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Abstract      A lubricant is an essential component for enhancing the equipment’s 

functionality and durability. For this reason, used oil analysis (UOA) is becoming 

an integral part of the plant’s lubrication program which is part of Condition Based 

Maintenance (CBM). By monitoring the lubricant’s condition through the UOA, 

organizations can optimize the equipment availability by reducing failure incidents 

of rotating elements. This paper advances the use of a predictive model of used oil 

analysis data with a view of assisting maintenance decision making of critical power 

plant equipment. The steps of the proposed methodology include data pre-pro-

cessing, principal component analysis (PCA) for dimension reduction, and logistic 

regression analysis to build the predictive model, where the lubricant’s parameters 

are compared against set thresholds, or limit values from which, indications of sig-

nificant lubricant deterioration may be derived. The framework is applied to a ther-

mal power plant case study. The novelty of the framework is towards providing 

insights for maintenance decision making and moreover, highlighting critical used 

oil analysis parameters that are indicative of lubricant degradation. By addressing 

such critical parameters, organizations can better enhance the reliability of critical 

operable equipment.  
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1.0 Introduction 

Lubricant condition monitoring is a key monitoring technique applied under the 

condition based maintenance(CBM) strategy. The condition of the lubricant in use 

is monitored and changes would infer degradation of either the lubricant itself or 

the equipment being lubricated. The lubricants’ performance level affects the per-

formance and operability of the equipment. A lubricant plays major roles in the 

engine, for instance reducing friction between surfaces that are moving relative to 

each other, control and minimization of wear, heat, corrosion and contamina-

tions[1]. The performance of a lubricant is mainly influenced by its deterioration 

level which further affects the working conditions of the engine or equipment. 

  

In a lubricant condition monitoring or used oil analysis (UOA) program, four main 

areas are monitored and highlighted, that is, changes in the physical and chemical 

properties, contamination, component wear through ingression of wear particles and 

additive analysis which would indicate depletion or level of the main components 

in the additive. For each of the monitor-able areas, there are variables or parameters 

that are analyzed in the program, sample variables indicated in table 1.   

Table 1 UOA Variables indicative sources 

Variables Indicative sources 

Viscosity An Increase is associated with oxidation or dilution with a denser product like 

heavy fuel oil from injector leaks, pump failures 

Flash point Associated with dilution with fuel or water as well as low lubricant quality 

TBN Depletion associated with the increase in acidity from oxidation (high tempera-

tures) or fuel Sulphur. 

Magnesium Associated with leakages of hard water and detergents in the lubricant 

Silicon Associated with dust or anti-freeze ingression or anti-foam additives 

Water Indicates high condensation, water leaks or inefficient centrifuge operation 

Iron Associated with the wear of pistons, cylinder liners, oil pump, valves etc. 

Chromium Indicative of wear on piston rings, liners, valves 

Aluminum Indicative of wear on pistons, bushings, oil pumps and bearings 

Nickel Can indicate wear on an alloy with Iron and vanadium as well as HFO dilution 

 

Once the oil has been analyzed, the analysts evaluate the different parameters 

against limits to confirm the condition of each parameter and hence the overall con-

dition of the lubricant. The limits are often set by the original equipment manufac-

turers (OEM) or the lubricant supplier. In some cases, the maintenance team through 

experience and analysis can set the limits considering the operational environment 

and conditions like the sulphur level in the fuel, the age of equipment, humidity, 

temperature, dusty environment etc. Other bodies like the International Council on 

Combustion Engines (CIMAC) give typical limits for mandatory action for different 

types of equipment[2]. A single sample of oil may have over twenty parameters 

tested whilst the analyst should review each parameter, and possibly derive some 

trend graphs to confirm if the sample is okay. If the sample is okay/passed, the 

equipment can continue running using the lubricant, while if the sample has failed, 

then action need to be taken either to improve the condition or renew the state of 

the lubricant. The exercise takes considerable time and introduces errors due to the 
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high dimensionality of the parameters which would require reduction without com-

promising importance. 

 

Principal component analysis (PCA) is a dimension reduction tool that can be used 

to reduce a large set of variables to a small set that still contains most of the infor-

mation in the original large set. PCA has been used for dimension reduction in dif-

ferent areas, for instance, it was used to reduce the number of variables included in 

the CBM model[3], in UOA prediction models [4],[5],[6],[7],[8]. Other studies us-

ing PCA include [9][10][11], and [12].  Logistic regression is a predictive analysis 

used to describe data and explain the relationship between one binary variable (re-

sponse variable which should be dichotomous or binary in nature for instance either 

1 or 0 or either Pass or Fail) and one or more nominal, ordinal or ratio-level inde-

pendent variables.  

