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Abstract  Biometric authentication system has become a mainstream solution across industries and devices. From 
securing highly confidential data to unlocking smartphones, biometrics have eliminated the hassle of remembering 
multiple complex passwords and PINs. It means that nobody can gain access to a device or system without your 
presence. This paper discusses a method which could be used in the testing process of biometric systems on the side 
of users and customers. Large –scale biometric systems traditionally undergo a series of tests beyond technology and 
scenario testing. These large-scale system tests are typically at the system level, not just the biometric subsystem 
level, and occur multiple times in the life of a system in such forms as factory acceptance tests before shipment, site or 
system acceptance tests before initiating operations, and in- use tests to ensure that performance remains at acceptable 
levels and/or to reset thresholds or other technical parameters. The conventional statistical methods use the binomial 
distribution to estimate the expected number of failure, but in the field of the biometrics the probability parameter 
can’t be constant which means that it is necessary to describe a process. The results have shown that the probability 
is characterized with two parameters of the beta distribution, and these are predictable from a smaller sample of the 
investigated population with the maximum likelihood method. 
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1. Introduction 

Biometric system has become the benchmark technology 
for its potential to reduce the limitations of existing 
security systems and eliminate data breach activities. 
Organizations and app companies undergo numerous tests 
before and after deployment. Prospective biometric 
technologies are examined for underlying strengths of 
their technology/modality, usability, and accuracy. This 
testing is performed under optimal, controlled conditions 
for all relevant parameters that can affect performance. 

Since organizations have had existing biometric technology 
in place and a substantial amount of experience with 
biometric industry, their mindset is that a threshold has 
been set for performance in both error rates and 
throughput. Parameters like technology construction and 
architecture, component mean time between failures and 
theoretical throughput are extrapolated based on the 
results of tests. 

Before the era of the biometrical identification the main 
question during the authentication process was that: the 
given ‘key’, (RFID chip, PIN code, etc.) “Is able to open 
the lock”? This ‘key’ was mostly constructed by a binary 
code. This code, excluding that how it is encrypted, gives 

only one suitable solution which can be totally selective. 
In contrast, biometric authentication methods serve as a 
form of two-factor authentication (2FA) or multi-factor 
authentication (MFA), either by combining multiple 
biometric patterns or in conjunction with a traditional 
password or secondary device that supplements the 
biometric verification. The user’s biometric data is 
matched against all the records in the database as the user 
can be anywhere in the database or he/she actually does 
not have to be there at all. The specific question addressed 
in this section is “How likely is the verification system to 
make an incorrect decision?” The phrasing of the question 
implies a likelihood associated with errors. In other words, 
errors do not occur deterministically, but rather in a 
probabilistic manner. 

There is the need for the testing of biometric 
identification devices that utilize more than one individual 
and, for efficiency, that individual is tested more than 
once. The goal of test is to assess how the Biometric 
device would perform when implemented on a population 
of users. Binomial model is not appropriate when the 
probability of “success” varies from individual to 
individual. Probability of success, p, the usual binomial 
parameter is not the same for each user. Thus, the 
binomial is not appropriate for assessing the performance 
of a Biometric identification device when combining 
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outcomes from multiple users. The Beta-binomial model 
or, more formally, the product Beta-binomial allows for 
variability in the probability of success among individuals 
and that allows for the possibility that trials by a given 
individual are not independent. The probability of the 
possible events is not constant, but it follows a special 
distribution. This distribution of the probability parameter 
(p) is determined by two parameters –α, β. 

2. Literature Review 

For any biometrics identification device, assessing its 
matching performance is often critical to the success of 
the product from the viewpoint of both the vendor and the 
consumer. There are lots of biometric techniques available 
nowadays. A few of them are in the stage of the research 
only (e.g. the odor analysis), but a significant number of 
technologies is already mature and commercially available, 
examples include: fingerprint, finger geometry, hand geometry, 
palm print, iris pattern, retina pattern, facial recognition, 
voice comparison, signature dynamics and typing rhythm 
(U.K. Biometrics Working Group, 2000)) [9]. 

