(1 mark)
(iii)Current density	(1 mark)
(iv) Capacitance	(1 mark)

(b) A conductor 1.8 m long carries a current of 40 A lies perpendicular in a uniform magnetic field of 0.95 T. If the conductor moves with uniform speed of $20 \mathrm{~m} / \mathrm{s}$. Calculate
(i) The power required for the movement of the conductor.
(ii) The force acting on the conductor if it is inclined at 35 degrees to the magnetic field
(2 marks)
(c) A capacitor of $8 \mu F$ capacitance is charged by connecting it across a 80 VDC supply. Calculate the energy stored in the capacitor
(d) Calculate the magnitude of the electric force between two alpha particles $5.3 \times 10^{-11} \mathrm{~m}$ apart
(3 marks)
(e) Differentiate between soft and hard X-rays.
(2 marks)
(f) (i) Determine the standard value of the following carbon coded resistor: Red-violet-orange-silver
(2 marks)
(ii) Give the colour code for a $5.6 k$ - resistor
(2 marks)
(g) What maximum speed does attain an alpha particle when it travels through a pd of 3000 V from rest.
(3 marks)
(h) A naturally occurring radioactive nuclide undergoes β^{-}decay. What are the particles products of such transformation? Give an example
(3 marks)
(i) Show how two resistors connected in series constitute a potential divider and give the expression for such a divider.
(3marks)
QUESTION 2 OPTIONAL
(20 marks)
(a) State
(i) Ohm`s law. (1 mark) (ii) Joule-Lenz`s law.
(1 mark)
(iii)Kirchhoff's loop law.
(1 mark)
(b) A starter motor in a car draws 220 A of current from the 12 V battery for 1.2 s .
(i) How much charge is pumped by the battery?
(ii) How much electric energy is supplied by the battery?
(4 marks)
(c) If 46 m of nichrome wire is to have 10 of resistance; what diameter wire should be? ($\mathbf{3}$ marks)
(d) Find the equivalent resistance of three resistors R_{1}, R_{2}, and R_{3} when they are connected in parallel
(4 marks)
(e) The resistance of a conductor is 19.8 at $15^{\circ} \mathrm{C}$ and 25 at $85^{\circ} \mathrm{C}$. What is the temperature coefficient of resistivity of the material?
(f) Show that $\mathrm{A}^{2} \mathrm{X}=\mathrm{W}$

QUESTION 3

OPTIONAL
(20 marks)
(a) Define the following terms:
(i) Permittivity
(ii) Dielectric strength
(iii) One Farad
(3 marks)
(b) Three positive charges each of $15 \mu C$ and one negative charge of $-20 \mu C$ are fixed at the corners of a square of sides 80 cm . Determine the electric potential at the centre of the square.
(3 marks)
(c) State
(i) Coulomb's law of electrostatics
(2 mark)
(ii) Two types of capacitors.
(2 marks)
(iii)Two uses of dielectrics.
(d) A capacitor of plate area $250 \mathrm{~cm}^{2}$ has a dielectric 1.5 mm thick. If the dielectric constant is 3 and the capacitor is connected across 1500 VDC, determine
(i) The capacitance of the capacitor.
(3 marks)
(ii) The electric energy stored in the capacitor
(3 marks)
(iii) The electric field strength in the dielectric.

QUESTION 4

OPTIONAL
(20 marks)
(a) Explain
(i) Two uses of radioactivity
(1 mark)
(ii) Gamma spectroscopy
(iii) Two radiations occurring in natural radioactivity
(b) Calculate the shortest wavelength present in the radiation from an X-ray machine whose accelerating potential is $90,000 \mathrm{~V}$.
(c) A radioactive isotope of mercury, Hg^{197} decays into gold $\mathrm{A} u^{197}$ with a disintegration constant of $0.0108 h^{-1}$.
(i) Calculate its half-life
(ii) What fraction of the sample will remain at the end of 10 days?
(d) A certain radioactive atom has a mass of 19.7013 a.m.u. Determine its binding energy if it has a mass number of twenty and atomic number of eleven.
(e) With the aid of a simplified labeled diagram, explain briefly how X-rays are produced.
(a) State
(i) Two ways in which magnetic flux linkage can be changed.
(ii) Faraday`s law of electromagnetic induction.
(b) A uniform magnetic field points North; its magnitude is 1.5 T. A proton with kinetic energy $8.0 \times 10^{-}$
${ }^{13} J$ is moving vertically downward in this field. What is the force acting on it? (4 marks)
(c) (i) Show that the current at any time in R-L DC circuit is given by

$$
i=\frac{V}{K}\left(1-e^{\frac{K \tau}{L}}\right) \cdot(3 \text { marks })
$$

(d) An R-L d.c circuit consists of a 50 mH inductor, a 5 resistor and a 12 V battery. The switch is closed at $\tau=\mathbf{0}$ seconds. Determine the current in the circuit at $\tau=2.5 \times 10^{-3}$ seconds. (4 marks)
(e) A 30 cm -long solenoid has 1200 turns. Determine the magnetic flux density inside the solenoid if the current is 2 A .
(3 marks)