 Logistic regression (LR) has also been used in different studies incorporating UOA, 

for instance, assessment of failure degradation and predicting propagation of failure 

from incipient to occurrence of actual failure [13],system condition estimation 

based on selected tribodiagnostic data [14], determination of maintenance inspec-

tion interval lengths on aircraft maintenance data [15], calculation of  the probability 

of failure for given condition variables[16], and for machine health assessment[17].  

2.0 Motivation of study 

Manual evaluation and analysis of the used oil analysis results are prone to human 

errors and delay. The analysts have differences in exposure, experience and ideas, 

therefore no standard interpretation can be achieved. The use of the specific samples 

without reference to past data could imply the “noise” from the data is not consid-

ered. Errors in the sampling procedure can influence the results of the sample if no 

benchmarking is done, substantial information may go unnoticed or erroneously 

dismissed. Analysis of one sample can bring bias to the interpretation, which might 

not be a true representation. This can be accelerated by errors in sampling proce-

dures if the sample is not representative of the oil in the system as is the requirement. 

The current procedure is cumbersome and time-consuming especially for manage-

ment who require a snapshot with action items. 

The factors motivate this study which seeks to develop a predictive model the 

maintenance team can use to confirm if a sample has passed, meaning all the tested 

parameters are within the acceptable level. On the other hand, the model can indi-

cate whether the sample has failed, hence appropriate maintenance actions can be 

taken. The novel of this study is the quantitative approach of subjecting all the pa-

rameters or explanatory variables for criticality selection using PCA, afterward, use 

the selected variables to build the LR model and test the predictive accuracy of the 

model. 
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3.0 Methodology 

The methodology as illustrated in figure 1 consist of a number steps. Step 1 deals 

with data collection, Step 2 involves data pre-processing in readiness for PCA and 

logistic regression, Step 3 incorporates the use of PCA to select critical variables, 

Step 4 building the LR model and Step 5 testing the developed model. We will use 

the statistical software R in both PCA and LR model.  

 

3.1 Data collection  

The data used in this study was from a thermal power plant that uses heavy fuel oil 

to drive the engines which eventually drive electric generators. The plant maintains 

data on used oil analysis for the engine oil which is sampled periodically and anal-

ysis done by an independent laboratory. The data used were collected from the years 

2011 to 2015, and measuring twenty lubricant parameters as outlined in Table 1. 

 

 
Fig 1 Schematic representation of methodology 

3.2 Data pre-processing  

The data was availed as individual reports for samples, while some had been orga-

nized in terms of specific variables. The pre-processing step adapts the data to the 

requirements of the data analysis hence enabling efficient analysis of the data which 

would be unfeasible otherwise. In this study, the data preparation or preprocessing 

includes a wide range of steps or phases, for instance, data transformation, integra-

tion and cleaning. The preprocessing stage also involved the maintenance team of 

the plant to verify the data and give some interpretation and linkages. Due to meas-

urements scales for different parameters being different, the data was standardized.  

Data Collection and cleaning

 

1

Data pre-processing and standardization
2

Principal Component Analysis
3

Logistic Regression modelling
4

LR model Testing & Accuracy
5
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3.3 Variables selection using PCA 

PCA is used for identifying patterns in data and expressing it in a way to expose the 

similarities and differences. PCA is a powerful tool to draws out patterns in data of 

high dimension and reduces the number of dimensions without much loss of infor-

mation, as a set of new orthogonal variables called principal components, reduces 

the size of data set whilst keeping important information and analyzes structure and 

variables. Factor loadings of the factor or component coefficients are used in select-

ing the important variables. This is correlation coefficients between the original var-

iables and the principal components or factors and give an indication to which ex-

tent the original variables are important in creating new variables.  

It is important while selecting variables to be used in a model, one can locate the 

important variables that influence the prediction. The data set had twenty variables 

which mean using all the variables in developing a model would become lengthy, 

moreover, some of the variables may not have key influence in the performance of 

the lubricant. 

3.3.1 Standardization of data 

Since the method proposed is based on the principal components and eigenvalues 

of the covariance matrix on parameters measured in different scales, the data had to 

be standardized. This was to enable interpretation of the Principal components (PC) 

in terms of the original variables where each coefficient is divided by the standard 

deviation of the corresponding variable. 