The goal of a biometric device is to accurately 
determine whether or not you are who you say you are. 
There are several factors that go into a ‘good’ biometric 
device. Hong, Wan, Jain, [14] suggest that a biometric 
should possess the following characteristics: universality, 
uniqueness, permanence, collectability, performance, 
acceptability, and circumvention. Universality means that 
as many people as possible should have the biometric in 
question. Not every person has a right index finger, so that 
a biometric device based solely on this will not be universal. 
Next, uniqueness implies that each person should have a 
different version of the biometric. Fingerprints are 
generally thought to be unique. Permanence is the 
condition that the biometric should not change over time. 
A biometric device based on facial recognition is not ideal 
in this sense because people change their hair, they grow 
beards and they get wrinkles. The ease with which a 
biometric can be captured is its collectability. It might be 
possible to create a biometric device based upon your EEG, 
but it would be difficult to capture that information quickly 
and easily. On the other hand, a fingerprint or an iris  
is fairly exposed and, therefore, easily collectible. 
Performance measures how easy a particular biometric is to 
use and implement. Acceptability is the degree to which 
there is public acceptance of the biometric for 
identification purposes. Fingerprints are a prime example 
of a biometric with high acceptability, since they have 
been used for centuries as a method of identification. 
Finally, circumvention is the amount of work need to fool 
the system. Signatures are notoriously easy to reproduce, 
whereas creating a copy of a fingerprint is far more 
difficult. Discussing some of the commonly used 
Biometric Identification Devices (BID): 

2.1. Finger Prints 
Fingerprint identification is perhaps the oldest of all the 

biometric techniques. Their use in law enforcement  
since the last century is well the oldest known. Optical 
fingerprint readers are the most common at present. They 

are based on reflection changes at the spots where the 
finger papilla lines touch the read surface. Optical 
fingerprint readers cannot be fooled by a simple picture of 
a fingerprint, but any 3D fingerprint model makes a 
significant problem, all the reader checks is the pressure. 
A very good example of fingerprint reader is the IEVO-M 
microTM Biometric Fingerprint Reader which is a compact 
fingerprint reader designed for internal use only, looking 
to secure small to medium sized facilities. It uses an 
optical sensor and delivers a fast and reliable biometric 
solution saving time and costs to any business. The 
fingerprint biometric authentication methodrely on partial 
information to authenticate a identity. For example, a 
mobile biometric device will scan an entire fingerprint 
during the enrollment phase, and convert it into data. 
However, future biometric authentication of the fingerprint 
will only use parts of the prints to verify identity so faster 
and quicker. The fingerprint reader is enabled for 128-bit 
data transmission and provides highly accurate and quality 
images to be transferred to the Control Board, where the 
data is securely stored. Here it performs 1: N, matching up 
to 50,000 (10,000 standard) fingerprint templates. 

2.2. Facial Recognition 
Facial recognition is the most natural means of 

biometric identification. The method of distinguishing one 
individual from another is an ability of virtually every 
human. Any camera (with a sufficient resolution) can be 
used to obtain the image of the face. Any scanned picture 
can be used as well. The image processing and facial 
similarity decision process is done by the computer 
software. The accuracy of the face recognition systems 
improves with time, the current software may often find “a 
face” at an incorrect place. This significantly makes the 
results worse. Better results can be achieved if the 
operator is able to tell the system exactly where the eyes 
are positioned. The systems also have problems to 
distinguish very similar persons like twins and any 
significant change in hair or beard style requires re-
enrollment. The quoted accuracy of facial recognition 
systems varies significantly, many systems quote the 
crossover accuracy of less than one percent. 

