

## DEDAN KIMATHI UNIVERSITY

BACHELOR OF SCIENCE IN (MATHEMATICS AND MODELLING PROCESSES. MECHATRONICS ENGINEERING / MECHANICAL ENGINEERING/ CIVIL ENGINNERING/CHEMICAL ENGINEERING AND INSTITUTE OF GEOMATICS, GIS AND REMOTE SENSING) ENGINEERING AND BACHELOR OF EDUCATION TECHNOLOGY
(CIVIL AND MECHANICAL) ENGINEERING YEAR ONE END OF SEMESTER ONE REGULAREXAMINATION FOR 2020/2021 ACADEMIC YEAR

CODE: SMA 1109 TITLE: GEOMETRY AND LINEAR ALGEBRA
TIME: 2 Hours

## INSTRUCTIONS TO ALL CANDIDATES

1. Question ONE is Compulsory.
2. Answer any other two questions of your choice

QUESTION ONE (Compulsory) (30MARKS)
a) Find the coordinates of the point R that divides the line segment with points $(1,-6)$ and $(10,9)$ externallyin the ratio 7:3.
b) Find the equation of a line passing through ( $1,-6$ ) and is parallel to line $3 x+2 y-4=0(2 \mathrm{mks})$
c) Determine the equation of the tangent to an ellipse $4(x+1)^{2}+9(y-1)^{2}=36$ at the point $(-1,2)(3 \mathrm{mks})$
d) Find the Centre and radius of a circle whose equation is $3 x^{2}+3 y^{2}-6 x+12 y-5=0$
e) A the vertices of a triangle $A B C$ are $(a, 0),(-a, 0)$ and $C(0, a \sqrt{3})$, show that triangle $A B C$ is Equilateral
( 3 mks )
f) Determine the angle between the vectors given by $\mathbf{a}=4 \mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{b}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k} \quad$ (3mks)
g) Solve the equation $3 \cos 2 \theta=-\sin \theta+1$ for $0 \leq \theta \leq 360$
(4mks)
h) Find the equation of a normal to an ellipse $(x+1)^{2}+4(y-1)^{2}=4$ at $(-2,2) \quad$ ( 4 mks )
i) Sketch a parabola $y^{2}=16 x$ and show the position of its directrix and focus
( 3 mks )
j) A body moves along a straight line according to the lawh $=\frac{1}{2} t^{3}-2 t$. Find its velocity att $=2$ seconds.
(2mks)

## QUESTION TWO (20MARKS)

a) Two adjacent sides of a triangular plot of land are 52 m and 34 m respectively. If the area of the plot is $620 \mathrm{~m}^{2}$. Find
i) The length of fencing required to enclose the plot in centimeters
( 6 mks )
ii) The internal angles of the triangular plot
(4mks)
b) Find the center and radius of the circle passing through the points $(2,1),(0,5)$, and $(-1,2)$. ( 5 mks )
c) Sketch a graph of $9(x-1)^{2}+4(y-2)^{2}=36$
( 5 mks )
QUESTION THREE (20MARKS)
a) If $\operatorname{Sin} \mathrm{P}=0.8142$ and $\operatorname{Sin} \mathrm{Q}=0.4432$. Evaluate correct to 3 decimal places
i) $\operatorname{Sin}(P-Q)$
(3mks)
ii) $\operatorname{Cos}(\mathrm{P}+\mathrm{Q})$
(4mks)
iii) $\operatorname{Tan}(P+Q)$
(4mks)
b) Two ships S and T leave a port O at the same time. S moves at $22 \mathrm{~km} / \mathrm{hon}$ a bearing of $125^{\circ}$ and T on a bearing of $200^{\circ}$. After the bearing of ship T from S is $240^{\circ}$, calculate correct to one decimal place
i) The initial speed of ship $T$
( 6 mks )
ii) The distance between the positions of the ships at that instance.
(3mks)

## QUESTION FOUR ( 20 MARKS)

a) Given that $\mathbf{p}=4 \mathbf{i}+7 \mathbf{j}-\mathbf{k}$ and $\mathbf{q}=-2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$. Find

$$
\begin{equation*}
\text { i) } \frac{1}{2} \mathbf{p}+3 \mathbf{q} \tag{2mks}
\end{equation*}
$$

ii) Find the cross product of $\mathbf{p}$ and $\mathbf{q}$
(2mks)
iii) Find the work done by a force $\mathbf{i}-2 \mathbf{j}+4 \mathbf{k}$ to move an object from $(4,5,2)$ to $(3,4,1)$.
( 3 mks )
1.) Three vectors $\vec{i}, \vec{j}$ and $\vec{c}$ are given by $\vec{i}=-\mathbf{i}-\mathbf{j}+\mathbf{k}, \vec{i}=2 \mathbf{i}-\mathbf{k}$ and $\vec{c}=4 \mathbf{j}+5 \mathbf{k}$ respectively. Find
i) $\vec{n}-\vec{a} \cdot(\vec{w}+\vec{c})$
(4mks)
ii) $\vec{i}$. $(\overrightarrow{i j} \times \vec{c})$
(3mks)
c, Fnalyze the hyperbola given by the equation $9 x^{2}-16 y^{2}-18 x-64 y-199=0$
(6marks)

## QUESTION FIVE (20MARKS)

a) Three lines $2 y-x-4=0,3 y+x-11=0$ and $y+x-8=0$ intersect on a Cartesian plane at three points.
i) Determine the co-ordinates of the three points of intersections
ii) Calculate the angle of inclination each line makes to the horizontal
b) Plot a graph of $y=0.5 \sin 2 \theta$ for $\theta$ from $0^{\circ}$ to $360^{\circ}$.
(4mks)
Use your graph to find
i) The amplitude and period of the function
(3mks)
ii) The value of $\theta$ if $\sin 2 \theta=1$

