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The failure mode and effect analysis (FMEA) is a widely applied technique for prioritizing equipment failures in the
maintenance decision-making domain. Recent improvements on the FMEA have largely focussed on addressing the
shortcomings of the conventional FMEA of which the risk priority number is incorporated as a measure for prioritizing failure
modes. In this regard, considerable research effort has been directed towards addressing uncertainties associated with the
risk priority number metrics, that is occurrence, severity and detection. Despite these improvements, assigning these metrics
remains largely subjective and mostly relies on expert elicitations, more so in instances where empirical data are sparse.
Moreover, the FMEA results remain static and are seldom updated with the availability of new failure information. In this
paper, a dynamic risk assessment methodology is proposed and based on the hierarchical Bayes theory. In the methodology,
posterior distribution functions are derived for risk metrics associated with equipment failure of which the posterior function
combines both prior functions elicited from experts and observed evidences based on empirical data. Thereafter, the
posterior functions are incorporated as input to a Monte Carlo simulation model from which the expected cost of failure is
generated and failure modes prioritized on this basis. A decision scheme for selecting appropriate maintenance strategy is
proposed, and its applicability is demonstrated in the case study of thermal power plant equipment failures. Copyright ©
2016 John Wiley & Sons, Ltd.
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1. Introduction

M
anaging risks associated with equipment failure continues to elicit considerable research attention. In technical assets, risk is
quantified by the product of probability of failure, and expected consequences should such a failure occur 1. For this reason,
firms implement maintenance strategies as a means of mitigating such risks. A maintenance strategy may be defined as ‘the

set of activities implemented with the objective of maximizing the availability and reliability of the equipment, in order to produce
products of the desired quantity and quality’ 2. Well-known maintenance strategies mentioned in literature include the failure-based
maintenance, time-based maintenance (TBM), design out maintenance (DOM) and condition-based maintenance (CBM).

Studies highlight the significant impact of maintenance risks and their associated costs on the total cost of asset ownership. For
instance, Koronios et al.3 mention that depending on the operating context, the asset’s operation and maintenance phase can
constitute as much as 70% of the total cost of ownership. Moreover, Mobley 4 notes that maintenance costs can constitute as much
as 60% of manufacturing costs, thus underscoring the importance of well-executed maintenance programmes. For high-reliability
installations, for instance offshore wind turbines or power generation plants, the costs apportioned to repairing failed components
is often significant more so, in instances where such failure results in considerable power generation losses, penalty costs because
of contractual power supply obligations or downtime delays attributable to spare part logistical lead-time delays5.

Apart from failure-related costs, asset failure is associated with salient yet intangible risks. Examples of such risks include potential
injury to persons in the vicinity of the failed equipment, for example broken-off shrapnel or projectile; industrial accidents6; potential
environmental damage, for instance spillage of pollutants to the atmosphere7; or societal disruptions, for example power outages
owing to equipment breakdown8. Thus, to mitigate such tangible (or quantifiable costs) and intangible negative impacts associated
with the asset or equipment failure, maintenance practitioners are confronted with the challenge of selecting and implementing
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effective maintenance strategies. An important concern in this regard is the need of first and foremost assessing risks associated with
equipment failure prior to formulating and deploying appropriate mitigation strategies9.

Thus, in recent years, considerable research effort has been directed towards developing decision support frameworks for assessing
asset failure risks and consequently formulating appropriate maintenance strategies which mitigate the impacts of equipment failure.
Here, assessing the risks starts with identifying potential failure modes fromwhich the failure modes are prioritized depending on their
risk threshold10. The risk assessment process, in this regard, is premised on the fact that by focussing maintenance effort on failure
modes with a high-risk threshold, a more effective allocation of resources may be achieved9. Moreover, targeting maintenance
resources in this way enhances the availability and reliability of the equipment, through initiating better repair processes, better
provisioning of spare parts, and could lead to a better understanding of focal root causes responsible for recurrent failure modes9.

However, in the absence of a concise structure for assessing risks and consequently selecting appropriate mitigation strategies,
practitioners often resort to ad hoc selection approaches where often expert intuition is largely relied on11. Such an ad hoc approach is,
however, fraught with considerable risks of selecting inappropriatemaintenance strategies thereby diverting the often scarcemaintenance
resources on non-critical failure modes. Moreover, such inappropriate strategies could imply sub-optimal root cause analysis consequently
resulting in likely recurrence of similar equipment failure modes. Thus, in this regard, the need for quantifying risks and thus selecting
appropriate maintenance strategies for operable assets is of utmost importance and, moreover, of strategic interest to the organization10.

In maintenance decision-making, commonly discussed decision support framework for selecting appropriate maintenance
strategies, whereof the concept of risk assessment is incorporated, includes the reliability centred maintenance12 and the risk-based
maintenance13. In particular, the reliability centred maintenance is widely applied in practice, whereof the risk assessment process is
facilitated through the failure mode and effect analysis (FMEA)14. In the conventional FMEA, the failure mode criticality is assessed by
computing the risk priority number (RPN), a risk measure that is a product of three risk metrics: occurrence (O), severity (S) and
detectability (D), and depicted by Eqn (1) in the succeeding text:

RPN ¼ O � S � D (1)

In the RPN formulation, the occurrence metric evaluates the probability/likelihood of a failure mode occurring. The severity metric
on the other hand measures the impact of the failure mode, while the detectability metric measures the likelihood of detecting the
incipient failure mode prior to occurrence12. In the conventional form, the three RPN metrics are based on ordinal indices of which
each metric is measured on a scale ranging from 1 to 10, the latter being the highest. Computing the RPN results in a priority index,
which ranges from 1 to 1000, whereof the latter implies the highest criticality. Nonetheless, in the conventional form, the FMEA has
been criticized for the following reasons14–16:

i Multiplying ordinal indices for the severity, occurrence and detection is questionable and argued as statistically invalid.
ii Estimating the severity, occurrence and detection metrics relies predominantly on expert assessment and largely delinked from
empirical evidences that is usually derived from historical equipment failure data.

iii The FMEA is static in that the RPN is often not updated with the emergence of new sources of failure risks.
iv Owing to the static nature of the RPN, maintenance strategies are likewise seldom updated with the emergence of new sources

of risks.

