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Lubrication Condition monitoring (LCM) is not only utilized as an early warning system in
machinery but also, for fault diagnosis and prognosis under condition-based maintenance
(CBM). LCM is considered as an important condition monitoring technique, due to the
ample information derived from lubricant testing, which demonstrates an introspective
reflection on the condition and state of the machinery and the lubricant. Central to the
entire LCM program is the application concept, where information from lubricant analysis
is evaluated (for knowledge extraction) and analyzed with a view of generating an output
which is interpretable and applicable for maintenance decision support (knowledge appli-
cation). For robust LCM, varying techniques and approaches are used for extracting, pro-
cessing and analyzing information for decision support. For this reason, a comprehensive
overview of applicative approaches for LCM is necessary, which would aid practitioners
to address gaps as far as LCM is concerned in the context of maintenance decision support.
However, such an overview, is to the best of our knowledge, lacking in the literature, hence
the objective of this review article. This paper systematically reviews recent research
trends and development of LCM based approaches applied for maintenance decision sup-
port, and specifically, applications in equipment diagnosis and prognosis. To contextualize
this concern, an initial review of base oils, additives, sampling and testing as applied for
LCM and maintenance decision support is discussed. Moreover, LCM tests and parameters
are reviewed and classified under varying categories which include, physiochemical, ele-
mental, contamination and additive analysis. Approaches applicable for analyzing data
derived from LCM, here, lubricant analysis for maintenance decision support are also clas-
sified into four categories: statistical, model-based, artificial intelligence and hybrid
approaches. Possible improvement to enhance the reliability of the judgement derived
from the approaches towards maintenance decision support are further discussed. This
paper concludes with a brief discussion of plausible future trends of LCM in the context
of maintenance decision making. This present study, not only highlights gaps in existing
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literature, by reviewing approaches applicable for extracting knowledge from LCM data for
maintenance decision support, it also reviews the functional and technical aspects of lubri-
cation. This is expected to address gaps in both theory and practice as far as LCM and main-
tenance decision support are concerned.

� 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

Condition-based maintenance (CBM), is a maintenance strategy that uses the information obtained while monitoring the
condition of a physical asset to recommend maintenance actions for it. As Jardine et al. [1] argue, CBM enables maintenance
actions to be taken only when there is corroboration of deviation of the behavior or condition of the asset. The process of
monitoring the condition in the machinery is condition monitoring, also defined as a management technique utilizing reg-
ular evaluation of the actual equipment operating condition with a view of maximizing the total equipment operations based
on equipment health condition data, where often such data is utilized for revealing deviations or faults in the equipment [2].

Different condition monitoring approaches are used where the International Standards Organization (ISO) classifies as
seen in Table 1.

Tribology and lubricant are classified into two variants, where tribology deals with the science of wear, while lubricant
analysis, also known as lubricant condition monitoring, deals with the analyzing the condition of the lubricant through
which, the health of the equipment is inferred. Lubricant Condition Monitoring (LCM) compliments predictive and proactive
maintenance strategies, and often applied as the first-line defense for mitigating early equipment deterioration, hence avert
potential catastrophic equipment failures. Effective maintenance decisions have a considerable impact on the equipment
operability, moreover since, poor decisions often bear adverse economic and environmental consequences. For successful
maintenance decision-making, technical knowledge about the equipment is required along with information on the business
and operational context. Hence, timely, accurate and reliable decisions should be made considering knowledge on the equip-
ment state based on information derived from condition monitoring. This is essential for decision support systems aimed at
aligning operational and business objectives of the organization and design of maintenance strategies aimed at attaining
such objectives.

To design such robust maintenance decision support systems, recent years evince increasing interest in LCM, especially
from academic researchers and industrial practitioners. A search from the web of science using search terms such as ‘‘lubri-
cant condition monitoring”, ‘‘lubricant monitoring”, ‘‘oil condition monitoring”, ‘‘oil analysis” and ‘‘oil monitoring” depicts



Table 1
ISO standard condition monitoring techniques [3].

Condition monitoring technique ISO reference

Vibration ISO 13373-1:2002; 13373-2:2005; 16587; 18436-2
Thermography ISO 18434-1:2008; 18436-7
Acoustic emission and ultrasound ISO 22906:2007; 29821-1:2011; 18436-6
Tribology and lubricant ISO 14830-1; 18436-5
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this increasing trend. There has been a marked increasing trend with the total number of publications over the last 5 years
(2013–2017) being 419, which constitutes 35% of the total publications cumulatively over the last 20 years (1997–2017) of
which, the search generated a total of 1216 articles. The subject publications incorporate the tribological aspects like chem-
istry, friction and design not dealt with in this review, while their decision application includes material design, medical,
lubricant additives design and machinery. This current review focuses on publications leading to maintenance application.
This emphasizes the interest on LCM as a concept for decision support.

Despite the interest towards LCM, there is seemingly few review articles that look at the state of the art applicative tech-
niques of LCM for maintenance decision support, furthermore, the reviews are not directly linked to LCM. On LCM literature,
and more specifically review articles, several authors consider models, approaches and techniques which are related to Con-
dition Based Maintenance, for instance, Jardine et al. [1] who reviews algorithms applied for analyzing condition monitoring
data with a view of extracting useful information for maintenance decision support, where such information remain core to
implementing CBM. Their study classified techniques for deriving maintenance decision support into principal methods, for
instance, for diagnosis, categorized into statistical methods, and approaches for artificial intelligence. Under methods appli-
cable for prognostic decision support, they distinguish approaches for quantifying the remaining useful life (RUL), condition
monitoring (CdM) intervals and designing optimal maintenance policies. However, in their study, methods that directly may
be applicable for knowledge extraction or aiding decision support in the context of LCM are not reviewed or distinguished.
Shin et al. [4] reviewed techniques for decision support for condition-based maintenance, where they classify the techniques
under three main categories; model-driven methods, data-riven and knowledge-based approaches. Likewise, in the men-
tioned study, the applicability of the reviewed methods for LCM is not clear. Ying et al. [5], reviewed prognostic models
applicable for CBM, where the models are classified under categories which incorporate physical models applicable where
mathematical models can be constructed, knowledge-based that are configured with knowledge and reasoning aspects,
data-driven methods based on statistical and machine learning techniques and combination models. Sikorska et al. [6]
reviewed prognostic models for quantifying the RUL, where they not only highlight their strengths and weaknesses, but also
business concerns which need to be considered prior to selecting appropriate models. Lee et al. [7] reviewed approaches
commonly used in prognostics and health management for rotary machinery system, which the study categorized as
model-based, data-driven and hybrid approaches. The study did not directly review their applicability in LCM. Kan et al.
[8], while reviewing prognostic techniques applicable for non-stationary and non-linear rotating systems, enumerates a
comprehensive list of statistical and Artificial intelligence (AI) based techniques, while detailing their advantages and
disadvantages. The review, classified the techniques as model-based methods, data-driven models, and combination models.
El-Thalji et al. [9], while reviewing prognostic monitoring tools for rolling bearing elements, classifies the techniques under
statistical methods, artificial intelligence (AI) and physics-based approaches. However, the applicability of the enumerated
approaches for decision support in LCM is not clearly discussed by [8,9].

Hence, a common flaw with the reviews is, although methods applicable for deriving decision support from condition
monitoring data are discussed under CBM context, applicability for such approaches on Lubricant based data information
is undiscussed. This gap is the concern of this review paper where the applicability of statistical, artificial intelligence and
other approaches for analyzing Lubricant data and deriving maintenance decision support are reviewed. To the best of
the author’s knowledge, the aspect of LCM as espoused in CBM has seldom been reviewed in the context of maintenance
decision support approaches.

This paper is structured as follows: Section 2 briefly describes the LCM concept and its integral aspects such as lubricant
and its functions, LCM program constituting sampling, testing, interpretation of results and finally maintenance decision
support. Section 3 reviews the applicative aspects of LCM in maintenance. Section 4 reviews the state of art approaches
for extracting and application of knowledge from LCM in maintenance along with their advantages and derived judgement
reliability constraints, while Section 5 briefly discusses aspects of possible improvements to overcome constraints that
impede the reliability of LCM based decisions derived from the approaches, and general application trend in the maintenance
field from the author’s perspective. Section 6 lays out the plausible future trend of LCM in maintenance with Section 7 con-
cluding the paper.
2. Lubricant condition monitoring

LCM, commonly known as used oil analysis program (UOA), is applied while analyzing the lubricant properties and often
reveals possible contamination within the lubricant and changes in its properties. In this section, we first review lubricants
and its functions, which are integral to the LCM program, and finally the concepts and steps involved in the LCM program.
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2.1. Lubricant and its functions

The primary functions of lubricants include reducing wear and friction, protection against corrosion and rust, cleaning the
system and removing contaminants from the system being lubricated. The term lubricant generally represents lubricating oil
(mostly viscous fluid oil in nature) and lubricating grease (Semi-solid to semi-fluid in nature with the additional ingredient
called thickener) [10]. A lubricant is made through the blending of one or more base oils and additives. An example of a typ-
ical blend of an engine oil lubricant is given in [11]. Base oils, which is oil refined from crude oil (mineral base oil) or through
chemical synthesis (synthetic base oil) are classified based on its composition by the American Petroleum Institute (API) as
shown in Table 2. Additives are chemicals used to enhance and modify the functionalities of the lubricants. Due to the
diverse types and application of lubricants, classification becomes important for easy identification, quality level establish-
ments and more persuasive communication between the stakeholders including the maintenance team. The blended lubri-
cants can be classified in distinctive ways, for instance, classification by application and viscosity. Applications include
automotive, industrial, aviation, marine, etc., whereas classification by viscosity utilizes the International Standards Organi-
zation (ISO) and Society of Automotive Engineers (SAE). A comprehensive discussion on the classification of lubricants by ISO
and SAE can be found in [12].

