

DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY

UNIVERSITY EXAMINATIONS 2020/2021

SECOND YEAR SECOND SEMESTER EXAMINATION FOR THE

DEGREE OF BACHELORS OF MECHANICAL ENGINEERING, CIVIL ENGINEERING, BED CIVIL, BED MECHANICAL, BSC GEGIS & GIS, CHEMICAL ENGINEERING

SMA 2232: ORDINARY DIFFERENTIAL EQUATIONS

Date: 16th December, 2020

TIME: 8.30AM-10.30AM

QUESTION ONE (30 MARKS)

a) Differentiate between general and particular solution of a differential equation

(2 marks) Hence find the particular solution of y'' - 4y - 5y = 0 y(0) = 3 y'(0) = 0(3 marks)

- b) Solve the initial value problem $\frac{dy}{dx} + y = \cos x$ $y\left(\frac{f}{2}\right) = 1$ (5 marks)
- c) Find the differential equation associated with the primitive $f(x) = a_1 e^{2x} + a_2 e^{-x} + a_3$ where a_1, a_2 and a_3 are arbitrary constants is a solution to the equation (4 marks)

d) Solve
$$y' = e^{-4x} \cos^2 5y$$
. (3 marks)

e) Use inverse differential operator method to solve the differential equation.

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 2\sin 3x.$$
 (5 marks)

- f) Solve the homogenous equation $(3y^2 x^2)dx (2xy)dy = 0$ (5 marks)
- g) Show that F = xy is an integrating factor for the equation $(2y^2 - 9xy)dx + (3xy - 6x^2)dy = 0$ (3 marks)

QUESTION TWO (20 MARKS)

a) Solve the initial value problem:
$$\frac{dy}{dx} + \frac{3}{x}y = 2x^2$$
 given that $y(1) = -3$ (5 marks)

b) Use Laplace transform method to solve the initial value problem

$$y'' - y = e^{-3t}$$
 $y(0) = 0$ $y'(0) = 1$ (7 marks)

c) Find the power series solution in powers of x of the differential equation

$$y'' + xy' + 3y = 0$$
 About an ordinary point $x = 0$ (8 marks)

QUESTION THREE (20 MARKS)

- a) Show that $y_1(x) = \cos 2x$ and $y_2(x) = \sin 2x$ form the fundamental set of solutions for the differential equation y'' + 4y = 0 (3 marks)
- b) Solve the Riccatti equation $y' = \frac{1}{x}y^2 + \frac{2}{x}y + \frac{1}{x}$ y(1) = -3 (8 marks)
- c) Show that $y = z \sin x$ where z is a function of x reduces the differential equation $\sin^2 x \frac{d^2 y}{dx^2} - 2\cos x \sin x \frac{dy}{dx} + 2y = x \sin^3 x$ to a differential equation $\frac{d^2 z}{dx^2} + z = x$. Solve the later equation and hence find y given that y(0) = 0 and y'(0) = 0 (9 marks)

QUESTION FOUR (20 MARKS)

- a) Use Taylor series expansion to obtain the power series solution of $y'' + x^2y' - 2 = e^x$ y(0) = 2 y'(0) = -1 (4 marks)
- b) Show that the O.D.E. $6xy dx + (4y + 9x^2) dy = 0$ is a non-exact differential equation. Find its integrating factor hence solve it. (6 marks)
- c) Solve the equation $y'' y' 6y = e^{-2x}$ using the method of variation of parameters.

(10 marks)

QUESTION FIVE (20 MARKS)

a) Solve the Bernoulli equation y'-y = e^{2x}y⁻⁴. (5 marks)
b) Obtain the general solution of (x-5)² y"-2(x-5) y'+2y = ln(x-5)²
(7 marks)
c) Use Laplace transform to solve the system of equations

$$\frac{dx}{dt} + \frac{dy}{dt} + x - y = 0$$

$$\frac{dx}{dt} + 2\frac{dy}{dt} + x = 1$$

$$x(0) = y(0) = 0$$

(8 marks)