From the previously mentioned deficiencies, and in particular the concern, whereof the risk estimates are delinked from empirical
evidences, the need for a more robust methodology for objectively assessing and quantifying risks is required, thus the motivation of
this study. Importantly, this need is informed by among other factors, the recent advances and adoption of maintenance information
management systems by both medium and large-sized organizations, whereof such systems have enhanced the collection of
reliability and maintenance related data17. Thus, this also implies the need for a methodological approach for quantifying failure risks,
in which these measured risks evolve dynamically as more data become available. On the other hand, such a dynamic approach
should also leverage on expert knowledge, more so where sparse reliability or maintenance data are available. The latter would ideally
be in the form of elicited expert estimates regarding risk metrics. Implemented correctly, the benefits of such a dynamic approach for
assessing risks are significant: overall improvement in maintenance performance18, operation and cost benefits19, enhancement of
asset/equipment knowledge20, the latter linked to maintenance decision-making aspects such as root cause analysis or effective
maintenance planning21.

Thus, in view of the previously mentioned need and the expected benefits, a dynamic risk assessment methodology is proposed,
and based on the Bayesian theorem. In the proposed methodology, risk metrics associated with equipment failure modes are
assigned prior distribution functions, whereof the priors are elicited from experts. Next, the elicited priors are combined with
observed evidences derived from empirical reliability or maintenance data, and here, the hierarchical Bayesian inference approach
is adopted. The posterior distribution function derived as a result of the combined evidences is consequently incorporated as input
to a Monte Carlo (MC) simulation model from which the expected cost of failure is generated and applied as a measure of the failure
mode criticality. In this study, the expected cost failure is proposed as a measure of risk because the measure integrates risk metrics:
(1) the probability of equipment failure and (2) the associated cost consequences. The consequences here correspond to cost
components attributed to the specific failure mode, for instance power generation losses, spare part cost or repair cost.

By combining the elicited prior and the observed evidences into the hierarchical Bayes framework, the uncertainty associated with
sparse data sets is taken into account. Moreover, in the framework, the derived posterior functions are evaluated for validity with
respect to how closely each derived posterior function replicates the observed evidences incorporated into the hierarchical Bayes
framework. The validity, in this regard, is evaluated through computing the deviance information criterion (DIC)22, of which a low
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DIC value correlates to a valid posterior function. For invalid posterior function, an alternative prior distribution function is assigned
and its suitability with respect to deriving a valid posterior function evaluated in a similar way. In the final step of the proposed
methodology, suitable maintenance strategies are selected for each failure mode based on its criticality as generated from the MC
simulation model. For this purpose, a decision scheme23 is proposed, and an important criterion for the decision scheme is the
suitability of the selected strategy from a practical perspective.

This paper is organized as follows. In Section 2, recent improvements on the conventional form of the FMEA, which are relevant to
this study, are discussed. In Section 3, the concepts underlying the hierarchical Bayesian methodology are described. In Section 4, the
expected failure cost function used for failure mode prioritization is described, and in addition, a detailed description of the MC
simulation modelling approach is presented. For the proposed failure cost function, the time to failure (TTF) function is used in lieu
of the probability of occurrence, and on the other hand, distribution functions representing cost metrics such as spare part costs, or
production losses are used in lieu of the severity risk metric. In Section 5, the application case is discussed where equipment failure
modes in the thermal power plant of a selected use case are prioritized, and consequently, maintenance strategies selected. In
Section 6, the managerial implications of the proposed framework, together with implications for practice and limitations, are
discussed. In Section 7, important conclusion and direction for future work are drawn.

2. Improvements on the conventional FMEA

In recent years, several improvements to the conventional form of the FMEA are reported in the literature. Liu, Liu 15, for instance,
review risk evaluation methodologies for the FMEA and discuss in detail improvements to the computation of risk in the FMEA.
Examples of proposed improvements include incorporating enhancements such as multi-criteria decision-making methods (MCDM),
linear programming and fuzzy rule-based approaches. Particularly, the previously mentioned authors mention the rather high
proportion of fuzzy rule-based enhancements to the FMEA, a trend also corroborated in the FMEA literature16,24,25. Although the trend
seemingly suggests the use of fuzzy risk metrics as an intuitive alternative to estimating crisp values for the FMEA risk metrics, the
fuzzy rule-based methods are nonetheless subjective and largely rely on expert elicitations, without recourse to observed evidences,
for example recorded failure events.

The earlier concerns are partly addressed by probabilistic modelling approaches, and in particular, models derived exclusively from
empirical data sets26,27. In this context, statistical data fitting and parameter estimation approaches such as the maximum likelihood
estimate are explored. Statistical data fitting methods are, however, premised on the availability of sufficient data sets, and often, will
yield poor models and parametric estimates in instances whereof data sets are sparse. This is usually the case for rare failure events
such as those characterizing high-reliability systems, for example power generation facilities or off-shore facilities28,29. For such sparse
data sets, considerable uncertainties are introduced in the risk estimates in instances, where reliance is exclusively of statistical models
and importantly where the risk estimates derived from such models are not updated with the availability of new information.