The knowledge on base oil and additives used in a lubricant aide in important maintenance decisions while selecting
lubricants, for instance, some additives may be incompatible to certain specific seals in a machine, while classification
enables harmonized global specification easing lubricant selection decisions. However, while the lubricant is in use, degra-
dation may set in due to intrinsic and/ or external factors which affects the machinery performance e.g. wear occurrence due
to lubricant dilution also studied by [14]. To address these limitations, lubricant condition monitoring programs are designed
which not only guarantees the lubricant condition to fulfill its function, but also indicate equipment states and identify fail-
ure risks.
2.2. Lubricant condition monitoring program

The LCM program entails analysis of lubricants that highlights its changes and/or deterioration which influences the
lubrication properties [15]. Moreover, this information is used in maintenance decision making to abate any failure of the
system, increase the system availability, reduce unnecessary lubricant replenishment costs, moderate environmental effects
and enhance the diagnosis process. A comprehensive discussion on the importance and types of tests is addressed in [16].
Concerning specific LCM field, Zhu et al. [17], reviewed existing LCM hardware solution techniques, mainly sensors used for
the lubrication tests. The study classified the monitoring sensors under electrical, physical, chemical and optical techniques.
The review was limited to lubricant degradation caused by contamination and did not review the approaches used for ana-
lyzing LCM data for maintenance decision support as the case in our current review. Other review studies reviewing on-line
monitoring approaches for LCM includes, a review of sensors for measuring viscosity [18], on-line oil dilution measurement
methods [19], and lubricant condition monitoring using on-line monitors [20]. Other reviews in LCM include the study of
interaction between anti-wear and extreme-pressure additives [21] and techniques applicable for measuring the degree
of lubricant oxidation [22]. The aforementioned reviews were limited in a more considerable extent, to a particular aspect
of the LCM program for instance sampling [18], additives [21] and oxidation [22], which do not advance comprehensive state
of art review that could assist in maintenance decision support due to partiality. In this study, we intend to review the
wholesome LCM program and how it can be used by practitioners in maintenance decision support, hence this section
divulges the LCM program.

A lubrication condition monitoring program is composed of three key steps (see Fig. 1), discussed further in the upcoming
paragraphs:
Table 2
American Petroleum Institute Base oil classification [13].

Group Sulphur, wt. % Saturates, wt. % Viscosity Index

I >0.03 <90 80–119
II �0.03 �90 80–119
III �0.03 �90 �120
IV All poly-alpha-olefins (PAOs)
V All other not included in Groups I, II, II or IV

Fig. 1. Lubricant condition monitoring steps.
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a) Lubricant sampling (sample scheduling and collection).
b) Lubricant sample testing and results (sample testing, processing and handling).
c) Maintenance decision support (results analysis, interpretation and decision-making).

2.2.1. Lubricant sampling (sample collection)
Lubricant sampling can be classified as dynamic or static, where static involves a discrete sampling event characterized by

a fixed state or condition. In this case, a sample is drawn for testing while the equipment is either running or not operational.
Dynamic sampling is characterized by constant changes in state or conditions, for instance, use of on-line and in-line sam-
pling and analysis for testing the lubricant. In the in-line technique, the oil is analyzed while passing between the lubricant
pump and the component to be lubricated, whereas on-line technique involves bypassing the oil to the analyzer. In static
sampling, often referred to as off-line analysis, the lubricant sample is drawn out from the machine and analyzed in the lab-
oratory which can be on-site or out of the site. Recent reviews on the sampling methods are given in [17,23–25]. For accurate
maintenance decision making, the integrity of the lubricant sample which is a legitimate representative must be guaranteed.
The applicability of the different sampling types may be adopted depending on different dynamics the machinery is running
in e.g. for uninterrupted running, on-line sampling may be suitable, though other aspects such as cost and easy usability
should be considered. Acceptable methods and frequency of lubricant sampling are essential for integrity and representation
of LCM. For successful sampling and oil analysis results, three facets are discussed as important which include supporting
hardware (e.g. [26]), sampling procedure (e.g. [27–33]) and sampling location (e.g. [27]). In dynamic sampling and monitor-
ing using on-line monitoring, common sensor detection methods encompassing the wear category include optical, inductive,
resistive capacitance and acoustic concurred by [34,10], while for physio-chemical properties include acoustic, vibrational
and displacement [35,18]. Wear features such as debri concentration could be detected using acoustic [36], inductive detec-
tion type [34,37] optical or imaging [38], debri morphology could use optical [38] and resistive capacitance [39], while debri
size could use inductive, acoustic or capacitance. Some authors have reviewed the detection types for physiochemical prop-
erties [38], water contamination [40], and soot contamination [41], while a comprehensive review of on-line lubricating oil
sensors has been advanced by [10].
2.2.2. Lubricant tests and results
Used oil analysis (UOA) program, derives the test results from testing various lubricant parameters that highlight the con-

dition and state of the lubricant. The test results form a vital source of information used while detecting early equipment
failure or faults, because the lubricant condition considers the health or state of both the lubricant and equipment [17]. Four
classes of the UOA test results are distinguished, that is physiochemical properties, elemental (wear) analysis, additive anal-
ysis and contamination analysis, also corroborated by [42]. In this section, we limit the discussion to some of the commonly
analyzed parameters affiliated to the four classes as highlighted. A review with more comprehensive discussions and refer-
ences indicating respective American Society for Testing and Materials (ASTM) test methods for analysis of lubricants is
found in [43].

In-depth reflection on Physical and chemical (physiochemical) properties has been done by [44]. Elemental (wear) anal-
ysis occasions analysis of elements that constitute the metallurgy of components found in the lubricated equipment for
example, iron, aluminum, lead, copper, chromium, silver and tin. A summary of elements tested with their respective viable
source(s) can be found in [45], while several examples of the metallic elements and various testing techniques are illustrated
by [46]. Additive analysis involves chemicals that impart specific new properties, improve existing base oil properties such
as viscosity, as well as widen the range of applications of the lubricant [47] and potentially may infer the condition of the
equipment [48]. A comprehensive study on lubricating oil additives is done by Ahmed and Nassar [47]. Contamination anal-
ysis is carried out when lubricant becomes adulterated with liquid or solid materials rendering it impure thus compromising
its performance, which may involve contamination from water [49], fuel and soot [50], glycol or antifreeze [49] and
insoluble-solid [51]. Direct or indirect test techniques are employed, for instance, fuel dilution can be tested directly (Gas
chromatography or fuel dilution meter) or implied (flash point, viscosity or FT-IR spectroscopy) by traces of particles
accepted in the fuel’s composition such as vanadium or nickel [52,51]. An implication of this is the possibility that correlating
the parameters potentially will assist in a more informed proactive maintenance decision.

Table 3 illustrates a summary of commonly tested and reported properties in lubricant condition monitoring. Notable is
some properties classified in more than one category such as boron, silicon, vanadium also corroborated by Langfitt and
Haselbach [53].
Table 3
Commonly tested lubricant parameters classified.

Classification Common parameters Articles

Physical & chemical Viscosity @ 40oC, Viscosity @ 100oC, Total Base Number (TBN), Total Acid Number (TAN), Flash point, [54–56]
Additives Boron, Barium, Calcium, Magnesium, Molybdenum, Phosphorus, Sodium, Silicon, Zinc [57–59]
Contamination Water, Coolant, Vanadium, Soot/carbon, Potassium, Silicon, Sodium, Boron [60–62]
Elemental (wear) Chromium, Iron, Tin, Aluminum, Copper, Lead, Nickel, Vanadium, Titanium, Silver [63–66]



Table 4
The spread of articles reviewed under lubricant categories.

Classification Elemental(wear) Additive Physio-chemical Contamination Mix

Statistical 30% 17% 18% 63% 38%
Artificial intelligence 30% 33% 45% 38% 45%
Model based 15% 33% 21% 0% 3%
Hybrid 25% 17% 15% 0% 13%
Total 50% 3% 15% 4% 28%
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The tested parameters, however, are processed and data is consequently analyzed for decision support. During offline and
on-line condition monitoring, various data types are employed depending on the machine or condition of interest in the LCM
program. Oil analysis data includes value type, spectroscopic or waveform and raw media such as images, videos, and text. It
is important to note, that the data acquired by online sensors in different forms as depicted by their respective detection
modes, require to be analyzed and interpreted to extract information that can offer maintenance support or will further
be processed (feature extraction) to extract important information from the raw signals for various monitoring purposes.
This process known as signal processing is mainly performed on the waveform and multidimensional type of data. Several
methods are employed for signal processing, among them includes limit checking, spectral and statistical analysis [67]. The
aspects of signal acquisition and processing are beyond the scope of this paper hence will not be discussed in detail. Value
type data include raw data (acquired via data acquisition) and feature values (via signal processing) such as measured/pro-
cessed values of different features (physio-chemical, wear in ppm, contamination in percentages or quantified particles).
Event data is also a significant data type which includes the information related to maintenance actions and practices, break-
downs and other maintenance action such as overhauls observed on the machine.