3.3.2 Selection of number of Principal components 

There are three methods to expose the number of PCs to be considered. Firstly, the 

use the rule of thumb when using standardized data, retain those PCs with an eigen-

value larger or equal to 1, secondly examination of the scree plot (scree or elbow 

test) to find if there is an ‘elbow’ in the slope, keeping the components before the 

elbow. Lastly the percentage of total variance the PCs should account for. From the 

analysis, we had five PCs that had eigenvalues equal or larger than 1, while the scree 

plot was indicating the elbow at six components in figure 3, hence five PCs were 

selected which explain 70.34% of the total variation of the data. 
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Figure 2 PCA factor map (PC1 and PC2)              Figure 3 Scree plot 

 

3.3.3 Variables selection 

In selecting the variables, we disregard those loading below a certain threshold on 

each factor, for this study we use any below 0.5 as used traditionally[18].From the 

Principal component analysis in table 2, the following variables were extracted to 

be used as inputs for the logistic regression model: Viscosity at 40oC, flash point, 

TBN, magnesium, calcium, zinc, silicon, sodium, water, carbon content, iron, 

chromium, copper, aluminum, nickel and vanadium. 

The dimension reduction done using PCA exposed several correlations of the used 

oil parameters. From PC1 (in table 2), had silicon, iron, chromium magnesium and 

aluminum are wear metals, while flashpoint a physical property of the lubricant and 

water a contaminant. There is a possibility as indicated in table 1, the wear metal 

particles occurring in the lubricants due to wear of mostly the combustion parts, for 

instance the pistons, while the increase in water content increases flashpoint and 

catalyzes corrosive wear. PC2 was made up of viscosity characteristics with 

viscosity at 40oC, Carbon, nickel and vanadium. For used oil analysis, the 

correlation of this three lubricant parameters comes into being when the viscosity 

increases due to ingression of heavy fuel oil which is used in such plants as in our 

case study[19]. The three parameters have a high effect of increasing the viscosity 

of a lubricant[20], carbon is an indication of soot presence which is a product of 

normal fuel combustion, moreover can be used to indicate the combustion 

efficiency of the engine. Nickel and vanadium are used in alloys with iron and 

aluminum and mostly appear in lubricants as a contaminant from heavy fuel oil used 

in medium speed engines (MSE)[2]. PC3 primarily had TBN characteristics, where 

calcium and magnesium form detergents/dispersants which are ingredients used for 

TBN boosters(additive)[19].TBN which is the alkaline reserve of a lubricant is 

critical in MSE due to its neutralization effect of acidity caused by either Sulphur 

from the fuel or oxidation of the lubricant. 

 

 

Table 2 Factor loadings for the PCs 
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 3.3 Logistic Regression Model training and testing 

 

3.3.1 Data preparation 

In this study, each sample was evaluated based on the twenty variables that had been 

tested. Each of the variables is individually evaluated against limits or thresholds to 

reveal the performance of the lubricant parameters, which eventually reveals the 

sample condition. Limits or alarm level for oil analysis results can be specified to 

monitor the machine’s condition. Typically, the absolute thresholds are usually 

recommended by the equipment manufacturer and/or lubricant suppliers’, which in 

practice, they are based on the average operational and performance situations that 

may not correspond to the actual application condition of the machine. The limits 

assist in evaluating the lubricant parameters that have deviated from the expected 

values indicating that either the lubricant or equipment or both conditions are not as 

expected. In this study, data was prepared such that the lubricant parameters were 

evaluated and a score for each sample updated to have either a PASS or FAIL. The 

data was split to training and testing data. For instance, in this study, values taken 

were 70:30 i.e. 70% of the data to use for training the model while 30% of the data 

will be used to test the model. 

3.3.2 Fitting the model to the data 

In this section, the model introduced in the earlier section was fitted to the training 

data, since the engines under study do not run to complete failure due to the preven-

tive maintenance performed. However, the failure of the lubricant is not defined as 

an actual breakdown, but a deviation of one or more parameters that are important 

to its health and state. The variables exposed by the principal component analysis 

were taken as the input (explanatory variables) to the model, while the predictor 

variable is the binary state of 1 to represent sample PASS and 0 to represent sample 

FAIL.  

3.3.3 Model Goodness of fit 

Once a logistic regression model has been fit to a given set of data, the adequacy of 

the model is examined by overall goodness-of-fit tests and examination of 

influential observations. A goodness-of-fit test that is commonly used to assess the 