This gap motivates this study, and for this reason, the Bayesian inferencing approach is introduced, whereof the prior and observed
evidences are combined through the posterior distribution functions. In this way, the uncertainties associated with sparse data sets
are thus implicitly incorporated in the posterior function. Moreover, by combining the evidences in this way, the posterior functions
representing the risk metrics are dynamically updated with the emergence of new information or failure data sets.

3. Bayesian approach to statistics

In the Bayesian inference approach to statistics, both the prior and observed evidences are combined and expressed through the joint
posterior distribution. In this instance, the prior distribution function expresses the decision-makers’ confidence regarding an
unobserved event. As an example, the decision-maker may express subjectively the probability of occurrence of a failure event. On
the other hand, the likelihood function in the Bayesian inference model is derived from observed evidences. As an example, the
likelihood function may be derived from empirical data sets of the time between equipment failure events, whereof the function is
derived from statistical data fitting. By combining the prior and observed evidences in this way, the parameter of interest, for example
the probability of failure, may be inferred from the posterior function. The posterior function in this instance is derived from the
Bayesian theorem and follows the formulation:

π η=xð Þ ¼ L x=ηð Þ π ηð Þ
Xn

j¼1

L x=ηð Þπ ηð Þdη
(2)

The term π(η) represents the prior distribution, L(x/η) the likelihood function, and π(η/x) the posterior function.
In the form described in Eqn (2), however, the Bayes theorem presumes that both the prior and likelihood functions can be

combined in a straightforward way. This is usually not the case, especially where the prior and likelihood functions belong to distinct
family of distributions30. For instance, combining the exponential prior and the Weibull likelihood functions is rather straightforward
as both functions belong to the exponential family of distributions. Thus, in this instance, the Weibull posterior function31 is derived as
a result. By contrast, combining, for instance the Lognormal prior and the Weibull likelihood functions, which belong to distinct
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families, is not straightforward, and in this instance, resolving analytically the posterior function would yield intractable mathematical
formulations31. Additionally, estimating the parametric values for the prior functions is also not straightforward. For instance, consider
an example whereof the TTF for a specified failure mode follows a two-parameter Weibull distribution with the parameters: shape (α)
and scale (β). For this example, estimating the parametric values for the scale and shape parameter is also not straightforward, as
multiple values are feasible.

The earlier concerns are addressed by the hierarchical Bayesian modelling approach, in which an approximation approach is
implemented for resolving the intractable posterior distribution functions. Secondly, the approximation approach negates the need
for estimating the parametric values for the prior distribution function, for instance the shape and scale parameters associated with
the Weibull distribution. Rather, these values are sampled from a joint parameter space through a simulation approach.

To illustrate the hierarchical Bayes modelling concept, the convention by Kelly and Smith 30 is followed. Consider the following multi-
stage prior distribution function given by Eqn (3), in which x denotes the parameter of interest, for instance the probability of failure:

f xð Þ ¼ ∫Φf 1 x ϖjð Þf 2 ϖð Þdϖ (3)

In the previously mentioned equation, f1(x|ϖ) denotes the first stage prior which represents the variability associated with
parameter x, conditioned on the vector ϖ. The vector ϖ here represents the parameters of the prior distribution, for example the
Weibull’s shape and scale parameters. In the hierarchical Bayes context, parameters of the prior distribution (e.g. the scale and shape
parameter) are mathematically referred to as hyper-parameters. The term f2(ϖ) represents the second stage prior and denotes the
uncertainty associated with the hyper-parameters, and here, uncertainty distributions are assigned to the hyper-parameters.
Mathematically, such uncertainty distributions are referred to as hyper-priors.

To further illustrate the hierarchical Bayesian concept, consider the instance where the two-parameter Weibull prior distribution
function is assigned to unobserved probability of failure (x) of the equipment. Mathematically, the two-parameter Weibull function
is denoted by the equation:

f 1 x α; βjð Þ ¼ α
βα

xα�1 exp � x
βð Þα (4)

In the hierarchical Bayes form, the shape (α) and scale (β) hyper-parameters in Eqn (4) denote the first stage prior in themulti-stage prior
described earlier on in Eqn (3) and further adapted in Eqn (5). In the second stage, and as seen in Eqn (5), the hyper-parameters are assigned
uncertainty distributions with the hyper-prior parameters. For instance, the hyper-parameters may be assumed as Gamma distributed with
the shape (ε) and scale (γ) parameters, with (ε, γ) denoting the hyper-priors. Assigning the hyper-priors in this instance negates the need for
estimating the values of the Weibull hyper-parameters because the values here are sampled iteratively from joint parameter space
generated by Gamma hyper-priors. The multi-stage prior for the two-parameter Weibull prior may be represented as follows30:

f x α; βjð Þ ¼ ∬f1 x α; β; ε; γjð Þ f2 α; β ε; γjð Þdαdβ (5)

The multi-stage prior depicted in Eqn (5) is resolved in the hierarchical Bayes approach by transforming the formulation into the
directed acyclic graphical form32, and in this way, the resulting posterior function is efficiently resolved through the Markov chain and
MC simulation approximation approach. The interested reader is, however, referred to the work of Dezfuli, Kelly 31 and Kelly and Smith
30 for more detailed information, because the objective of this paper is not to describe in detail the hierarchical Bayes concept, but rather,
apply the concept to the formulated research problem. The Bayes approximation approach is implemented using the openBUGS
software, a freely available sampling technique based on the Gibbs sampler32. BUGS refer to the Bayesian inference using Gibbs Sampling.