In this review, elemental analysis-based papers constitute 50%, physio-chemical properties 15%, contamination 4%, addi-
tives 3% and a hybrid/mix 28% of the total reviewed publications (See Table 4). Several studies have reviewed the lubricants
parameters, for instance, review of physiochemical, contamination and wear analysis in [38], while a review of elemental
(wear) analysis and physiochemical properties was done by Salgueiro et al. [68]. A comprehensive review of oil analysis
incorporating all the above categories has been done by several articles [15,29,69], however, they dwell on the lubricant tests
and do not review the techniques used to extract knowledge, analyze and assist in decision making as the current review
intends. As alluded to earlier, to assist the maintenance practitioners in decision making, incorporating lubricant test results
evaluation and interpretation is important as discussed in the next section.
2.2.3. Maintenance decision support information
For robust maintenance decision making, relating technical apprehension of degradation process with data collection and

analysis to appraise the state of equipment is essential [70]. A maintenance decision support system, is therefore necessary
to aid the technical, maintenance and operational teams to analyze LCM information, generate output and knowledge to be
used in maintenance decision making. Central to the success of a decision support system is the knowledge of the areas of
application and the suitable approaches, specific to the maintenance need and available analysis data, which should cau-
tiously be selected and used to ensure a sound maintenance decision is reached. For such, the areas of application then fol-
lowed by the approaches used during extraction and application of the knowledge contained in lubricant analysis are
reviewed in the next sections of this study.
3. Application of LCM in maintenance

The application of LCM program in maintenance decision making can be treated under three complimenting categories,
which are: detection, diagnosis, and prognosis [71]. Prognosis deals with predicting the future performance of a system by
analyzing either its degradation or deviation from expected state or condition in its routine operations. Prognosis involves
both confirming whether a fault exists and determination of the remaining useful life (RUL) to ascertain time for mainte-
nance intervention for instance, increase wear element count could be used to predict useful life of a machine [6]. In prog-
nosis, an LCM program using historical data to derive patterns indicative of equipment faults and predicting the RUL of the
lubricant or the equipment may be developed. This may leverage on a predictive model for forecasting critical failures before
they occur, which ultimately enables better maintenance planning, scheduling and or intervention. The condition of lubri-
cation oil and its circulation system reflect the health status of the machinery, and components being lubricated, for instance,
sodium contamination has a resultant effect of a filter clogging [60]. Accordingly, early detection of deviation of the lubricant
parameters will enable prompt and timely intervention to correct the condition or state. Further, diagnosis for instance,
using wear metals analysis can be done to locate a faulty component, if immediate action is not possible or level of deteri-
oration is higher than one allowing intervention. Similar to other fields, knowledge extraction can be achieved by associating
or extracting patterns in the parameters of the oil samples either following a univariate or multivariate technique [42]. The
patterns extracted can be applied in several ways with potential benefits such as maintenance cost reduction, waste reduc-
tion, and timely and accurate maintenance intervention. Some examples of the application of this knowledge among others
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include determining and predicting current and future health status of the machinery and lubricant, as well as predicting the
remaining useful life (RUL) of machinery and lubricant.
4. LCM approaches in maintenance decision support

The use of LCM in maintenance has gained high academic and maintenance interest in the recent past. Recently, a con-
siderable literature has grown up around the theme of LCM application in maintenance, not only as an early warning signal,
but also for failure diagnosis and investigation (root cause analysis). A search of the literature revealed few studies which
have reviewed some sections of LCM (see Section 2.2) and seldom review all approaches applied in maintenance decision
support. This section reviews the diverse approaches used while applying LCM in maintenance towards the three application
regimes of detection, diagnosis, and prognosis. Fig. 2 illustrates the proposed classification of approaches in this review that
is, statistical, model-based, artificial intelligence and hybrid as reviewed in the next section.
4.1. Statistical approaches

This approach utilizes a statistical model, which interpret the form of relationship between variables. To define statistical
models, we would review the work of McCullagh [72], who alludes that such models are linked with the statistical analysis of
data, and hence the model and the analysis are regarded as inextricably intertwined concepts. Some examples of multivari-
ate statistics applied in LCM are outlined by Sharma [73] which include cluster analysis, principal component analysis, mul-
tivariate analysis of variance (MANOVA), factor analysis, regression and so on.

Trend analysis has a number of functions such as, showing changes of a parameter with change of another parameter such
as time, comparing lubricant features against limits, assessing magnitudes of changes between consecutive samples and
tests [74], enabling early detection of feature deviation hence maintenance intervention is made such as inspection of com-
ponents wear or ingression of a contaminant like water. Some LCM based studies that used trend analysis include [75–81].
Trending possesses various limitations such as single parameter analysis which may not offer meaningful diagnosis,
moreover, a vast amount of vital information may go unnoticed. Nevertheless, some remedies given imply the use of trend
analysis with level limits or threshold, monitoring rate of advance and using more than one property in the plot [82].

Correlation analysis, which overcomes the limitation of the univariate trending approach, demonstrates the strength of the
relationship between two different variables using the correlation coefficient [83]. The high correlation of two lubricant
parameters signifies a predictive association applicable in practice [42]. Conventional methods include Pearson and Spear-
man for normal and non-normally distributed data where normality tests are used to ascertain method to employ [84,85].
Correlation was used to evaluate the general relationship among the used oil parameters, for instance, chronicling the phys-
iochemical and tribological parameters of the engine oil [83], while in other studies [93,87,88]. Most of the studies reviewed,
seldom justify the correlation method used, only [42], carried out normality tests to justify use of Spearman’s correlation
method. Nonetheless, correlation analysis is limited to two-dimensional view which does not demonstrate flexibility for a
multivariate view, therefore cannot show the cause and effect of equipment wear and further assumes a linear relationship.
Hence, the need of multivariate analysis such as regression analysis discussed in the following section.

Regression analysis is a method of estimating the functional relationships among variables which are expressed in the
form of an equation, where the value of the independent variable is used to estimate the value of the dependent variable.
Linear regression evaluates the effect of predictor variables and variables that are significant predictors of the dependent
variable offering maintenance support by exposing significant features influencing the dependent LCM feature. Linear
regression was used in the exploration and analysis of lubricants in various studies [89–91]. Some grave challenges for
regression analysis involve the utilization of mean values, the possibility of multicollinearity, overfitting and sensitivity to
outliers, which could be addressed using principal component regression (PCR), classical least squares (CLS) and partial least
squares (PLS). PCR is an extension of regression using qualitative variables for dimension reduction. PCR output is
Fig. 2. Lubricant condition monitoring approaches in maintenance decision support.
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subsequently modeled using PLS which incorporates a multivariate calibration, as used by [58,92,93]. PLS was used for pre-
diction of oil properties using infra-red spectroscopy [94] and prediction of viscosity [92].

Some studies, however, have used a hybrid approach to gain the synergies of each technique for instance, combining cor-
relation and trending [62], correlation and regression were combined by [95], while Al-Ghouti et al. [96] suggest PLS outper-
forms CLS and PCR while predicting TBN and Viscosity Index in their study.

Survival analysis models are valuable statistical tools that are used in the estimation of remaining useful life (RUL), a core
aspect of predictive maintenance. The models also derive degradation models, but in most cases, they are used in combina-
tion with a model used to generate the faults [1,97]. RUL estimation has two algorithms commonly used, the first one
focusses on the statistical nature of failures of equipment, while the second algorithm, models the individual failure modes
based on wear prediction. Fig. 3 illustrates several statistical-based approaches employed for RUL estimation also corrobo-
rated by [98]. One category of RUL estimation is where the condition monitoring trail can be modeled to estimate RUL using
LCM data, without failure event data, inferring it is based on the state processes observed directly. This model can follow the
state process evolution in a continuous or discrete process. The continuous approach includes regression-based, Brownian
with drift/Wiener process and gamma process. The models with a discrete process are Markov which can either take con-
tinuous or discrete time space.

Brownian motion with drift or Wiener continuous process are constructed as one-dimensional stochastic process follow-
ing a Gaussian distribution. It was used to establish the appropriate juncture to carry out preventive maintenance by mod-
eling the occurrence of wear particles in oil [99]. Other studies that have used this approach include [100,101]. Despite
reducing noise, Wiener process contains limitations like reduction of details and being time intensive.

The Markov process acquires the Markov property that the effects of an action taken in a state depend on the current state
only and not on the prior history, this means the current state characterizes the process hence termed as ‘‘memoryless.” The
Markov process has been used for sequential decision making under uncertainty. Discrete-time Markov depicts changes to a
system happening at discrete time values while in the continuous-time Markov chain, changes in the system can happen at
any time using continuous interval and decision Markov process [102]. This approach is employed to depict for instance, the
deterioration process and state of a lubricant or equipment offering maintenance decision support, has been used in various
LCM-based studies [103–105]. An extended Markov model is the Grey-Markov model (GMM), which incorporates the time
series trend towards forecasting. GMM was utilized in several LCM aspects [64,106]. Markov processes have advantages of
speed and results accuracy because of using a formula. On the contrary, it requires considerable care during building while
implicit assumptions of memoryless characteristics and use of exponential distribution to represent times to failure and
repair render additional constraints.