2.3. Iris Scan 
Research shows that the matching accuracy of iris 

identification is greater than of the DNA testing. The iris 
scanner does not need any special lighting conditions or 
any special kind of light (unlike the infrared light needed 
for the retina scanning). The iris scanning technology is 
not intrusive and thus is deemed acceptable by most users. 
The iris pattern remains stable over a person’s life, being 
only affected by several diseases. Once the gray-scale 
image of the eye is obtained then a software tries to locate 
the iris within the image. In the decision process the 
matching software given 2 iris codes computes the 
Hamming distance based on the number of different bits. 
The Hamming distance is a score (Within the range 0 – 1, 
where 0 means the same iris codes), which is then 
compared with the security threshold to make the final 
decision. Computing the Hamming distance of two iris 
codes is very fast (it is in fact only counting the number of 
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bits in the exclusive OR of the two iris codes). Modern 
computers are able to compare over 4 000 000 iris codes 
in one second. An iris scan produces a high data volume 
which implies a high discrimination (identification) rate. 
The iris recognition is the fastest identification out of all 
the biometric systems I could work with. It is hard to 
encounter a false acceptance (the database was not very 
large, however) and the false rejection rate is reasonably 
low. The manufacturer quotes the equal error rate of 
0.00008%, but so low false rejection rate is not achievable 
with normal (nonprofessional) users. 

2.4. Hand Geometry 
Hand geometry is based on the fact that nearly every 

person’s hand is shaped differently and that the shape  
of a person’s hand does not change after certain age.  
Hand geometry systems produce estimates of certain 
measurements of the hand such as the length and the width 
of fingers. Various methods are used to measure the hand. 
These methods are most commonly based either on 
mechanical or optical principle. The latter ones are much 
more common today. Optical hand geometry scanners 
capture the image of the hand and using the image edge 
detection algorithm compute the hand’s characteristics. 
Hand geometry scanners are easy to use. Hand geometry 
does not produce a large data set (as compared to other 
biometric systems). Therefore, given a large number of 
records, hand geometry may not be able to distinguish 
sufficiently one individual from another. The size of the 
hand template is often as small as 9 bytes. Such systems 
are not suitable for identification at all. The verification 
results show that hand geometry systems are suitable for 
lower level security application. The manufacturers 
advertise the crossover accuracy about 0.1%. These 
numbers are difficult to obtain in reality. FAR of 3% and 
FRR of 10% at the middle security threshold are more 
realistic. The verification takes about one second. The 
speed is not a crucial point because the hand geometry 
systems can be used for verification only. 

3. Methodology 

We have discussed some of the common biometric 
technologies, at the present there is no consensus on a 
methodology for assessing the performance of a biometric 
device when two or more individuals are tested. The 
binomial distribution is incorrect when more than one 
individual attempts to match. The matching performance 
is usually measured in terms of false accept and false 
reject rates. I will refer to users that are enrolled in the 
database as genuine users and I will refer to users who are 
not enrolled in the database as imposters. Thus, the 
matching performance describes how well the system 
allows access to genuine users and denies access to 
imposters. 

When an individual presents their biometric, the ‘image’ 
is processed and matched against one or more stored 
templates from the database. The number of comparisons 
depends upon the mode that the device uses. There are 
two basic modes of operation. The first is verification or  
 

one-to- one mode. In this mode, some identifier such as a 
name or an ID number is given to the system and it 
verifies that your biometric matches the biometrics stored 
under your name. The second mode of operation is 
identification or one-to-many mode. Under this scenario, 
the biometric system compares the presented biometric to 
the entire database looking for a match. Though  
these systems have very different methodologies, their 
performance is measured in the same way. 

To make this discussion more precise, consider the 
population of match scores all attempts by genuine users 
and let fgen(x) represent the density of this distribution. 
Similarly, consider the population of match scores for all 
attempts by imposters and let himp(y) be the density for 
this distribution. Then the false rejection rate (FRR) is the 
probability that T is greater than λ given that T comes 
from the distribution of genuine user scores. The false 
acceptance rate (FAR) is the probability that T is less than 
λ given that the score T comes from the distribution of 
imposter’s scores. [10] Symbolically, 