4. The proposed methodology for dynamic risk assessment

In this study, the formulation for the cost-based FMEA33 is adapted and applied for quantifying the equipment failure risk, whereof the
expected failure cost is defined as

Expected failure cost ¼
Xn

i

Fi�Ci (6)

In the previously mentioned formulation, Fi denotes the characteristic failure mode, Ci the cost associated with failure mode i, and
n the total number of failure modes observed over the specified period. From Eqn (6), the failure cost Ci may further be decomposed
into several cost components:

E Failure costð Þ ¼ Cspare part þ Cproduction loss þ Crepair þ Cpenalty (7)

In Eqn (7), the first term, that is the spare part cost, is incurred when the failure mode necessitates a component replacement. The
second cost term, that is production loss cost, is associated with productivity losses during equipment downtime and attributed to
the failure mode. For a power plant, the production loss is quantified in terms of electrical power generation losses. The third cost
term, that is the repair cost, is calculated as a function of the diagnostic time, repair time and personnel costs, whereof the latter is
computed as a function of the number of maintenance technician(s) required and the unit labor cost. The forth cost term, that is
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the penalty cost, is associated with non-fulfilment of contractual power supply obligations owing to power plant unavailability
attributable to the characteristic failure mode.

The cost components defined in Eqn (7) often vary depending on the failure severity. For instance, the characteristic failure mode
may be detected at incipient stages, thus necessitating minor repair actions. The same characteristic failure mode may be detected at
a more advanced deterioration state, thus necessitating major repair actions, the latter associated with significant failure costs. To
model these failure mode scenarios and cost consequence combinations, the MC simulation is explored. Particularly, in MC
simulation, the uncertainties associated with these combinations are addressed from which the probability of occurrence of the
characteristic failure mode is generated from the TTF distribution of the failure mode. Similarly, the cost consequence associated with
the failure mode is also sampled iteratively from statistical cost distributions specific to the failure mode.

However, prior to incorporating the input distributions to the MC simulation model, the posterior functions are first derived using
the hierarchical Bayesian approach. This is achieved by first assigning prior distribution functions to the risk metric represented in
Eqns (6) and (7). The assigned prior functions are combined with the observed evidences based on the empirical data sets. Assigning
the prior function is particularly important for sparse data sets, in which sufficient observed evidences are not available, for instance
where data sets representing the TTF of a specific failure mode are insufficient. The posterior function generated as a result of the
combined evidences is next checked for validity, whereof the DIC22 is measured. For high DIC values, alternative prior functions
are assigned from which the derived posterior functions are checked for validity by further computing the DIC. As mentioned
previously, the DIC evaluates how closely the derived posterior function replicates the observed evidences or empirical data sets
incorporated in the hierarchical model alongside the prior function. In this regard, a low DIC value is desirable.

Once valid posterior functions are derived, the functions and parameter values are applied as input to the MC simulation model
from which the expected cost of failure cost for each failure mode is generated. The simulation approach is implemented in the
ModelRisk®, a MC risk analysis software 34 and an add-in in MS Excel. For each failure mode, the expected cost of failure is determined
at an appropriate confidence threshold and in this study, the 95% confidence level is considered. In addition to deriving the posterior
functions, subjective distribution functions are also elicited from experts where the elicitation process is applied to risk metrics,
whereof empirical data are unavailable. These include metrics such as the repair time and the number of technicians required for
a repair task. In this context, subjective distributions were considered, which include the Triangular and project evaluation and review
technique (PERT) distribution, of which the minimum, average and maximum estimates were elicited. This is followed by prioritizing
the failure modes at the 95th percentile of the simulated expected cost of failure after which maintenance strategies were selected
following a decision scheme23. Figure 1 depicts an overview of the proposed methodology.

Figure 1. Proposed methodology for dynamic risk assessment
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5. Application

5.1. Case study: thermal power plant

Thermal power plants provide crucial emergency power supply in the power generation industry. A primary advantage of such power
plants is the comparatively shorter set-up time as compared with conventional power generation sources, for example nuclear or
hydroelectric power generators. Typically, a thermal power plant comprises of inter-linked prime movers powered by different
sources of energy, of which industrial diesel oil and natural gas are most commonly used.

The proposed methodology for dynamic risk assessment is applied in the case study of a thermal power plant, which consists of 10
diesel-powered engines coupled to electricity generators that supply power to the main electricity grid. Maintenance data sets were
collected from the plant which represented 1003 failure modes recorded over a three-year period. Table I illustrates a sample of the
maintenance data sets from which the risk metrics relevant to the study were extracted. These include the failure modes and cost
metrics such as spare part cost or production loss during plant downtime, the latter costs derived from the repair information.
Addition information such as the diagnostic time and repair time were further elicited from the experts and the estimates
consequently assigned Triangular and PERT distributions.

5.2. Deriving the posterior distribution functions

The openBUGS script in the succeeding texts illustrates the hierarchical Bayes approach for deriving the posterior function for the TTF
of the turbocharger vibration failure mode. In the script, the failure mode is assigned the two-parameter Weibull prior function. The
hyper-parameters for the Weibull prior function: shape (α) and scale (β), are assumed Gamma distributed and assigned the hyper-
priors (0.001, 0.001). In the script, the likelihood function is derived from the empirical data sets representing the TTF of the vibration
failure mode. The vibration failure mode is represented by a series of the 21 data sets (N=21), whereof the TTF is in hours, for
instance, 278.9 h. The script is as follows:

model {
for (i in 1:N) {

time to failure [i] ~ dweib (alpha, lambda) # Weibull prior for the time to failure
}

beta< -pow (lambda, -1/alpha) # Weibull prior scale parameter
alpha ~dgamma (0.001, 0.001) # assigned gamma prior
lambda ~dgamma (0.001, 0.001) #assigned gamma prior
}
# data sets for the time to failure (in hrs.) of the turbocharger vibration failure;

list(N = 21, time to failure = c(278.9, 93.5,…, 1361)) # derives the likelihood function