Another category commonly used in RUL estimation is based on indirectly observed states processes which incorporates
the hidden Markov, filtering and proportional hazard models. Hidden Markov model (HMM), utilizes both the CdM and event
data, incorporates two stochastic processes that is, Markov process and an observation process on the hidden states thus
depends on an underlying and unobserved Markov process. HMM was utilized in different studies such as [105,97,107].
Despite HMM possessing more flexibility in fitting the data better, it’s training is time intensive, requires extensive data
and does not guarantee accurate prediction due to the intrinsic nature of the model [9]. Proportional Hazard Model (PHM),
which models failure phenomena in a similar way to regression, instead of observations for the dependent variable (also
known as hazard rate), covariates or observations are available as event data. PHM models the life of an individual that is
influenced by covariates whose effect is multiplicative on the hazard rate, which is a function of a baseline hazard function
in the parametric or non-parametric form [108]. For instance, modeling the level of iron wear particles influence to the fail-
ure of an engine would offer insights on expected failure hence intervention to abate failure depending on the computed
rate. PHM was used in several LCM related studies [109,110]. Weibull PHM which uses a Weibull baseline hazard function
was applied in several studies [111,112]. Despite advantages like using maximum information and preserving the actual
form of variables, PHM is limited to censoring mechanism and model generalization.
Fig. 3. Statistical approaches for RUL estimation.
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Stochastic filtering, a recursive Bayesian algorithm used in predicting the remaining lifetime of a component by incorpo-
rating new condition monitored information into the estimation process [108,109], and was used in various LCM studies
[113,115]. When using multiple simultaneous sources input, most approaches resort to feature reduction and approxima-
tions. Kalman filter, which is used as a state estimation technique, overcomes these challenges. An extended Kalman filtering
was used to develop an approximate methodology to establish the conditional failure time distribution recursively [116] and
state estimation in failure prediction using preventive maintenance [117]. Kalman filter process is limited being a non-linear
method, hence growth in linearity for example statistically will influence its performance, and furthermore, it requires many
assumptions. Particle filtering is a filtering technique which can handle statistic prediction data, unlike Kalman technique.
This approach was used for predicting RUL [25].

The use of a hybrid approach has been advanced, for instance PHM and HMM, were used in conjunction to esti-
mate parameters whose failure rate follow the Cox’s time-dependent Proportional Hazards Model in [107], while a
comparison using Weibull PHM and stochastic filtering process is given by [114]. A review of RUL estimation models
categorized as experimental, data-driven, physics-based and hybrid is given by [118], while that of statistical data-
driven RUL models that depend on directly observed state data of the equipment and those that do not, is done
by [98].

Basic statistical approaches such as trend and regression analysis have been widely used in the LCM field, which can be
attributed to the ease in analysis and interpretation, moreover, non-requirement of complex software to carry out the exer-
cise makes it accessible. However, due to the requirement of incorporating other variables that may influence the analysis
such as event data, the basic approaches which utilize continuous variables only are challenged, hence, other methods such
as survival analysis come in handy. Table 5 illustrates a summary of the approaches highlighting their input, output and con-
straints that affect the reliability of the output in maintenance decision making support.
4.2. Artificial intelligence approaches

Artificial intelligence is computer science approach geared to the creation of intelligent machines that work and react fol-
lowing a pattern like the human, towards activities such as recognition, problem solving and so on. It incorporates two parts
namely the knowledge base (knowledge used to make inferences) and inference engine (reasoning section which in some
instances include machine learning algorithms), hence includes machine learning and knowledge-based approaches
[1,123]. AI approaches exhibit intelligence, perceive their environment and make decision or actions to maximize the chance
of success at a goal. Machine learning and knowledge-based approaches as shown in Fig. 4 are the approaches under the AI
category as discussed in the following section.
Table 5
Comparative summary of statistical approaches.

Approach Input Output Analysis approach Validity constraints Ref

Trend analysis Oil features value
type

Trend deviation from limits/thresholds Single parameter
trend plot

Focus on Single feature
Loss of information
(unnoticed)

[53]

Correlation
analysis

Oil features Linear relationship (correlation
coefficient)

Two parameters
correlation

Cannot pick patterns
Heuristic output

[42,119]

Linear regression Number and
continuous feature
data

Linear relationship between mean
values of dependent and independent
variables

Linear best fit
relationship between
the input and output
features

Utilization of mean values [120]

Wiener/Brownian
approach

Degradation value
type data and
degradation
parameters

Degradation of system depicted by
confident interval of limits, failure
occurrences and degradation
prediction (FHT)

Continuous time
stochastic process

Unable to model
monotonic degradation

[121]

Markov model State change
probabilities

Output from states Probability sequence
with regression and
maximum likelihood

Require manual process
and cannot observe states
themselves

[104,92]

Hidden Markov
model

LCM and event
data

Estimated model parameters
classifying faults using visible
observations (event) from the machine

Probability sequence
with regression

Erroneous distinguishing
state of machine due
observability of some LCM
aspects

[122,8]

Proportional
Hazard Model

LCM and event
data

Hazard ratio (instantaneous failure at a
certain time)

Partial likelihood Multiplicative
(combinatorial) effect of
model parameters

[98]

Kalman Filtering Actual residual
values of the
current state

Trend trajectory to fault development
to predict RUL

Joint probability
distribution
estimation

Limited to linear and high
dimension data

[8]
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4.2.1. Machine learning approaches
Machine learning advanced from the study of pattern recognition, and focusses on recognition of patterns and regularities

in data, exposing pattern or relationship structure referred to as a model [124]. There are two techniques used in this
approach, supervised and unsupervised machine learning techniques as respectively reviewed in the next part of this
section.

Rokach and Maimom [124] define supervised machine learning techniques, as methods where the relationship between
a dependent(response) and independent variables(predictor) is observed from a set of training example. It is worthwhile to
differentiate two main supervised models, classification models which predict group membership for data by allocating
items in a collection to target class for each case in the data while regression models map the relationship between the target
or response and predictor variables, which form the input data.

Logistics regression (LR) is a predictive analysis used to analyze data and disclose the relationship between one dichoto-
mous variable and one or more nominal, ordinal or ratio-level independent variables [125]. The evaluation of coefficients and
odds ration of the model offers maintenance decision support on the features contributing significantly to the prediction
such as oil failure classification. It has been used in the determination of maintenance inspection interval lengths on aircraft
maintenance data [126], fault diagnosis of transformer oil dissolved with gases [127] and other LCM studies [128,125,129].
LR models are flexible, and handle nonlinear effects, are not limited to the homogeneity of variance, but on the downside, are
prone to overfitting, cannot predict continuous outcomes and require extensive data to attain stable results.

Decision trees (DT), models the consequences of possible decisions in relation to an outcome or event. Maintenance sup-
port is derived from interpretable rules with the option of a tree-based graphical representation that exposes significant fea-
tures and their influence on the outcome modeled. Moreover it can be used in both classification and regression perspective,
contributing to a hierarchical model of decisions and their consequences [124]. DT classification was used in LCM to generate
the model predicting wear conditions of the equipment’s using UOA wear particles data and failure events data [130] and
further utilized to classify oil samples [131]. Despite DT offering flexibility and an in-depth interpretable output which need
minimal knowledge to use, it is sensitive to outliers and missing values.

The Neural network (NN) algorithm considered here is supervised NN and is based on a series of standard features to
establish the condition of a system. Preprocessing method such as transformation(creating a single input to a net from
raw data) and normalization(distribute data and make it scalable) are carried out, where classification outcome is used in
decision support. An extension of NN include genetic neural networks, where the genetic algorithm is used to optimize neu-
ral network parameters and fuzzy neural networks which tend to memorize standard patterns utilizing association for diag-
nosis [132]. NN was used to classify different lubricant grades by feedstock, differentiate between low and high temperature
viscosity [133]. Other studies where NN is discussed for LCM include, e.g. [55,129,135–138,134]. Despite the applicability of
NN for complex systems, some of the primary limitations of NN include, difficult trained model interpretability, sufficient
computational resources requirement and extra effort involved in the training process. In an attempt to overcome the
limitations, general regression neural network (GRNN) offers nonlinear mapping and higher approximation, was used for
picking the relation of copper in lubricant with engine load and cylinder clearances [139].

Support Vector Machine (SVM) is a linear classifier that seeks to find the best hyperplane which classifies new observations
according to the response variables, while variable importance reveals features influence on the classification response, both
aspects invoke maintenance decision support. SVM was used to differentiate between new and used engine lubricant [140]
and classifying used oil samples in [129,141]. Similar to DT, SVM can be used in both classification and regression models and
can perform well using limited training samples which may be non-linear in structure or may be used in real time analysis
and it is less prone to overfitting. Like NN limitation, SVM trained model interpretability is difficult, lacks probabilistic
classification, hard to incorporate domain knowledge and is affected by noise.
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Random forest (RF) resembles DT, except that a collection of un-pruned decision trees is combined to give a better clas-
sification accuracy, mode of the class’s output by individual trees. Classification outcome reveals the sample prediction
which prompts maintenance intervention as deemed necessary, whereas variable importance would guide the maintenance
engineer to know the critical variables or features contributing to the output, for example, a feature like viscosity can be
depicted to significantly influence the classification of a lubricant requiring to be changed/drained. RF is also used in feature
selection due to its capability of providing variable importance measures [142]. RF has been used in determining Total Acid
Number (TAN) from infra-red (IR) data of aviation lubricants [141] and used to determine important parameters [131]. Like
NN and SVM, RF has results interpretation challenge, categorical data results may not be reliable, but achieves adequately in
terms of classification accuracy, can process large datasets with many variables and able to estimate missing data.

Deep learning (DL) approach employs labelled or unlabeled data, raw media (unstructured e.g. vision imaging, speech
recognition, natural language processing, text and audio recordings) data and performs automatic feature extraction by clus-
tering without human intervention. The approach uses a logistic or softmax classifier while assigning likelihood to a partic-
ular outcome or label. For example, using color images of in-service lubricant wear debri as input data, DL may indicate that
the input is 90% likely to represent copper debris. Maintenance support is obtained from the output that identifies associ-
ations, entity resolution and feature classification. DL has been proved to yield more accurate results than human beings
but limited by factors such as overfitting, big data requirement and difficult to work with reasoning for instance application
of scientific methods and programming. It was used in texture entropy detection of transformer oil [143], wear particle anal-
ysis and classification by various authors [128,144–147]. Deep learning is fast, usually more accurate and capable of building
the features without supervision from either unlabeled or unstructured data. Notwithstanding, it is data intensive, rarely
change with changing condition while the careful selection of classifiers offering accurate prediction is a limitation, hence
[147] suggests linear discriminant analysis, quadratic discriminant analysis, naïve Bayesian method, and classification and
regression tree method could potentially be effective.