 ( ) ( )| gFRR P T T Genuine f en x dx
τ

τ
∞

= > ∈ = ∫  

 ( ) ( )| iFAR P T T Imposter h mp x dx
τ

τ
∞

= ≤ ∈ = ∫  

The threshold, λ, can be set so that we have some 
control over the values that the FAR and FRR will take. 
However, note that as λ increases that the FRR will 
decrease and the FAR will increase. Likewise, as λ 
decreases the FRR will increase and the FAR will 
decrease. In a practical setting, we are often interested in 
estimating the FAR and FRR for a particular biometric 
device. Given λ and a sample from both genuine users and 
imposters we can create estimates for the FRR and FAR, 
in the following way: 

 |
FRR

T T GenuineP
Genuine

λ> ∈
=  

 |
FAR

T T ImposterP
Imposter

λ> ∈
=  

where PF RR where is an estimator of the FRR, PF AR is an 
estimator of the FAR, Genuine is the total number of 
genuine user scores and Imposter is the total number of 
imposter scores. The security thresholds of biometric 
systems is measured depending on variability of FAR and 
FRR. Once biometric data is matched against all records 
we hypothesize that there could be sufficient overlap 
between various biometrics to allow a hacker or imposter 
to access a device at a certain percentage of time. The 
variability is the security threshold or security level. When 
the variability is small then the security threhold is high. 
This means f you try to reduce the FAR to the lowest 
possible level, the FRR is likely to rise sharply. In other 
words, the more secure your access control, the less 
convenient it will be, as users are falsely rejected by the 
system. The same also applies the other way round. When 
the variability allowed is great then the security level is 
low. Do you want to increase user convenience by 
reducing the FRR? In this case the system is likely to be 
less secure (higher FAR). 
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BIDs have been investigated by statistical methods for 
easier reproducibility and usage. The results have shown 
that the less the number of the investigated variables the 
higher the willingness to apply the method by the side of 
customers. I had to involve an automatic technique which 
is easily adoptable in the practice. The theory of the 
process is the following: 

In the first step it is necessary to pick a representative 
sample of the multiplicity. In this case that means a small 
group of those individuals who are using the investigated 
access point. The access point used was the fingerprint 
reader despite several BIDs in the market. The human 
identification patterns (HIP) are not permanent, those are 
continuously changing in time, sometimes day by day or 
person by person. To determine the exact value of failure 
rates the examination of these devices has to be regular 
and systematic. Biometric testers are very interested in 
knowing how large of a sample they need to take. We 
determine two sample sizes: M, the number of individuals 
to be sampled and, ni, the number of times that each 
individual should be tested. . It is proven there aren’t two 
totally equal samples in the biometrics, even if they have 
been recorded from the same person in the same time. 

In the field of biometrics we have to count with 
continuously changing user attribution and environment, 
thus the numbers of the failures (not recognized HIP) are 
variables. But this variety is not chaotic, it is possible to 
be described by the beta-binomial distribution. 

In the conducted experiments we examined how big the 
possibility of the failures. Six tests have been repeated  
six times, and each time we noticed the number of  
the failed identification. These rounds were subscribing 
the distribution of the possible failures. However I had to 
find the method which is able numerically characterize 
this distribution. As it was mentioned above this 
distribution is the beta-binomial distribution, so the exact 
task in the second step was that to find the right way to 
determine the parameters in each of the beta distributions 
at every subject. These results individually are not able to 
classify the goodness of the BID (fingerprint reader), just 
showing whether the methodology works or not. 

We made differences between the failures by the level 
of the individuals and tests. With the parameters of the 
Beta – Binomial distribution it is possible to calculate the 
beta-binomial density function that shows the possibility 
the different cases of the failures. The individual density 
function compared with the density function of the 
aggregated data, it is possible to establish whether there is 
a subject with very poor pattern or the device’s gone 
wrong. According to the beta-binomial parameters it is 
possible to estimate the probability of each failure 
cases(e.g. one, two, or more failure in a ten size sample), 
and even possible to give the expected value and 
dispersion of the distribution. The convectional FRR is 
calculated as follows: 

 ( )1 1
0 1 . 1k xn xFRR n x P pα

= − −
== − −∑   

where k is the minimum number of minutiae to access and 
p is probability of failure. In contrast with the FRR the 
expected values and the variance of the beta-binomial 
distribution is the following: 
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After while there has been observed n different events, 
the number of the adverse events is x, and so the number 
of the not false identifications is n-x, the corrected 
equation is the following: 

 xE
n

α
α β

+
=

+ +
 

A simple failure can be tolerated in the intensive daily 
use, but if the FRR significantly increases, then the 
effectiveness of the device brakes down, which could lead 
in a marginal case to turning off. The Beta-binomial 
distribution that is described in this paper is a 
generalization of the binomial distribution that allows for 
correlation between trials for a given individual. 
Consequently, the Beta-binomial can be an appropriate 
model where the binomial is inappropriate. 