# Values for initiating the script:
list (alpha = 1, lambda = 0.1)
list(alpha = 0.5, lambda = 0.1)
list (alpha = 2, lambda = 1)

In the script mentioned earlier, the Weibull’s prior scale parameter (β) is re-parameterized using the following relationship32:

Table I. Sample of maintenance data specifying failure incidence and repair information

Serial
no. Failure mode

Reported failure
incidence

Engine re-start
after repair Time

to
next
failure
(h)

Repair information

Date Time Date Time

Value of spare
parts used

(EUR)
Production
loss (MWh)

1 Cable insulation
damage

14/01/11 6:51 14/01/11 07:15 361.9 53 23

2 Turbocharger
vibration failure

24/01/11 6:30 24/01/11 10:21 278.9 98 87

3 Unsecured motor
mounting

29/01/11 9:22 29/01/11 10:21 9807 30 154

4 Stuck roller guide
because of loss of
clearance

29/01/11 2:31 29/01/11 03:48 163 120 94
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λ ¼ 1

βα
(8)

The parameter (λ) is also assumed as Gamma distributed with the hyper-priors (0.001, 0.001). To run the script, the Markov chains
are initiated, whereof the values for alpha (α) and lambda (λ) are specified. Thereafter, the script is run first for 1000 iterations to allow
for convergence of the Markov chains and followed by 199 000 iterations from which the parameter values for the posterior function
are estimated31. Figure 2 illustrates the posterior Weibull distribution function parameters α and λ of the turbocharger vibration failure
mode.

Table II summarizes the statistical values for the posterior parametric distributions derived from the hierarchical Bayes model of the
turbocharger vibration failure mode. The statistical values further depict the lower bound, mean, upper bound and standard error
values. The MC error is further depicted for each parametric estimate, whereof the MC error evaluates the quality of convergence
of the Markov chains representing the parameter of interest, for instance the shape hyper-parameter of the TTF. Usually, a small
MC error value is desirable and indicative of good convergence of the Markov chains32. From the results in Table II, the standard errors
for the parametric estimates are relatively low, which from a statistical point of view indicate acceptable estimators for the posterior
function parameters.

The derived posterior functions are also evaluated for validity with respect to replicating the empirical data incorporated in the
script, whereof the validity check evaluates the appropriateness of the selected prior function. Table III depicts the DIC values for
alternative prior functions assigned for modelling the turbocharger vibration’s TTF. As depicted, the two-parameter Weibull prior is
indicated as best replicating the observed TTFs because of the relatively lower DIC value as compared with the other alternative
priors. Comparing also the p-values derived from statistical distribution fitting using the maximum likelihood estimate approach,
the Weibull prior is likewise suggested as the most appropriate prior for modelling the observed TTFs.

However, one will also note that the Gamma distribution closely replicates the observed data sets as indicated by both the DIC
value and also the p-value. As a result, the Gamma function could likewise be considered as an appropriate prior for modelling the
TTF of the turbocharger vibration failure. By contrast, the Lognormal model least replicates the observed TTFs owing to the relatively
higher DIC value and significantly lower p-value as compared with the two-parameter Weibull distribution. Following a similar
approach, alternative prior models were also assigned to the severity or cost metrics earlier on denoted by Eqns (6) and (7). For
the spare part cost, for instance, the Lognormal prior, it was determined as the best model based on its DIC value. The script in
the succeeding texts illustrates the Lognormal spare part cost model for the turbocharger vibration failure mode. In the script, the
Lognormal prior is associated with two parameters: log-mean (μ) and log-standard deviation (σ) of which the log-mean is modelled
as uniformly distributed with a mean and standard deviation respectively of (0.001, 10). The log-standard deviation, on the other
hand, is modelled as Gamma distributed with the hyper-prior parameters (0.001, 0.001). The script is as in the succeeding text:

model {
for (i in 1:N) {

cost [i] ~ dlnorm (mu, tau) # Lognormal prior for the spare part cost
}

mu~dunif (0.001, 10.0)
tau< - 1/pow(sigma,2)
sigma~dgamma (0.001, 0.001)
}
# data sets for the spare part cost associated with the turbocharger vibration failure
list (N = 21, cost = c(98, 5, 17,…, 115)) # derives the likelihood function
# values for initiating the script:
list(mu= 1, sigma= 2)

The log-standard deviation parameter (σ) in the previously mentioned script is re-parameterized following the expression in the
succeeding text32:

τ ¼ 1

βα
(9)

Figure 2. Distribution for the Weibull’s posterior function parameters of the time to failure. [Colour figure can be viewed at wileyonlinelibrary.com]
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Table IV summarizes the posterior distribution functions and parametric estimates associated with the turbocharger vibration
failure mode. The production downtime in this instance is used to compute the opportunity cost of lost electrical power generation
(in MWh) attributable to the vibration failure mode. On the other hand, the estimates for the number of technicians required were
elicited as ‘best guesses’ and consequently modelled using the PERT distribution whereof the minimum, average and maximum
number of technicians were elicited34. The summarized posterior distributions and the parametric estimates derived for the failure
modes formed the input into the MC simulation model from which the expected failure cost was simulated and used as the basis
for the prioritization process.