Rule-based (RB) machine learning is based on the use of a set of relational rules representing knowledge captured by a
system, and incorporates methods such as association rule mining, related algorithms and learning classifier systems and
was used for developing a fault detection expert system [148]. The automated inference engine is used for maintenance
problem solving using reasoning. RB is expressive and easy to write but requires additional techniques to deal with complex
problems and can experience combinatorial challenge while being computationally and memory intensive.

Representation learning (RL) uniquely can be used in mapping from an image or item to output or to self. RL was used in
reliability analysis of engine oil using polygraph [149]. Despite RL’s advantage of showing data in a same and natural format,
it has possibilities of contradictions and infinite looping.

The methods discussed above are categorized as supervised, while the next section deals with unsupervised machine
learning techniques. Unsupervised machine learning techniques are used without a pre-specified dependent attribute, in
other words, deductions are drawn from data sets with only input data without labeled responses.

Principal component analysis (PCA), generates new principal components (linearly uncorrelated) that establishes patterns
in data and depicts them in a way to expose the similarities and differences. The generated components reveal patterns(fault
groups) which a maintenance practitioner using his expertise can decode signifying for instance, fuel dilution, additive dilu-
tion and drive maintenance intervention. It is also a dimension reduction tool that can be used to reduce the number of vari-
ables under evaluation by obtaining a set of principal components. PCA has been used for dimension reduction in diverse
areas for instance; it was used to reduce the number of variables in UOA prediction models [150–154]. PCA possesses several
limitations for instance, limited to continuous data, offers limited interpretability, while it is used in linear data with low to
medium deviation, challenges that self-organizing maps (SOM) overcome. SOM is based on unsupervised learning which can
be used to visualize general space states like degradation. SOM can be used as an appropriate degradation indicator in LCM as
used in wear particle classification analysis process [155] and clasifying wear particles to worn surfaces [156]. Capone et al.
[157] used PCA and SOM to differentiate among the different diesel fuel diluted lubricating oils. Despite its advantages like
ease interpretation and capability dealing with complex data, SOM has limitations in the determination of input weights to
use and mapping which can lead to divided clusters.

Cluster analysis (CA) aims to classify several correlated observations (attributes or features) into some clusters (fault
groups) according to similarities between them, such that each cluster is as homogeneous as possible with respect to the
clustering variables. Incorporating this pattern recognition, image analysis and information (attributes) retrieval generated,
while picking effects and interactions which require to be addressed, offer maintenance decision making support. Cluster
analysis has been used in several LCM related studies in the recent past such as [158–160]. CA experiences some limitations
that influence the subsequent results such as sampling errors and biasness towards setting the optimal number of clusters
due to its heuristic nature as well. To address the uncertainty characteristic of classical CA, statistical methods like pv-clust
and discriminant analysis are fronted. Pv-clust evaluates the probability values (p-values) for each cluster multiscale boot-
strap resampling, was utilized while verifying cluster formation representing fuel dilution by [50]. A comprehensive review
of this technique is found here [161]. Discriminant analysis assesses the adequacy of a classification was used by [162].

Other unsupervised techniques include the unsupervised ANN, which mimics the human brain structure, was utilized in
identifying morphological features that enable classification of wear particles in relation to the wear processes [163] and
other LCM related studies [86,55,164]. Deep learning also has unsupervised characteristics linked with deep neural network
that involves algorithms for classification, regression, and enhanced learning.
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While developing regression or classification models employing the supervised learning methods, most researches have
used unsupervised learning techniques for selecting the input variables. This is done by discovering hidden patterns or
selecting admissible parameters and thus accounts for Hybrid approaches. Several machine learning hybrid approaches were
reviewed, for instance using principal component analysis and neural network, genetic algorithm(GA) and neural network
[134], deep learning and clustering [38], deep learning and genetic algorithm [165], support vector machine and neural net-
work [140], principal component analysis and cluster analysis [166]. Due to the need for synergy from different machine
learning techniques, some authors have used a hybrid approach by utilizing more than one technique for instance
[129,99]. Table 6 illustrates several machine learning approaches and constraint(s) viewed to impair the judgment/applica-
tion in LCM based maintenance decision making support.

One notable aspect that is used to improve the performance of machine learning algorithms is the hyper-parameters opti-
mization(HPO) also known as parameter tuning. Hyper-parameter define higher level concept about the model such as com-
plexity or capacity to learn. The optimization can be performed manually, using grid search, random search or employing
Bayesian optimization. A summary of sample hyperparameters for classification modeling is given in Table A1 found in
Appendix A. The selection of supervised ML techniques for maintenance decision making, would require a tradeoff selection
criterion, for instance low training effort and high prediction accuracy inherent with RF means lack of visual interpretability
and vice versa considering DT and LR approaches which require moderate training effort. Similarly use of NN due to high
training speed and robustness compared to SVM would limit a practitioner to having a large dataset despite both having
a ‘‘black box” effect [167]. However, despite widespread academic use of both unsupervised and supervised approaches, lim-
ited application in the maintenance decision support in practice is witnessed due to their low infiltration rate in the LCM
field.

4.2.2. Knowledge-based approaches (KB)
Knowledge based systems exhibit a form of intelligent behavior by utilizing symbolic representation of knowledge of

observed situations and rules defined to infer maintenance related aspects from the previous events [6]. Frequently used
knowledge-based approaches include expert systems (ES) and Fuzzy logic also corroborated by [123,175,176].
Table 6
Comparative summary of machine learning approaches.

Category Approach Input Output Analysis approach Validity
constraints

Refs.

Unsupervised-
Machine
learning

Cluster
analysis

Numerical data or features
extracted from signals as
raw data

Correlated features in the
cluster (fault groups)
Information (attributes)
retrieval

Linear correlation
of features

Heuristic and
biased output
Validation of
revealed
(clusters)
pattern

[159]

Principal
component
analysis

Continuous data
independent

Generate linearly
uncorrelated components
and feature reduction

Variance
maximization on
the uncorrelated
set of features

Limited
interpretability.
Limited to
continuous data

[168]

Supervised-
Machine
learning

Decision
trees

Labeled feature data
(Heterogeneous)

Interpretable rules for
features effect to
classification

Hierarchical
representation on
Linear decision
rules,

Sensitive to
outliers.
Controllability of
tree size

[169]

Logistics
Regression

Labeled and unlabeled LCM
feature data

Response probability model
coefficient and odds ratio

Binary response
probability of
features

Focus on the
main effects of
features.

[127,170]

Neural
Network

Labeled, unlabeled features
(numerical, categorical, raw
media)

Classification outcome Weight
modification
approach

Limited
interpretability
and requirement
big data

[171,140,8]

Support
Vector
Machine

Labeled LCM data (could
include images and text
data)

Optimal hyperplane/
boundaries classifying new
observations, variable
importance

Non-probabilistic
binary linear
classification

Performance
affected by
noise.
Lack
probabilistic
classification

[172,8]

Random
Forest

Labeled feature data
(Heterogeneous)

Classification outcome and
variable importance

Both regression
and classification

Interpretability
and theoretical
analysis

[169,173]

Deep
Learning

Labeled, unlabeled, high
dimensional raw media e.g.
images, videos- feature
vectors

Classification outcome and
feature likelihood to a
particular outcome

Feature extraction
by clustering and
classification

Data-intensive.
Lack automation
to changing
conditions

[174,165]

Rule-based Features with associative
rules

Classified fault detection Association of
rules/features

Combinatorial
challenge

[148]
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ES utilize domain expert knowledge employing to emulate decision making ability of a human, perform and exhibit rea-
soning for problem solving, hence advancing maintenance support. ES has been used for LCM data interpretation as devel-
oped by [145,177], to automate intelligently the classification process of wear particle [155], estimate the quality of oil [178],
to evolve EXCARE system for maintenance of lubricants in service [74] and in a lubricant monitoring and diagnostics case
study using computer-aided wear particle analysis software [179]. In a study in conjunction with a different condition
monitoring technique, ES was applied using data from wear debris from oil and vibrational analysis by [180]. ES speeds
up work, enhances the decision-making quality, and preserves expertise while the output can be used to test other system
conditions. Furthermore, the rules required can either be heuristic or specific. On the contrary, ES contain limitations such us
reliance on expert knowledge, inability to offer exact solutions, complexity in development, and lack of flexibility once built
to accommodate new conditions.

In real-life applications, availability of exact information to build expert systems can be challenging, hence where vague
or imprecise information is available fuzzy logic models can be built. The Fuzzy logic offers reasoning mechanism with inter-
polation properties using a syntax language with local semantics and membership functions, an inference based on a set of
rules is made translating qualitative knowledge about the problem to be solved, thus offering decision support. Fuzzy logic
model was used in predicting system operation and dependencies of iron particles [181], for predicting lubricant quality
development [120], and other LCM related [182,183]. FL models render simpler and intuitive models from vague conditions
while managing uncertainty to provide robust predictions. Nonetheless, all rules have an influence on the output, thus rule
segregation is difficult hence may compromise model accuracy [7], moreover, increased features in FL could lead to a com-
binatorial challenge. The fuzzy logic technique can be incorporated in other approaches like Artificial Neural Network (ANN),
Expert systems and Kalman filtering process to model logic systems that can take values in between for instance [184]. A
comprehensive introduction to Fuzzy logic can be found in [185].