Variable PC1 PC2 PC3 PC4 PC5 Variable PC1 PC2 PC3 PC4 PC5

Viscosity @40oC 0.41 0.71 0.05- 0.29- 0.16 Water 0.51 0.11- 0.20- 0.25- 0.51- 

Viscosity @100oC 0.06 0.27 0.10- 0.05- 0.02 Carbon/Soot -   0.80 0.18 0.08 0.09 

Flash point 0.81 0.18- 0.02- 0.36- 0.11- Iron 0.85 0.09 0.23- 0.19 0.14 

TBN 0.25 0.07- 0.86 0.10 0.05 Chromium 0.71 -   0.26- 0.33 0.20 

Magnesium 0.82 0.12- 0.34 0.12- 0.04 Lead 0.49 0.45- 0.18- 0.45 0.11 

Calcium 0.11- 0.22 0.72 0.43 0.20- Copper 0.55 0.41- 0.19- 0.42 0.16 

Zinc 0.56 0.07- 0.06 0.20 0.63- Tin 0.26- 0.14 0.02 0.08 0.47 

Silicon 0.82 0.14- 0.24 0.07 0.24 Aluminium 0.85 0.19 0.10 0.05 0.04 

Sodium 0.82 0.08- 0.10 0.34- 0.11 Nickel 0.51 0.74 0.18- 0.14 0.12- 

Pentane Insolubles 0.36 0.19 0.10 0.54- 0.13 Vanadium 0.07 0.77 0.20- 0.38 0.16- 
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fit of logistic regression models is the Hosmer–Lemeshow test[21]. A hypothesis of 

Ho the LR model fits the data while the null hypothesis H1, the LR model does not 

provide a good fit and is tested using the significance level of 5%. The model 

generated a p-value of 0.7948 hence we do not reject the null hypothesis based on 

a significance level of 5% and conclude that the logistic regression model fits the 

data. 

3.3.4 Model evaluation 

The built model using the training data was tested and evaluated using the testing 

data by evaluating its predictive power using several parameters. 

(a) Classification table 

The classification table, as seen in table 3, indicates the model prediction using the 

testing data. It can be used to calculate the sensitivity, which is the proportion of 

events (1 or PASS) predicted as events (1), specificity which indicates the 

proportion of non-events (0 or FAIL) predicted as non-events (0) and false positive 

which indicate the number of non-events (0) predicted as events (1). Classification 

of observations using the prediction where the test data was used, was done based 

on a cut-off value of 0.5 giving Sensitivity of 74.07% ({40/ (40+14)}), Specificity 

of 93.14% ({258/ (258+19)}) and a false positive of 6.83%, all computed from 

results in table 3. 

 

Table 3 Classification table -cut-off level of 0.5 

   

 Actual 'FAIL' Actual 'PASS' 

Classified 'FAIL' 258 19 

Classified 'PASS' 14 40 

   
 

(b) AUC (Area Under the ROC curve) 

The ROC curve, see figure 4, is a visual measure of the predictive ability or power 

of the logistic regression model. See figure 4. A model with a high AUC indicates 

to be one with a higher predictive power i.e. able to classify a ‘FAIL’ sample from 

the ‘PASS’ samples. The ROC curve developed is seen in figure 4, while the area 

under the ROC curve (AUC) for the LR model is 0.9473≃0.95. 

(c) Proportion of deviance 

This is also considered as a generalization of R2 

This can be interpreted as the proportion of deviance explained by the model.  

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =
𝑁𝑢𝑙𝑙 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 − 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐷𝑒𝑣𝑖𝑛𝑐𝑒

𝑁𝑢𝑙𝑙 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒
 

Where null deviance is the deviance for a model with only one constant term and 

residual deviance is the deviance of the fitted model. The model returned a propor-

tional deviance of 75.47%. 

The prediction of the model returns an overall error of 10% and an average class 

error of 16%.  
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Figure 4 Receiver Operating Curve (ROC) curve     

 The LR model evidenced to classify approximately 90% of the oil samples 

correctly as seen in table 3. Logistic regression is a powerful tool for predicting 

class probabilities and for classification using predictor variables. Classification or 

scoring of data requires thresholding, which defines probability intervals for each 

class or score hence making it completely adaptable for the UOA sample 

classification. The use of different data set for model building(training) and testing 

here measures how the model will perform on previously unseen cases, moreover 

alludes to the importance of historical data to the future classification. This makes 

LR modelling a tool that is easily adoptable by the maintenance engineers to 

evaluate samples as the model is updated using newly generated data, moreover, 

this will reduce the time to make maintenance decisions.      

4.0 Conclusion 

The performance of the LR model has been evaluated for classification of oil sample 

data from a thermal power plant giving an accuracy of 90% in predicting. The re-

sults from PCA, are vital in root cause analysis (RCA) after a sample is classified 

to have failed. Though the classification would not be generalized for all kinds of 

data, it proves to be vital if accurate RCA should be carried out as it points at some 

links and patterns of the parametric performance. The methodology developed 

herein can be subtle to the maintenance decision support as it will shorten the time 

cycle of interpretation, hence ensure timely intervention before failure occurs. 

Moreover, the model developed can be used by anyone without much knowledge 

of statistics making it easy to adopt. Proposed future work would incorporate other 

predictive models in the study. 
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