5.3. Failure mode prioritization

In the failure prioritization step, whereof the posterior functions were applied as input to the simulation model, the expected failure
cost was simulated by sampling in each simulation run, 10 000 independent MC samples. Thereafter, a total of 100 simulation
replications were implemented from which the expected failure cost was generated as per Eqns (6) and (7). Figure 3 visualizes the
histogram overlay plots for the 100 MC simulation replications for the expected failure cost of the turbocharger vibration failure
mode. The x-axis of the plots depicts the simulated expected failure costs, while the y-axis depicts the probability values at each
instance of the expected failure cost distribution. Moreover, the plot visualizes the expected cost values at the 5th and 95th
percentiles, whereof as depicted, one would ideally expect that 90% of the failure cost values would fall with the range of between
91 040 and 92 040 euros. The plots also depict the average expected failure cost distribution (appearing in bold) within the overlay.
The statistical measures for the evaluated failure modes are further summarized in Table IV.

As observed from both the expected failure cost overlay plots and the statistical measures for the turbocharger vibration failure
mode, the mean percentage (standard error) in this instance is relatively low (<1%). Likewise, the mean percentage (standard errors)
for the evaluated failure modes is likewise within acceptable ranges (~3%). On the basis of the simulated expected cost values, the
failure modes were ranked, whereof the failure modes associated with the highest cost values were ranked as the most critical.
The expected cost value at the 95th percentile was viewed as a plausible threshold for evaluating the criticality since statistically,
95% of the expected failure cost values will ideally fall within this percentile range 35,36.

As also observed from the expected cost value ranges, selecting the mean threshold values would likewise yield similar
prioritization results. This is because the expected cost value ranges for the failure modes do not significantly overlap with each other.
For instance, the expected failure cost ranges for the ‘thrust bearing failure’ (98,825; 103,132) and ‘turbocharger vibration’ (90,799;
92,379), although closely valued, do not seem to overlap. Thus, choosing the mean threshold value for these failure modes would
likewise yield the same prioritization results, that is a lower criticality ranking for the ‘thrust bearing failure’. In the event of overlaps
between the expected cost distributions of closely valued failure modes, care should be exercised, and in this regards, more MC

Table II. Summary for the posterior distributions for the turbocharger vibration failure mode

Time to failure [hours]

Weibull LB Mean UB Standard error MC error
Shape (α) 0.434 0.59 0.761 9.71 × 10-3 1.14 × 10�3

Lambda (λ) 0.002685 0.01978 0.0634 1.64 × 10�3 1.71 × 10�4

Production downtime (h)
Weibull LB Mean UB Standard error MC error

Shape (α) 0.584 0.734 0.888 5.43 × 10�2 2.84 × 10�4

Scale (β) 4.369 6.583 9.277 1.38 × 10�1 2.14 × 10�3

Spare parts cost (EUR)
Lognormal LB Mean UB Standard error MC error

Mu (μ) 5.712 7.43 8.854 1.25 × 10�1 5.89 × 10�4

Sigma (σ) 1.134 2.953 3.958 8.81 × 10�2 2.02 × 10�4

Number of technicians
PERT LB Mode UB

1 2 4

Table III. DIC and p-value analysis of alternative models for the turbocharger’s vibration time to failure

Model Maximum likelihood function (p-value) DIC

1 Two-parameter Weibull 0.4607 790.7
2 Gamma 0.3737 792.4
3 Exponential 0.137 797.1
4 Lognormal 0.092 805.1
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samples should be drawn iteratively from their respective posterior input distributions (i.e. >10 000 samples). On the other hand,
more simulation runs (>100 runs) could also be likewise be implemented37.

Thus, from the summary of the criticality ranking illustrated in Table IV, the ‘cracked exhaust valve’ is ranked as most critical and
cumulatively, the failure mode accounts for approximately 58% of the total expected failure cost. Similarly, the turbocharger related
failure modes constitutes a significant proportion of the total expected failure costs (~28%), because three of the 10 most critical
failure modes are linked to the turbocharger. This implies the need for implementing more robust maintenance strategies, which
are targeted at mitigating the cracked exhaust valve failure mode and the turbocharger related failure modes. By doing so, as much
as 85% of the total expected failure cost would be mitigated for the case power plant.

Figure 4 illustrates the Pareto criticality ranking at the component level and derived through aggregating the cost values for failure
modes associated with the specific component. As observed in Figure 4, the severities at the component level are consistent with
those of the failure modes. For instance, the engine valve component failure is determined as most critical, followed by failures of
the turbocharger component. From the Pareto analysis, these critical components accounts for 82.4% of the total expected cost of
failure.

Table IV. Failure prioritization for the thermal power plant failure modes

Rank Failure mode

Expected cost of failure (Statistics)

Cumulative
failure costMin Mean Max

Stand
error.

%
error

1 Cracked exhaust valve 497 782 504 868 513 441 3092 <1% 57.8%
2 Turbocharger turbine blade erosion 149 481 150 927 152 054 492 <1% 17.3%
3 Thrust bearing failure 98 825 101 454 103 132 841 <1% 11.6%
4 Turbocharger vibration failure 90 799 91 533 92 379 316 <1% 10.5%
5 Injector roller seizure 9258 9491 9783 93 <1% 1.1%
6 Faulty orifice plate 7037 7224 7410 71 <1% 0.8%
7 Turbocharger lubrication pipe

abrasion
3183 3232 3286 26 <1% 0.4%

8 Cable insulation damage 2051 2167 2319 53 2.44% 0.2%
9 Loose sensor connection 1621 1711 1802 34 1.98% 0.2%
10 Axial compressor gasket failure 1235 1258 1293 33 2.62% 0.1%

Figure 3. Monte Carlo simulation for the expected failure cost of the turbocharger vibration failure mode. [Colour figure can be viewed at wileyonlinelibrary.com]