These approaches in LCM, have been used generally in maintenance decision support application but in a limited way,
attributable to the strenuous and cost characteristics while requiring domain experts (both LCM and AI domains) to assem-
ble the models. On the other hand, despite their versatility, limitations such as slow knowledge acquisition, codification,
large knowledge infrastructure representation and combinatorial challenges makes them less developed in the LCM field
as depicted in Table 7.
4.3. Model-based approaches

This approach uses physics related and mathematical models to solve problems [1]. In many instances, these models are
used while analyzing both event data and LCM which is part of condition monitoring (CdM) data, where the approach uses
mathematical equations to model the behavior and relationships in the system, while the degradation phenomenon is
included [186]. Model-based approaches commonly used can be categorized into three types. First, simulation models,
where computerized representations are built to understand and predict how changes and certain variables influence the
system. The model estimates parameters designed as output measurements, which the practitioner utilizes in making deci-
sions by employing both structural (logical features and the relationship amongst them) and quantitative(numerical inputs
or distributions describing the features) features. Second, experimental models, where simplified physical representation of
an occurrence being investigated is developed by experts in the field of study using a prototype test model. Investigations are
carried out incorporating conditions that represent real life operations such as temperature and flow, the effects along with
the experimental output offer support to maintenance decision making. Third, a mathematical model which uses time and
frequency domain data extracted from real systems signals which is blended with expert, theoretical and technical knowl-
edge of the machine or system. Different output modeled for instance failure lifetimes, additive depletion, RUL estimations,
oil drain interval are optimized to inform maintenance decisions. They utilize mathematical models derived from first prin-
ciples while statistically derived thresholds can also be used.

A simulation model was used in the study estimating failure modes using particle concentration and distribution for the
gear lubricant [187], detecting metallic debris in lubrication oil [188], 3-dimensional system-level modeling of engine lubri-
cation system [189] and modeling an unsteady lubrication circuit of a hydraulic system [190]. Other simulation models using
LCM include [191,192]. Simulation models facilitate the behavioral study of a system without actually developing the real
system, further exhibiting accurate results and ease to run the analysis. It is also beneficial in situations where uncertainty
Table 7
Comparative summary of knowledge-based approaches.

Approach Input Output Analysis approach Validity constraints Ref

Expert systems Rules in terms of features
and feature values and
knowledge base

Number and variety of features Reasoning through a
knowledge base via
rules

Relies on expert
knowledge
Not feasible to provide
exact output

[155]

Fuzzy Logic Multi-valued logic with
intermediate values

Membership value at the truth
level of the argument in the
scalar form

Non-linear mapping
input in membership
functions

Multiparameter
influence and
combinatorial
challenge

[185]



Table 8
Comparative summary of model-based approaches.

Approach Input Output Analysis approach Validity constraints Ref

Simulation
models

Structural and quantitative
data measured from the real
system or approximated Model parameter

estimates highlighting
cause and effects

A computer program
–formulae and rules

Difficult to build an explicit model,
Functions used do not adequately
describe the system.

[209,189]

Mathematical
models

Time and frequency domain
data

A computer program-
mathematical
formulae and rules

Unable to model a complex
system, integrate environmental
effects

[1,210]

Experimental
models

Structural and quantitative
data measured from the real
system or approximated

Bench-test /Lab-test
approach

Unable to model a complex
system.

[210,118]

Table 9
Hybrid approach sample papers.

Hybrid Techniques Sample articles

Statistical + Artificial intelligence [101,119,137,139,220,221]
Statistical + Model-based [184,201,222–231]
Model-based + Artificial intelligence [111,117,121,150,203,232,233]
Model based + Artificial intelligence + Statistical [99]
Model based + OCdM [36,213,214,218,234-237]
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is high due to sparse data and offers experimentation at low cost and risks. Nonetheless, the approach entails intense com-
putational effort, while results can be difficult to interpret, and further efforts to fully mimic real life (such as operational and
environmental aspects) could make the model complex for analysis.

The experimental approach was utilized to model grease flow dynamics to predict wear and contaminant particles migra-
tion [193], validating a prototype lubricating oil pump [194], while it was further used in articles [195–205]. These models
determine probable outcomes without having to set up large and costly experiments, while can be used without the need for
data collection [5]. Furthermore, they are repeatable for validation and bear lower risk compared to real-life testing. Despite
these advantages, the approach experiences, several limitations, for instance, specificity, hence they cannot be applied in
other situations, moreover, not all parts in real life can be modeled to scale, they are problematic to build and unable to com-
prehensively integrate operational conditions of the system under study.

A mathematical model utilizes physics-related equations such as mass balance equations, was used in modeling the alka-
linity changes in lubricating oil [206] and the thermodynamic behavior of thin lubricant film [207]. A hybrid approach is
used, with a review of mixed lubrication performance that incorporates simulations, and experimental models are given
by [208]. Table 8 illustrates a summary of model-based approaches highlighting constraints that may affect their reliability
of LCM based decisions while being employed for maintenance decision support.

Use of simulation and experimental approaches interestingly is viewed to have increased in maintenance application
despite cost, effort and sophistication characteristics [8]. This could be due to the versatility and synergetic characteristics
while integrating various techniques like vibration, ultrasound, and LCM. There is a marked widespread use in tribological
aspects such as friction and wear in conjunction with lubricant properties like film thickness which offers more intuition in
machinery element and lubrication design and maintenance for instance [211,212,204]. Further, this is advanced as more
developers are being integrated in the maintenance field directly or indirectly to offer near exact and ‘‘real” solutions.

4.4. Hybrid approaches

Hybrid approaches have been applied in several studies, where a combination of two or more approaches is used. Another
significant growing hybrid approach utilizes two or more CdM techniques such as [213] where lubricant viscosity along with
vibration analysis was used in a simulation model to suggest turbocharger bearing design parameters, while wear debris
along with vibration analysis was used in [214]. Other studies integrate LCM with vibration analysis, for instance, discussed
in [87,140,181,192,193,201,210,215–217] and with ultrasonic analysis, e.g. discussed in [36,218,219]. This approach offers
synergy and each technique compliments the other, hence improved condition detection and determination leading to more
fitting decision making. Table 9 illustrates several of the studies.

5. Discussion

This study set out to review the Lubricant condition monitoring approaches use in enhancing maintenance decision sup-
port in machinery. The study was based on recent developments and research with 43% of reviewed papers published in the
last 5 years (Since 2013), 25% (2008–2012), 17% (2003–2007) and 13% before 2003, which shows growing trend in research
of the subject.
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Classical off-line sampling and monitoring as reviewed in Section 2.2 in the three-step LCM program, is in high use where
old technology equipment are prevalent, furthermore high purchase and installation cost of the on-line system may be pro-
hibitive. However, critical equipment such as in the military, health sector, airlines and marine offer unique operational char-
acteristics which indisputably require automated LCM program for instance, online sensors and real-time monitoring. An
important maintenance decision to make while reviewing technical and cost aspects in this context include, procurement
of machines pre-installed with the system by the manufacturer, installation on existing machines, use of on-site or off-
line sampling and testing. Offline sampling and testing remain important when comprehensive analysis such as particle
shape classification and root cause analysis due to catastrophic failures which are time intensive may be necessary. The
review in Section 2.2.2 highlights the use of selective test results deemed important for decision-making like viscosity,
TBN, water and some wear particles, potentially limit and generate biased maintenance decisions. High reliance on elemen-
tal or wear particles usage in most approaches with 50% of reviewed articles considering the subject (See Table 4), attribu-
table to direct link with machinery wear characteristics is notable. The heightened interest and growth using multiple
parameter (mix) categories is characteristically visible constituting 28% of the reviewed articles. However, several lubricant
analysis parameters seldom used in maintenance decision making may have significant value, such as nitration, oxidation
and nitro-oxidation, which possess the potential to identify interactive effects additives and nitrous oxides may have on
the performance of inhibitors leading to lubricant degradation, an aspect that conforms to our futuristic development needs
in LCM. Despite limited applicative research (3% of reviewed articles), additive analysis has huge potential such as revealing
the composition of a lubricant which could facilitate root cause analysis of machinery failures among other applications.
Interestingly, current researches point towards developments of new additives that will reduce or eliminate causes of wear
such as sulphated ash generation.

From the review of techniques in Section 4.1, trend analysis is pointed out as relying on single feature which may not com-
prehensibly offer reliable solutions, and can likewise miss important information because deviations from a single parameter
threshold often gives partial information. By contrast, however, patterns are recognized as important for maintenance deci-
sion support. For instance, in LCM, it would be important for decision support, to integrate multiple trend plots such as for
viscosity, vanadium, and carbon, as opposed to relying on single feature trends. In this case, one can diagnose, for instance,
fuel dilution with higher certainty while employing multiple trends with expert assessment compared to analyzing a single
parameter trend. For this reason, the use of pair-wise analytical techniques, such as the correlation analysis approach may
yield better insights as compared to single parameter analytical approaches. However, it is notable that correlation analysis
may likewise be unable to comprehensively assist decision-makers to pick patterns from LCM data, while on the other hand,
associations derived from correlation analysis may not functionally be feasible. For instance, an analysis may indicate a cor-
relation between flash point and aluminum based on LCM data, which may not be the case from the functional perspective of
the lubricant. To address the aforementioned flaw while purely relying on correlation analysis, it is important to incorporate
probability values to reveal significant correlations, while on the other hand, integrating expert knowledge and information
from the literature. This integration will assist decision-makers to derive and validate feature patterns embedded in LCM
data, and as a consequence, yield useful maintenance decision support. This approach further considers a linear relationship,
yet we would ideally expect non-linearity while considering LCM variables, hence complementing correlation analysis with
regression modeling would address the non-linearity flaws by the inclusion of polynomial model. Nonetheless, correlation
could be used as a first line approach for decision support that offer initial direction towards picking fault patterns in the
LCM data.

