

DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY

EXAMINATIONS 2019/2020

BACHELOR OF SCIENCE IN ELECTRIC AND ELECTRONIC ENGINEERING (EEE) AND TELECOMMUNICATIONS AND INFORMATION ENGINEERING (TIE)

SPH 1222

PHYSICS II

Date:

Time:

Instructions

- 1. Answer QUESTION ONE and any other two questions
- 2. Use standard notation and SI units only
- 3. No casual free-hand diagrams

Some useful constants

(1)	Charge of an electron	=	1.6 X10 ⁻¹⁹ C
(2)	Resistivity of nichrome	=	1.2X10 ⁻⁶ .m
(3)	Speed of light	=	3X10 ⁸ m/s
(4)	Mass of Proton	=	1.0073 a.m.u
(5)	Mass of Neutron	=	1.0087 a.m.u
(6)	1 a.m.u	=	931MeV
(7)	Plank`s constant	=	6.63 X 10 ⁻³⁴ J.s
(8)	1 a.m.u	=	1.66 X 10 ⁻²⁷ kg
(9)	Permitivity of free space	=	8.85X10 ⁻¹² F/m
(10)	Mass of an electron	=	9.1X10 ⁻³¹ kg
(11)	Temperature coefficient of r	esistivit	$x \text{ of conner} = 3.86 \times 10^{-3} \text{K}^{-1}$

Temperature coefficient of resistivity of copper= 3.86X10⁻⁵K (11)

QUESTION ONE

COMPULSORY

(30 marks)

(a) Define the following terms:

(i) Binding energy	(1 mark)
(ii) Electric potential (V)	(1 mark)
(iii)Current density	(1 mark)
(iv) Capacitance	(1 mark)

(b) A conductor 1.8 m long carries a current of 40 A lies perpendicular in a uniform magnetic field of 0.95 T. If the conductor moves with uniform speed of 20 m/s. Calculate

- The power required for the movement of the conductor. *(i)* (2marks)
- The force acting on the conductor if it is inclined at 35 degrees to the magnetic field (ii)

(2 marks)

SPH 1222 PHYSICS II

(c) A capacitor of 8 μ F capacitance is the energy stored in the capacitor	charged by connecting it across a 80 VDC supply	Calculate. (3 marks)
(d) Calculate the magnitude of the electron	ctric force between two alpha particles 5.3×10^{-11}	-
(e) Differentiate between soft and hard	(3 marks) (2 marks)	
(f) (i) Determine the standard value of $f(x)$	f the following carbon coded resistor : Red-violet-o	range-silver (2 marks)
(ii) Give the colour code for a 5.6	k - resistor	(2 marks) (2 marks)
(g) What maximum speed does attain rest.	an alpha particle when it travels through a pd of 30	000 V from (3 marks)
(h) A naturally occurring radioactive such transformation? Give an exam	nuclide undergoes ⁻ decay. What are the particles pape	oroducts of (3 marks)
(i) Show how two resistors connected for such a divider.	d in series constitute a potential divider and give the	e expression (3marks)
QUESTION 2 OPTION	AL	(20 marks)
 (a) State (i) Ohm`s law. (ii) Joule-Lenz`s law. (iii)Kirchhoff's loop law. 		(1 mark) (1 mark) (1 mark)
(i) How much charge is put	A of current from the 12 V battery for 1.2s. nped by the battery? gy is supplied by the battery?	(4 marks)
(c) If 46 m of nichrome wire is to have	e 10 of resistance; what diameter wire should be?	(3 marks)
(d) Find the equivalent resistance of th	aree resistors R_1, R_2 , and R_3 when they are connected	d in parallel (4 marks)
(e) The resistance of a conductor is 19. coefficient of resistivity of the material?	•	ature (3 marks)
(f) Show that $A^2 X = W$		(3 marks)
QUESTION 3	OPTIONAL	(20 marks)
 (a) Define the following terms: (i) Permittivity (ii) Dielectric strength (iii) One Farad 		(3 marks)

SPH 1222 PHYSICS II

(b) Three positive charges each of 15μ C and one negative charge of -20μ C are fixed at the corners of a square of sides 80cm. Determine the electric potential at the centre of the square. (3 marks)

(c) State (i) Coulomb's law of electrostation		(2 morte)				
(i) Coulomb's law of electrostatics(ii) Two types of capacitors.		(2 mark) (2 marks)				
(iii) Two types of dielectrics.		(2 marks) (2 marks)				
	(=					
(d) A capacitor of plate area 250cm² has a dielectric 1.5mm thick. If the dielectric constant is 3 and the capacitor is connected across 1500 VDC, determine						
<i>(i) The capacitance of the capacitor.</i>						
(ii) The electric energy stored in the capacitor	(3 marks)					
<i>(iii) The electric field strength in the dielectric.</i>	(2 marks)					
QUESTION 4	OPTIONAL	(20 marks)				
(a) Explain						
(i) Two uses of radioactivity		(1 mark)				
(ii) Gamma spectroscopy		(1 mark)				
(iii)Two radiations occurring in natural radio	pactivity	(1mark)				
(b) Calculate the shortest wavelength present in the radiation from an X-ray machine whose						
accelerating potential is 90,000V.		(4 marks)				
(c) A radioactive isotope of mercury, Hg^{197} decays into gold Au^{197} with a disintegration constant of 0.0108 h^{-1} .						
(i) Calculate its half-life		(4 marks)				
(ii) What fraction of the sample will remain at the end of 10 days?						
(d) A certain radioactive atom has a mass of 19.7013 a.m.u. Determine its binding energy if it has a mass number of twenty and atomic number of eleven. (4 marks)						
(e) With the aid of a simplified labeled diagram, explain briefly how X-rays are produced. (5 marks)						
QUESTION FIVE	OPTIONAL	(20 marks)				
(a) State						
(i) Two ways in which magnetic flux linkage can b	ne changed	(2 marks)				
(i) Faraday's law of electromagnetic induction.	se enanged.	(2 marks) (2 marks)				
		()				
(b) A uniform magnetic field points North; its magnitude is 1.5 T. A proton with kinetic energy 8.0X10 ⁻¹³ J is moving vertically downward in this field. What is the force acting on it? (4 marks)						

(c) (i) Show that the current at any time in R-L DC circuit is given by $l = \frac{V}{R} \left(1 - e^{\frac{Rt}{L}} \right)$ (3 marks)

- (d) An *R*-L d.c circuit consists of a 50mH inductor, a 5 resistor and a 12 V battery. The switch is closed at t = 0 seconds. Determine the current in the circuit at $t = 2.5 \times 10^{-3}$ seconds. (4 marks)
- (e) A 30 cm- long solenoid has 1200 turns. Determine the magnetic flux density inside the solenoid if the current is 2A. (3 marks)