P. CHEMWENO ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2017, 33 551–564

5
5
9



5.4. Maintenance strategy selection process

The decision scheme23 illustrated in Figure 5 is adapted for selecting appropriate maintenance strategies of which five strategies are
proposed. The first strategy, that is the failure-based maintenance, is adopted for components of low criticality, for instance fuel
piping leakages and governor component failures (Figure 4). The second strategy, that is use-based maintenance or TBM, is, in this
study, adopted for failures with evident component deterioration of which the deterioration pattern is derived from the historical
reliability data2 or expert knowledge of the component. For instance, the deterioration pattern may be observed through a reducing
TTF with respect to operational time. The third strategy, that is CBM, is adopted for components of which the failure mode is

Figure 4. Pareto analysis depicting the criticality ranking at the component level

Figure 5. Maintenance strategy selection decision scheme
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detectable. Examples here would include the turbocharger vibration failure because the component vibration is detectable through
vibration analysis.

The forth strategy, the DOM may be adopted in two ways depending on the rigor of the modification process: (i) modifying the
component or (ii) eliminating completely the failure mode. The modification strategy is adopted for components whereof design
modifications are feasible from a technical perspective at the shop floor. Examples of on-site modifications would include installing
additional clamping devices38 for the lubrication piping with a view of mitigating the ‘turbocharger lubrication piping abrasion’
(Table IV). The re-routing in this instance would insulate the vibrating lubricant piping from contact with engine components, whereof
the contact is a potential initiator of the abrasion failure mode.

The second DOM strategy is adapted for components of which implementing design modifications on-site is not feasible owing to
factors such as the intricate component design. Examples of components affected in this regard include the exhaust engine valves39.
For such intricate components, reference is often made to the original equipment manufacturer, where the specific
design/manufacturing expertise can be sought. Although the decision scheme illustrated in Figure 5 assumes an independent
allocation of the appropriate strategy, whereof each failure mode is assigned a distinct strategy, in practice, however, a combined
allocation strategy may be adopted. For instance, the piping leakage failure mode may be eliminated through DOM strategy selected
alongside a run-to-failure strategy given its low criticality. Design modification that may be implemented in this instance may also
include re-routing or clamping the piping38, thus avoiding initiation of the piping abrasion.

At a more detailed level, however, maintenance optimization may be attempted, more so for components of which the CBM and
use-based maintenance /TBM strategies are implemented. In this instance, maintenance optimization models40 may be used where
optimized maintenance schedules, or intervention instances, are developed. The optimal intervention instances are largely applicable
in the CBM strategy, whereof the interventions are linked to the component health as determined from prognostic information41.

6. Discussion and limitations

6.1. Managerial decision support

In this article, a dynamic risk assessment methodology is proposed based on hierarchical Bayes approach. The methodology
addresses two important flaw of the conventional FMEA: (i) the computation of RPN and (ii) the static nature of the risk metrics of
which the metrics are seldom updated with the availability of new information. Both flaws are addressed through the hierarchical
Bayes methodology, whereof prior distribution functions are assigned to risk metrics of interest, and in addition, the prior functions
are combined with observed evidences. As a consequence, posterior distribution functions are derived. Assigning the prior functions
negates the need for subjectively estimating the RPN metrics as is the case in the conventional FMEA methodology. Moreover,
assigning the prior is important in instances where the observed evidences are sparse, and as a result, experts resort to the subjective
estimates.

The second flaw is also addressed through the derived posterior distribution functions because in this instance, the posterior
function evolves dynamically as more data becomes available, that is through a more robust likelihood distribution function.
Moreover, the derived posterior functions are applied as input to a MC simulation model from which the expected cost of failure
is generated thereby forming the basis for the failure mode prioritization process. The prioritized failure modes are also closely linked
to maintenance strategy selection process, whereof a decision scheme is proposed. Additionally, the derived posterior function are
evaluated for validity, thus ensuring that the selected prior yields a posterior function that closely mimics the observed evidences
or data sets included in the hierarchical Bayes framework.

Additionally, incorporating the posterior functions as input into the MC simulation is viewed as an important step of further taking
into account the uncertainties associated with the input posterior distribution functions. This is achieved through sampling
independent values from the input distributions, and iteratively, aggregating these values as per the formulation of the expected
failure costs earlier on defined in Eqns (6) and (7). The MC simulation is widely used for risk analysis, and particularly, propagating
uncertainty42 associated with the input risk metrics distribution functions. The MC simulation is also particularly attractive, as it is
implemented as an add-in in MS Excel, whereof MS Excel is compatible with many organizational data bases.

The methodology also proposes a cost function—the expected cost of failure, as a measure of equipment failure risk. Using cost as
a risk measure is particularly important for maintenance practitioners as cost is more understandable as compared with the RPN
included in the conventional FMEA form. Moreover, the failure cost in this instance is linked to observed evidences as opposed to
the RPN or the fuzzy-RPN metric that is widely applied currently15. The prioritization approach where the expected cost of failure
is determined at specific percentile thresholds, for example 95th percentile, allows the decision-makers incorporate uncertainties
associated with the expected failure cost.

In the final phase of the proposed methodology, a maintenance strategy selection scheme is proposed and consequently linked to
the prioritized component failures. The decision scheme presents an intuitive and practical approach for assigning appropriate
strategies to each component. As such, practical decision-making aspects such as the ability of detecting the failure mode or
feasibility of designing out the component failure mode may be taken into account. Linking the maintenance strategy to the
prioritized failure mode is particularly important, considering that the conventional FMEA is criticized for being static in the sense that
the selected maintenance strategies are seldom updated with the emergence of new sources of risk14. Apart from facilitating the
updating of the maintenance strategies, the proposed methodology also provides a viable basis for enhancing asset knowledge
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through capturing, storing, structuring, transmitting and retrieving data associated with important risk metrics, for instance the type
of failure mode.