As regards employing linear regression in LCM, one important flaw of the approach is interpreting its output which is lar-
gely derived and depicted as linear relationships between LCM variables. The approach which utilizes mean values of both
dependent and independent variables, may not be realistic considering the LCM field. For instance, investigating the relation-
ship between iron and zinc assuming the parameters as either independent and dependent variables respectively, linear
regression tends to compare the average values of Fe and Zn respectively in this case. Hence, if one would wish to compare
the extremities of the dependent variables important decisions on, for instance, depletion of anti-wear additives due to low
quantities of zinc may be omitted. Thus, to enhance the decision-making accuracy, quantile regression may be applied to
address the aforementioned flaw. The quantile approach would yield better estimates of the effects of Zn on Fe for cases
of both low and high levels instance (for the Zn parameter). As such, this would yield more comprehensive and realistic
insights into decision support.

Looking at the review in Section 4.2, despite the expectations of better results for highly correlated data, the fact that the
generated principal components may not be directly associated with the original variables limits PCA interpretability. This
limitation could be addressed by using different rotation methods [168], where, in the case of LCM data with numerous fea-
tures, principal components may yield better traceable correlated features (variable). For instance, between Calcium and
TBN, where rotation will indicate their respective significance or contribution to the derived principal component, which,
here could represent alkalinity of the lubricant, hence enabling easier interpretation and gaining more insights of possible
maintenance areas to investigate under LCM. For other types of non-continuous LCM data, such as categorical data which
may emanate from different sources, use of the independent principal component analysis (IPCA) approach would be ideal
for separating mixed signals, which could yield better insights as opposed to the traditional PCA approach where such signals
are not immediately apparent. Moreover, PCA uses gaussianity while ICA uses non-gaussianity for tracing source signals,
which makes the IPCA more versatile for analyzing sensor signals of a non-gaussian nature. On the other hand, the dynamic
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principal component analysis (DPCA) is more useful for decision support for data which exhibits cross and autocorrelation
characteristics [232]. This is owing to its more robust dimensional features reduction method.

For instances where cluster analysis is applied for evaluating patterns embedded in LCM data, one notable flaw is the ele-
ment of biasness and heuristicity of the approach. For example, a cluster formedwith TAN, Ni, viscosity would infer either oxi-
dationor oil dilutionby anacidic product such as fuel. Selectingone inferenceover the otherwould lead to a biased result,while
vaguenesswould arise due tomore thanone feasible outcome. This challengemaybe overcomeby applying cluster verification
techniques and incorporating expert assessment through an iterative knowledge discovery process. This processwould extend
to better pre-processing of the LCM input data prior to clustering correlated variables. For instance, in LCM,while investigating
oxidation, integrating probability values to the clusters formed while applying correlation analysis for validating associations
betweenvariables such as viscosity and the total acidnumber,which expertsmayperceive as influencing oxidation,would ide-
ally assist decisionmakers further validate similar LCM variables grouped via the cluster analysis approach. Similar to PCA, the
robustness of cluster analysis depends on meticulous LCM data pre-processing to enhance the feature extraction process. The
pre-processing here will ideally focus on detecting and analyzing outliers, for instance, introduced by sampling procedural
errorswhere elements such as siliconmay exhibit high values due to dirt ingression during offline sampling. From the analysis
here, siliconmaybepresentedas a critical feature in aprincipal componentwhich is erroneous since the influenceof dirt ingres-
sion on silicon during sampling influenced feature extraction, hence the decision-making process.

Evaluating Logisitcs regression (LR), which is pointed out as useful for effectively tracking and deriving the main effects of
features of LCM output, however, has a limitation when interaction effects are not considered. This limitation may be seen
where, for instance, iron (Fe) with a significant odds ratio of 0.8 (an increase in 1 ppm decreases odds of failure by 20%) is
considered independently for decision making. In the same context, the probable outcome of a sample failure where both Fe
and Water has an interaction odds ratio of 0.7, would imply that an increase of both water and Fe decreases the odds of sam-
ple failure by 30%. This interactive effect offers a more comprehensive decision support compared to instances where the
combined effects of Fe and water are not considered as influencing sample failure. The use of multinomial logistics regres-
sion where more than two dependent variables are modelled, offers a wider modeling scope, where binary outcomes are not
expected. This may influence outcomes such as lubricant sample results classified as either failed, caution (requiring action)
and normal (fit for continued use). Evaluating Decision trees (DT) which is seen to have a similar limitation as PCA in dealing
with outliers and non-continuous data such as categorical (for instance offering different aspects such as time intervals)
would require some pre-processing. Nonetheless, we see the potential of exploiting DT benefits in image mining or classi-
fication, for example, wear debris classification or color classification for on-line oxidation diagnosis. The Interactive char-
acteristics, interpretability and hyper-parameter tuning (See Table A.1 and Section 4.2.1) offer controllability that could
cause more future interest over the other algorithms. The SVM discussed in the review is also mentioned as associated with
challenges of analyzing data with noise and lacking aspects of probabilistic classification. Moreover, these challenges can be
addressed by additional feature extraction methods such as PCA to establish important features that could influence the
response variables such as contamination level, viscosity change and failure of equipment, while probabilistic interpretation
of the output preferably could be attained by using relevance vector machine (RVM), also corroborated by [170]. The limi-
tations of neural networks (NN) could be countered by addressing the provision of sufficient LCM training data and tuning.
The NN capability of using noisy and missing variables data could be harnessed to improve the overall performance by not
only using the technical data but also the rudimentary data such as wear particle morphological aspects in LCM wear anal-
ysis. However, interpretability challenges may be apparent due to its ‘‘black box” nature, where the relationship between
input and output variable is not easily interpretable (e.g. how water and silicon content influences wear by evaluating
the wear particle count). This flaw may be addressed by using techniques such as Neuro-Fuzzy systems to extract decision
rules from the trained networks, where domain knowledge can be included in the Neuro-Fuzzy system in form of linguistic
variables and fuzzy rules such as, ‘‘if wear particles greater than 50 ppm, wear is due to silicon”. This approach would yield
more robust fuzzy IF-THEN rules, which would improve interpretability and transparency for maintenance decision support.
Evaluating Random forest (RF), is seen to have the limitation of interpretability and lacking a strong theoretical foundation.
However, the feature variable of importance influencing a prediction and classification outcome would reasonably offer sig-
nificant decision support. Furthermore, analysis of various generated decision trees, and exploitation of variable interactions,
an aspect RF avails, could be harnessed to validate knowledge patterns utilized in LCM decision making. Data-intensive char-
acteristics of Deep learning (DL) offers a challenge in LCM application, however increasing the amount of training data needed
to improve the reliability of the approach will lead to better learning and feature extraction by the model, hence improve-
ment in accuracy of the decision-making outcomes. Due to the versatility of DL, ‘design to adopt’ on-line feature learning,
taking cognizance of dynamic lubricant system characteristics, will form a huge leap in the advancement of lubricant on-
line condition monitoring, especially for either lubricant condition diagnosis or detection. For example, using on-line color
images of in-service lubricant as input data, DL may indicate that the input is 90% likely to represent oxidation and automat-
ically provide decision support in terms of maintenance intervention leading to actions such as reducing lubricant flow
velocity or temperature. Hence, effective for real-time diagnosis and maintenance intervention. The main limitation of
rule-based approaches is the explosion of the number of decision rules as the number of variables increase. When new
features are introduced, for instance, adding a feature such as oxidation to rules describing fuel dilution to rules linked to
variables such as Vn, Ni, viscosity, and carbon, would yield an additional generation of multiplicative rules in the LCM case.
This would limit the ability to maintain consistency and performance of the decision rules. Possible linkage to a rules data-



124 J.M. Wakiru et al. /Mechanical Systems and Signal Processing 118 (2019) 108–132
base semantically organized while developing the model may offer more robust rules for the model to learn from, and may
demonstrate higher accuracy in maintenance support when new features are introduced in the modeling construct.

The limitation of the Expert system(ES) as far as reliance on the experts is concerned, can be overcome by incorporating
more experts while validating decision rules. For instance, antecedent rules that are developed to depict a consequence of fuel
dilution in high-speed engines may include limits of Vn, Pb, C and viscosity. If the ES is applied to medium or slow speed engi-
nes, the output will be erroneous due to the difference in fuel used in the different applications. Hence, incorporating experts
with divergent experience and applying a dynamic review of both the rules and knowledge base to ensure the ES is always
scalable, current and valid, would address this challenge. A challengewith Fuzzy logic systems is that it retains stagnant rules,
which cause combinatorial challenges since any changes in the LCM variables, necessitates a change in the decision logic. For
instance, rules governing change of decision rules for viscosity, while considering parameters such as Vn, water, carbon, and
oxidation, may not offer reliable judgment in LCM if temperature, which was not part of the data set previously used to gen-
erate the decision rule, is now considered to affect viscosity. In such cases, multi-criteria fuzzy logic aspects advocated by
authors, for instance, by [120] would enhancemaintenance support by integrating divergent aspects of the LCM program such
as oil and fault states, feature values and wear (size, morphology), which influences directly or indirectly the machine fault.
We envision the dynamic fuzzy system, where real-time LCM and fault prevention rules are automatically updated and
revised as system changes and noted online, to be an important direction for future research in this area.

