

DEDAN KIMATHI UNIVERSITY

BACHELOR OF SCIENCE IN (MATHEMATICS AND MODELLING PROCESSES. MECHATRONICS ENGINEERING / MECHANICAL ENGINEERING/ CIVIL ENGINNERING/CHEMICAL ENGINEERING AND INSTITUTE OF GEOMATICS, GIS AND REMOTE SENSING) ENGINEERING AND BACHELOR OF EDUCATION TECHNOLOGY (CIVIL AND MECHANICAL) ENGINEERING YEAR ONE END OF SEMESTER ONE REGULAREXAMINATION FOR 2020/ 2021 ACADEMIC YEAR

CODE: SMA 1109 TITLE: GEOMETRY AND LINEAR ALGEBRA

TIME: 2 Hours

INSTRUCTIONS TO ALL CANDIDATES

1. Question **ONE** is **Compulsory**.

2. Answer any other two questions of your choice

QUESTION ONE (Compulsory) (30MARKS)

- a) Find the coordinates of the point R that divides the line segment with points (1,-6) and (10, 9) externallyin the ratio 7:3. (3mks)
- b) Find the equation of a line passing through (1,-6) and is parallel to line 3x + 2y 4 = 0 (2mks)
- c) Determine the equation of the tangent to an ellipse $4(x+1)^2 + 9(y-1)^2 = 36$ at the point(-1,2)(3mks)
- d) Find the Centre and radius of a circle whose equation is $3x^2 + 3y^2 6x + 12y 5 = 0$

(3mks)

- e) A the vertices of a triangle ABC are (a, 0), (-a, 0) and $C(0, a\sqrt{3})$, show that triangle ABC is Equilateral (3mks)
- f) Determine the angle between the vectors given by $\mathbf{a} = 4\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$ (3mks)
- g) Solve the equation $3\cos^2\theta = -\sin\theta + 1$ for $0 \le \theta \le 360$ (4mks)
- h) Find the equation of a formal to an ellipse $(x + 1)^2 + 4(y 1)^2 = 4$ at (-2,2) (4mks)
- i) Sketch a parabola $y^2 = 16x$ and show the position of its directrix and focus

(3mks)

(2mks)

(4mks)

(5mks)

(2mlca)

j) A body moves along a straight line according to the lawh $=\frac{1}{2}t^3 - 2t$. Find its velocity att = 2 seconds.

QUESTION TWO (20MARKS)

a)	Two adjacent sides of a triangular plot of land are 52m and 34m respectively. If the area of the	plot
	is620m ² . Find	

- i) The length of fencing required to enclose the plot in centimeters (6mks)
- ii) The internal angles of the triangular plot

b) Find the center and radius of the circle passing through the points (2,1), (0,5), and (-1,2). (5mks)

c) Sketch a graph of $9(x - 1)^2 + 4(y - 2)^2 = 36$

QUESTION THREE (20MARKS)

a) If Sin P = 0.8142 and Sin Q = 0.4432. Evaluate correct to 3 decimal places i) Sin (P = Q)

$1) \sin(\mathbf{r} - \mathbf{Q})$	(SIIIKS)
ii) $\cos(P+Q)$	(4mks)
iii) Tan $(P + Q)$	(4mks)

b)	Two sh	ips S and T leave a port O at the same time. S moves at 22 km/hon a bearing of 1250	and T on a
	bearing of 200 ⁰ . After the bearing of ship T from S is 240 ⁰ , calculate correct to one decimal pla		place
	i)	The initial speed of ship T	(6mks)

	1 1		· · · ·
ii)	The distance between the position	ns of the ships at that instance.	(3mks)

QUESTION FOUR (20 MARKS)

	a) Given that $\mathbf{p} = 4\mathbf{i} + 7\mathbf{j} - \mathbf{k}$ and $\mathbf{q} = -2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$. Find	
	i) $\frac{1}{2}\mathbf{p} + 3\mathbf{q}$	(2mks)
	ii) Find the cross product of \mathbf{p} and \mathbf{q}	(2mks)
	iii) Find the work done by a force $\mathbf{i} - \Re \mathbf{j} + 4\mathbf{k}$ to move an object from ($\mathbb{E}, 5, 2$) to (3, 4, 1).
		(3mks)
	1) Three vectors \vec{i} , \vec{j} and \vec{c} are given by $\vec{i} = -\mathbf{i} - \mathbf{j} + \mathbf{k}$, $\vec{j} = 2\mathbf{i} - \mathbf{k}$ and $\vec{c} = 4$ Find	ij + 5k respectively.
i)	$\vec{a} - \vec{b}$). $(\vec{c} + \vec{c})$	(4mks)

ii) $\vec{i} \cdot (\vec{b} \times \vec{c})$ (3mks) c) Analyze the hyperbola given by the equation $9x^2 - 16y^2 - 18x - 64y - 199 = 0$ (6marks)

QUESTION FIVE (20MARKS)

Three lines $2y - x - 4 = 0$, $3y + x - 11 = 0$ and $y + x - 8 = 0$ intersect on a Cartesian plane at three	
points.	
i) Determine the co-ordinates of the three points of intersections	(5mks)
ii) Calculate the angle of inclination each line makes to the horizontal	(5mks)
b) Plot a graph of $y = 0.5 \sin 2\theta$ for θ from 0° to 360°.	(4mks)
Use your graph to find	
i) The amplitude and period of the function	(3mks)
ii) The value of θ if $\sin 2\theta = 1$	(3mks)