3.1. Mathematical Background of  
Beta-Binomial Distribution 

The Beta-binomial is derived in the following manner 
[6]. Suppose that we have m individuals and each of those 
individuals is tested ni times, where i = 1, . . . , m. Assume 
that, 

 ( )| , , ,i i i i iX n p Bin n p−  

where Xi is the number of successes, and that 
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We then further model each of the pi as conditionally 
independent draws from a Beta distribution. The Beta 
distribution is a continuous distribution on the interval 
[0,1] and it is parameterized with two quantities, α and β. 
Letting pi have a Beta distribution, the probability density 
function is then 
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The mean and the variance for a Beta random variable 

are given by α
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The joint distribution is then, 
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where 
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Now inference for this hierarchical model should be 
focused on α and β, since they define the overall 
probability of success. Consequently, we can integrate out 
the pi’s because they are now nuisance parameters. Thus 
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Equation (4) is referred to as a joint Beta-binomial 
distribution or product Beta-binomial distribution. Let  

( )| , , , ,i i i i iX n Betabin nα β α β  represent Xi coming 
from a Beta-binomial distribution conditional on the 
parameters α, β and ni. Thus, we assume that the Xi’s are 
conditionally independent draws from a Beta-binomial 
distribution with parameters α, β and ni. Under that 
distribution, 

 ( )i i iE x n nα π
α β

= =
+

 

 ( ) ( )1i iVar X n Cπ π= −  

where ( )( ) 11 .iC nα β α β −= + + + +  
For the determination of the Beta-Binomial parameters, 

α and β we used the maximum-likelihood method. The 
basic underlying idea for ML estimation is to find the 
parameter value most likely to have produced the observed 
data. For example, given data Y from a sampling 
distribution f (Y|θ) with parameter θ, the likelihood 
function L(θ|Y) is the sampling distribution treating the 
data as known and the parameter as unknown. Note that 
both Y and θ are potentially vector- valued. 

 ( | ) max ( | )L Y L Yθθ θ=  

We also have estimators based on Mean and zero (mean 
zeros) which has high efficiency when fitting BB to 
reverse j-shaped distributions, also estimators based on 
first two sample moments (2 moments) and estimators 
based on mean and ratio of ones to zeros (1 moment-1 
probability) 

3.2. Estimators Based on Mean and Zero 
(mean-zeros) 

Chatfield, Goodhart [13] conjectured that the method of 
mean and zeros would have high efficiency when fitting 
the BB to reverse J-shaped distributions. Let p0 denote the 
sample proportion of observed zeros and µ the sample 
mean. Then the estimators of β and α based on po and µ 
are obtained by solving the equations 

 ( )
( ) 0
, +

=
,

B N N
p

B
αα β

µ
α β α β

=
+

 (1.1) 

3.3. Estimators Based on First Two Sample 
Moments (2-moments) 

Let μj denote the j-th sample factorial moment and 
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j

j

µ
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µ
+
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and solving the two equations yields the estimators 
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3.4. Estimators Based on the Mean and  
the Ratio of Ones to Zeros  
(1 Moment-1 Probability) 

Since the estimators in eq (1.1) involve a nonlinear 
equation for the zeros, it is tempting to replace it by a linear 
equation involving the ratio of ones to zeros obtained from 
equation ( ) ( ) ( )1 ( ) 1jj N j j N j jα β η− + + = − − +  with 

j = 0. Let 0 1 0/ ,p pη =  the ratio of the proportion of 
observed ones to the proportion of observed zeros. Then a 
simple estimator can be obtained by solving the two linear 
equations 

 ( ) ( )0 01 0N N Nα βη η α µ βµ− = − − − =  

where µ is the sample mean. This yields the estimators. 
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− − −

= =
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 (1.3) 

We can use the R-package BBest (y,m,method=”MLE”) 
where 

•  y-reponse variable which follows Beta-Binomial 
distribution. 