A limitation of the simulation modeling approach discussed in Section 4.3, is deriving robust input distributions, espe-
cially for LCM data with multimodal distribution patterns. This is especially the case for noisy input data, with outliers. Such
noise would lead to erroneous simulation output since it may not validly represent the underlying condition of the lubricant.
This necessitates the need to improve data integrity for optimal model output, which could require accurate data collection
procedures and systems. In addition, since the results derived from simulation models only mimic the ‘real lubricant system’,
the need for expert validation is important in order to improve the results reliability. Considering the use of themathematical
model, for predicting optimized failure lifetimes, RUL estimations and oil drain interval, is viewed as important for enhancing
maintenance decision support. However, mathematical models are limited as far as realistic lubricant systems may be mod-
eled, especially modeling many real-life complex systems configurations. Hence, there is the need to Integrate several mod-
eling constructs (simulation, experimental and mathematical) in LCM from which, simulation models may be used to derive
mathematical relationship, for instance between calcium and alkalinity depletion derived from experimental/lab model
(mathematical model), or comparing the total base number with the dielectric constant sensor outputs. Such integration
Table 10
Summary of articles classified by approaches used.

Classification No. of articles Approaches No. of articles

Statistical approaches (SA) 67 (31%) Trend analysis 13%
Correlation analysis 15%
Regression analysis 15%
PLS & PCR 9%
Stochastic and Kalman Filtering 9%
Survival analysis 25%
Hybrid Statistical approaches 13%

Artificial Intelligence
approaches (AI)

Unsupervised Machine
Learning Techniques

79 (37%) Principal component analysis 9%
Cluster analysis 9%
Unsupervised Neural Network 8%
Self-organizing maps 4%

Supervised machine
learning techniques

Decision trees 4%
Logistics regression 8%
Neural network 10%
Support vector machine 5%
Random forest 6%
Deep learning 8%
Rule based 1%
Representation learning 1%

Knowledge-based
approaches

Expert systems 10%
Fuzzy logic 6%
Hybrid AI approaches 11%

Model-based approaches (MB) 27 (13%) Simulation models 30%
Experimental models 44%
Mathematical models 11%
Hybrid MB approaches 15%

Hybrid approaches 40 (19%) SA + AI 10%
SA + MB 28%
MB + AI 15%
MB + ML + SA 3%
SA + AI 3%
MB + OCdM 43%

Note: No. of articles is based on the proportions of articles reviewed under each of the five classifications while the proportion of articles depict proportion
of articles reviewed covering a specific approach based on the respective classification.
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between mathematical and simulation modeling approaches could offer robust seamless validation over the entire modeling
process. Creating an interface between the model and real system potentially will in future be advanced where algorithms
such as deep learning can pick information about on-line lubricant (system) changes, for instance, color images of oil and
send signals to the model indicating changes in oxidation level thereby adjusting the simulation parameters accordingly.
This we see will significantly reduce reliability challenges.

Table 10 and Section 4 depict a relatively higher utilization of artificial intelligence (37%) and statistical (31%) approaches
on a comparative basis. The widespread usage can be attributed to acceptability, flexibility, and ease of use. There is marked
fair distribution of approaches in these two categories as shown in Table 10. Survival analysis approach accounts for 25% of
the statistical approaches which could be attributed to its characteristics adoption to the relevancy of researches of RUL esti-
mation and failure events, a fundamental theme in maintenance. Hybrid approaches have a moderate usage (28% of all arti-
cles reviewed), where collaborative effect, validation, feature extraction are some reasons attributed to using more than one
approach and or including other condition monitoring techniques which were the highest in the class (43% of the hybrid arti-
cles). This as alluded in literature improves detection and decision-making capabilities.

Additional decisions towards better performance and RUL optimization (an important maintenance objective while
applying LCM programs), could be reached using base oils from group II and above, such as synthetic base oils which show
marked performance over conventional group I in aspects such as longer drain interval, better equipment protection and
lower degradation rates offering another variant in maintenance decision support. Carrying out the total cost of ownership
for assets, LCM further introduces aspects rarely considered such as environmentally friendly, food safety, energy conserva-
tion and health issues that lead to adjusting LCM programs appropriately by maintenance practitioners.

The approaches reviewed have been available in the literature, however, the rate of implementation in maintenance deci-
sion support using LCM is not commensurate to the extracted knowledge base. Among the reasons for such could be lower
influx of the technology, costly installation especially during operation, coupled with high software cost. Additional reasons
for low application include moderately low utilization of LCM in maintenance and lack of knowledge exchange between the
developers and practitioners as seen in Section 4. The missing direct link between failure event and LCM data leading to
over-reliance of the former in maintenance also seen in Section 4. Lack of data infrastructure in terms of actual data collec-
tion or size of data required (Section 4.2) and lastly, historical ideologies that LCM is used for root cause analysis (diagnosis)
despite its ability to also be used for detection and prognosis as seen in the maintenance practice.

6. Future trends of LCM in maintenance decision support

LCM, as reviewed, is not only developing in a quick pace and widening its potential in maintenance applications, but also
growing in terms of being a condition monitoring technique embraced and used as a first line defense of early warning in
maintenance. Moreover, the non-intrusive characteristics as well as the value of knowledge extracted from the mechanical
systems using LCM, may be attributable to the increase in attention. Despite the subject, in view of maintenance decision
support becoming an important issue for future research, there is abundant room for future progress towards more technical
and the expert-driven maintenance support approaches. Expected fast developments of lubricants and greases are expected
to drive the development of LCM approaches to be able to offer decision support on the nature and type of lubricant to be
used, but also, decision making aspects such as replacement intervals. Importantly, such decision would ideally be dynam-
ically linked to the expected economic lifecycle of the lubricant or equipment. Additional decision-making aspects may con-
sider the need for lower environmental impact (lubricant disposal and biodegradability), the need for improved energy
efficiency, or development of innovative sensor technology. These new developments will, therefore, necessitate versatile
decision support systems lubricants with highly varying parametric properties.

Therefore,with the technological development, further research anddevelopment of on-line signal processing anddiagnos-
tics tools that are cost-effective and easy to install under LCM, offering robust algorithms towards designing of intelligent sys-
tems will unquestionably in our view, stimulate growth in the LCM field while addressing these developing challenges.
Research in advancing 3-D printing of sensors will possibly be an essential next step in developing robust and cost-effective
sensors. A greater focus on integrating detection modes in a single sensor, further offering data fusion and separation charac-
teristics could produce interesting findings that account more for the potential growth. This is especially important for tech-
niques such as neural networks and deep learning where availability of large LCM data sets is essential. It is inevitable that
Expert systemswill have a significant role in the future development where we envision improvement in creativity, response,
interaction and flexibility is key. This is because of the current and future drive in maintenance automation which exhibit less
human interference and reliance. This will also be enhanced through the pre-installations by equipment manufacturers with
tagged requirements for manufacturer on-line support and warranty extension counter-requirements. Development of a sys-
tem that will be able to adjust decision rules especially when changes not envisioned in the knowledge base take place (for
instance, fuel dilution reacting to a solvent dilutionwhich is not an easily adaptable decision rule formachine learning), is seen
as an important area of future research. Future increased focus on deep learning approaches such as computer vision recogni-
tion and image classification, remains a fieldwith the possible potential to expand and revolutionize LCMprograms.Widening
the scope of models remain a factor expected to be advanced, where approaches will not be limited to elemental particles, but
will also draw information from other lubricant properties such as additives, physio-chemical and dilution properties which
are explored to a lesser extent. Hybrid utilization ofmore than two different approaches in our view is expected to yield useful
approaches for decision support in LCM,whereoptimizationof theunique synergieswill beharnessed.Another areapotentially
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expected to enhance decision support, is the use of integrated approaches for instance lubricant condition monitoring along-
side with vibration analysis as seen in the review. This finding provides some support for the conceptual premise that integra-
tion of LCMwith the other CdM techniques such as ultrasound, thermography would provide robust, reliable complementing
decision support, an important issue for future research. Acoustic lubrication design for bearings has been on the rise and we
foresee the development towards other applications alongside full LCM being an area that will grow in a fast pace due to its
ability to detect problems earlier than other CdM techniques such as vibration. However, the complimenting characteristics
of the techniques should undoubtedly extend benefits to the industry. The authors concur with Jardine et al. [1] synopsis of
the future directions for CBM which most are similarly applicable to LCM.

7. Conclusion

The primary goal of the current study was to review the approaches utilized in lubricant condition monitoring while pro-
viding maintenance decision support for machinery maintenance. The study classified and reviewed the different lubricant
tests and the approaches that incorporate methods and techniques used to process, evaluate and analyze lubricant condition
data for maintenance application. This followed the three LCM program steps namely sampling, testing, and maintenance
decision support, with emphasis on the last step where knowledge is extracted and applied. The study systematically clas-
sified the approaches while utilizing definitions that can potentially assist maintenance fraternity in developing more
knowledge and insights in the LCM field. An implication of this is the possibility many organizations will embrace LCM pro-
grams and the technology thereof to harness the maintenance benefits while using other strategies concurrently. The current
findings also add to a growing body of literature on lubricant condition monitoring and maintenance decision support.
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Appendix A

See Table A1.
Table A1
A sample of hyper-parameters for model tuning.

Approach Hyper- parameters Ref

RF # of classification trees [238]
# of variables [173,169]
Maximum depth of the individual tree

SVM Penalty parameter (C) [238]
Gamma parameter (c) [172]
Kernels(sigmoid, radial bf, polynomial)

LR # of classification trees [238]
Maximum depth of individual trees

Learning rate [127]
# of variables
Penalty parameter (C)

DT Complexity parameter (cp) [239,169]
# of minimum split

NN # of hidden layer and units [132]
# of features
# of iterations

RB Merging threshold [240]
Estimated proportion of sentence-distance range. The shape and scalar factors for distribution

RL # of perceptron layers [241]
Learning rate for latent representation
Learning rate for the parameter in perceptron layer
Momentum term

DL Learning rate [242]
Architectures for deep neural networks
Activation functions
# of connected layers an neurons
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