Overall, the benefits of the proposed methodology are underscored. Firstly, by quantifying risks using the expected failure cost not
only avails maintenance practitioners with the opportunity of identifying risks more objectively but also assists the decision-makers
allocate maintenance resources more effectively. Here, the decision scheme is rather beneficial from a practical perspective, and
additionally, the scheme can be deployed alongside maintenance optimization models. This is because the proposed methodology
also facilitates collection of maintenance data sets over time and as a result, maintenance optimization models can be applied. This is
also because such optimization models require availability of sufficient data sets40. Recent advances in the development of
maintenance optimization models has enhanced the uptake of such models among practitioners in industry43.

Secondly, the failure mode prioritization approach also avails practitioners with the opportunity of performing a detailed root
cause analysis thus identifying the potential initiators of recurrent failure modes. Such a prioritization process is viewed as ideal,
particularly for medium-sized enterprises such as the thermal power plant evaluated in this study. This is because, compared with
larger organizations or enterprises, medium-sized firms are often confronted with the need of optimizing operation and maintenance
costs17, and here, adopting a dynamic risk approach that focusses maintenance resources on priority failure modes is seen as
beneficial. For instance, in this study, the turbocharger vibration failure mode was measured as critical; however, a reactive
maintenance strategy was largely implemented at the case firm. Yet, from the risk assessment, the expected failure costs attributable
to the turbocharger vibration failure mode are several orders of magnitude higher (Table IV) as compared with the actual costs of
adopting a more pro-active approach, for instance off-line vibration analysis. Such a proactive approach could trigger repair actions
prior to observed severe turbocharger vibration failure. In this way, the failure impact could be mitigated not only in terms of cost but
also through avoidance of intangible consequences such as injury or fire hazards attributable to the turbocharger failure44.

A similar conclusion could also be derived following the strategy selection framework suggested in Figure 5, whereof the decision
scheme likewise suggests implementation of CBM strategy, for example through off-line vibration analysis. This is because the
vibration failure mode is detectable by off-line/portable vibration monitors.

The proposed methodology is further useful to firms in different operation context, such as in the building services engineering.
This is because, although the assessed failure risks may differ, nonetheless practitioners are confronted with the need of formulating
more pro-active maintenance strategies for cost or safety-critical equipment, for instance heating systems45.

6.2. Limitations

However, four main limitations should be mentioned. Firstly, the hierarchical Bayes model requires well-organized data sets that
would allow the posterior functions to be determined proactively. This was, however, not the case for the case facility because data
sets linked to the risk metrics were stored in separated data bases. For instance, the reliability data which specifies the risk metrics
such as the TTF or the type of failure modes was for the case plant stored separately from that of the associated cost impact, for
instance manpower or spare part cost. This aspect could be addressed through integrating the data bases storing data sets relevant
for the risk metrics evaluated in the proposed methodology.

Secondly, the performance of the selected maintenance strategies would require measurement to ascertain the effectiveness of the
deployed strategy. Twomeasurement approaches are thus suggested. The first approach entails actual implementation of the selected
maintenance strategies, and here, the suggestion discussed in Waeyenbergh and Pintelon 23 could be adopted. The previously
mentioned authors propose a seven-step strategy for implementing the maintenance strategy selected through a decision scheme
such as discussed in this study. Consequently, the authors suggest quantitative performance measures for evaluating the maintenance
effectiveness, for instance impact on the production output of the implemented strategy. Retroactively, a similar approach could be
adopted, whereof the performance of the selected maintenance strategy could be evaluated through updated risk assessment,
whereof the impact on the expected failure cost is measured. This is because the impact on the power generation losses is implicitly
included in the failure cost. The second approach for measuring the maintenance strategy performance is through simulation
modelling. Muchiri, Pintelon 46, for instance suggest a simulation approach for measuring the effectiveness of alternative maintenance
strategies based on the impact on the overall equipment effectiveness. Retroactively, a similar approach is suggested, whereof the
maintenance strategy performance is measured based on its impact on the expected failure cost, or the overall equipment
effectiveness. Both the actual implementation and also simulation modelling approaches are, however, suggested for future work.

Thirdly, linking the hierarchical Bayes scripts to the standard MS excel worksheet from which the likelihood function could be
derived from the empirical data sets is also required to ensure dynamic updating of the risk assessment. This aspect is also considered
in the future work.

Lastly, it is important to concisely quantify intangible risks such as potential injury to personnel, or damage to the environment
which could result from equipment failure. The proposed methodology is, however, limited in this regard. Hence, MCDM would be
better suited. Thus, the proposed methodology could be extended to incorporate such MCDM modelling approaches.

7. Conclusion

In this paper, a dynamic risk assessment methodology for assessing risks associated with asset failure is suggested. The methodology
addresses the flaw of the conventional FMEA form and is based on the hierarchical Bayes theorem and MC simulation. The
methodology is demonstrated in the application case study of thermal power plant equipment failures, whereof prior distribution
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functions elicited from experts and empirical evidences associated with equipment failures are combined to generate posterior
distribution functions. The posterior functions derived as a result are next incorporated as input into a MC simulation model from
which the expected cost of failure is generated for the equipment failure modes. The expected cost of failure forms the basis of failure
mode prioritization from which alternative maintenance strategies are assigned following a decision scheme with the objective of
mitigating the prioritized equipment failures. The applicability of the proposed methodology is demonstrated in the application case
of thermal power plant equipment failures, whereof its usefulness for decision support in maintenance decision-making is further
demonstrated.
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