DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY

University Examinations 2021/ 2022
FIRST YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELORS OF SCIENCE IN ELECTRICAL ENGINEERING, , CIVIL ENGINEERING, BED CIVIL,BED EEE, BSC GEGIS \& GIS, BSC GEOLOGY, MECHATRONICS, CHEMICAL ENGINEERING

SPH 1120/SPH 1120 PHYSIC I \& PHYSICS FOR ENGINEERS I

INSTRUCTIONS

Answers question one and any other two questions.

Constants

Answers questionone and any other two questions.

Some Useful Contents:

1. $\mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
2. $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$
3. Density of water $=1 \mathrm{~g} / \mathrm{cm}^{3}$
4. Specific heat capacity of water $=4200 \mathrm{~J} / \mathrm{kgk}$
5. Atmospheric pressure $=101.3 \mathrm{kpa}$
6. Universal gas constant $=8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{k}$.
7. Specific heat capacity of copper $=390 \mathrm{~J} / \mathrm{kgk}$
8. Specific heat capacity of ice $=2100 \mathrm{~J} / \mathrm{kgk}$.
9. Latent heat of fusion Ice $=3.6 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
10. Latent heat of vaporization of water $=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.
11. $\sigma=5.6699 \times 10^{-8} \mathrm{w} / \mathrm{m}^{2} k^{4}$
12. $G=6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}$

Question One (30 marks)

(a) Define the following terms
(i) vector quantity.
(1 mark)
(ii) Temperature.
(iii) Power.
(b) .State two sources of sound.
(c) Using dimensional analysis ,find the dimensions of work.
(d) The displacement of a particle is given as $\boldsymbol{r}=\left(t^{3}+2 t\right) \boldsymbol{i}+\left(8 t+2 t^{3}\right) \boldsymbol{j}$. Determinetheparticle`s speed at 5 seconds.
(e) State and explain three factors that determine rate of heat conduction. .
(f) State two types of waves.
(g) A cylinder contains 60 litres of air at 40 degree Celsiusand 35 kpa . The temperature is raised to $75^{\circ} \mathrm{C}$, and the volume is reduced to 20litres. Calculate the final pressure of the gas in atmospheres. ($\mathbf{4}$ marks)
(h) An electromagnetic wave is transmitted at 112.6 MHz .Calculate the wavelength of the wave. $\mathbf{(3}$ marks)
(i) Two bodies are placed 180 cmapart . If the two bodies have masses of 120 kg and 160 kg , What is the net gravitational force between them.
(3 marks)
(j) Derive the Bernoulli's principal.

Question Two(20 marks)

(a) Define the following terms.
(i) Refraction.
(ii) Interference.
(iii) Diffraction.
(b) State three applications of total internal reflection.
(c) Draw a ray diagram to show how a convex lens is used as a simple microscope and write the characteristics of the image formed.
(d) Determine the critical angle of a material whose $=1.42$.
(3 marks)
(e) State three characteristics of image formed by convex mirror if the object is between the focal point and the center of curvature.
(f) An object of height 20 cm is placed 18 cm from a concave mirror whose radius of curvature is 12 cm . Find the position and size of the image.
(4 marks)

Question Three (20 marks)

(a) Define the following terms
(i) Heat.
(1 mark)
(ii) Specific heat capacity.
(iii)Latent heat of vaporization.
(b) Calculate the heat required by 15 kg of ice at $-5^{\circ} \mathrm{C}$ to water at $100^{\circ} \mathrm{C}$.
(c) A rectangular steel cube 60 cm by 50 cm by 100 cm is heated in a fire to a temperature of 257 degrees Celsius .Taking that its emissivity is unity, determine the total rate of heat radiation .
(d) A Specimen of diameter 6 mm is subjected to a tensile load of 16 kN which causes a 250 mm wire to increase to 251 mm , calculate
(i) the longitudinal strain in the material
(2marks)
(ii) stress induced in the material
(iii) its Young's modulus of elasticity.

Question Four (20 marks)

(a) State
(i) Archimedes principle
(ii) Law of floatation.
(iii) Pascal principle.
(b) State and explain three factors that affect coefficient of viscosity of a fluid.
(6 marks)
(c) A water pipe having a radius of 8
(d) 5.0 cm carries water into a basement of a house at a speed of $12 \mathrm{~m} / \mathrm{s}$ and a pressure of 300 Mpa .If the pipe tapers is of 2.4 cm radius and rises to a second floor 9 m above the input point, calculate
(i) the speed of water in the second floor.
(ii) the abs. pressure of the water at second floor.
(e) Calculate the gauge pressure that a machine must produce in order to suck some viscous liquid whose density is $2500 \mathrm{~kg} / \mathrm{m}^{3}$ from a trench up a tube by a height of 13 m .
(4 mark)

Question Five (20 marks)

(a) Define the following terms
(i) a radian.
(1 mark)
(ii) Wavelength.
(b) A body of 2 kg is subjected to a time dependent force in the direction of x given by $\boldsymbol{F}=\left(3 t^{2}-4 t\right) N$. Determine its velocity and displacement at any time t given that $\boldsymbol{V}=50 \mathrm{~m} / \mathrm{s}$ at $t=0$ and displacement $\boldsymbol{x}=18 \mathrm{~m}$ at $\mathrm{t}=0$.
(c) A transverse wave motion is given by $y=4 \pi \sin \left(140 \pi t+\frac{1}{5} x\right)$. Determine the wave
(i) amplitude.
(ii) frequency and period.
(iii) velocity.
(3 marks)
(d) Two forces $\left(700 \mathrm{~N}, 110^{\circ}\right)$ and $\left(800 \mathrm{~N}, 60^{\circ}\right)$ at a point. Determine a single force that will have the same effect as the two forces, give the answer in polar form.