•  m-maximum score number in each beta binomial 
observation. 

•  method-the method used for performing the 
estimation of the probability and dispersion 
parameters of a Beta-Binomial distribution. ”MM” 
represents method of moments-Default and ”MLE” 
is Maximum Likelihood Estimation. 

4. Data Analysis Discussion 

The practical probability of malfunctions can be 
estimated for each of the users, and it is also able to be 
estimated for a whole and complex system. In this paper 
the chosen individual level was, due to comparing the 
convenience statistical analyzing with the more practical 
examinations. For this research an iEVO micro fingerprint 
reader used in our Huduma center (Kirinyaga County) has  
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been chosen. I assume that m individuals were tested for 
each of k times. For simplicity, suppose that each 
individual was tested the same number of times, so that ni 
= k for each individual, i. 

We have eight subjects (volunteer) have been used in 
the tests, but finally only four of them’s results were able 
to used in the algorithm. The rest had trouble with the 
appropriate usage of the fingerprint reader. 

In our tests we got the results above. Each test was 
repeated ten times per each user, so the Table 2 shows 
how many times 0, 1, 2 or more failures occurred in each 
test which contains six tries. 

As shown, the rate of the failures during the recognition 
(FRR) is about 18% (71 out of 400). This is significantly 
higher than the manufacturer (0.1%). The manufacturer 
gave the original (empirical) data for characterize the 
goodness of the device; FRR < 0.1% and FAR < 0.00001%. 

Table 1. Distribution of experimented population 

Population 600 persons   
Test group 8 subjects  Rest 600 persons 
Evaluable Data 4 subjects Not evaluable data 4 subjects No data 600 persons 
Repeated six times Repeated six times  
6 samples/Tests 6 samples/Tests  
TRY to identification 71 failures   

Table 2. Number of failure in the test 

SUBJECT 0 1 2 3 4 5 6 SUM 
i Subject 4 0 0 1 2 1 1 22 
ii.subject 7 2 1 0 0 0 0 4 
iii.subject 2 2 0 1 1 2 2 31 
iv.subject 2 2 4 0 1 0 0 14 

av. 3.75 1.5 1.25 0.5 1 0.75 0.75 17.75 
sum. 15 6 5 2 4 3 3 71 

 
The beta parameters were calculated for each user and 

we presented the calculated beta distribution density 
functions as follows. 

 
Figure 1. Beta Distribution density Function for subject 1 

 
Figure 2. Beta Distribution density Function for subject II 

 
Figure 3. Beta Distribution density Function for subject III 

 
Figure 4. Beta Distribution density Function for subject IV 

The beta density functions for the summarized data 
and the average value is added as well in Figure 5 and 
Figure 6. 
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Figure 5. Beta Distribution density Function for the Average value 

 
Figure 6. Beta Distribution density Function for the Summed 
values’ parameters 

All the test when the number of the failure is zero or 
quite small is significantly higher than the more times 
failed. The usual statistic uses the binomial distribution to 
estimate the average number of failures. To compare the 
conventional method with this examined method we 
used the average number of the experienced failures as 
parameter p in the binomial equation. In the betabinomial 
method the probability of zero failures is about 35%, in 
contrast with the normal binomial method, where it is  
10-15%. Although the tests were done on a smaller 
population, the necessary minimal failed events have been 
detected on 99% level of confidence, according to the 

Doddington formula cited in (Doddington, Liggett, Martin, 
Przybocki, Reynolds, 1998) [11]. In the testing of smaller 
populations usually the deformity means that the 
experienced failure number is smaller than the statistically 
expected. The Doddington formula helps to correcting this 
deformity. So the problem that origins from the small 
population slightly corrected, thus we could focus to 
compare the significant difference between the normal 
binomial and beta-binomial distribution. Final probability 
values in the different methods (average of the subjects 
and the accumulated cases) are shown in the Figure 7 and 
Figure 8 below. 

 
Figure 7. Probability values for the Average of the subjects 
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Figure 8. Probability values for the Summed values’ of the subjects 

5. Conclusions 

The Beta-binomial distribution accounts for the extraneous 
variability in this scenario. Several authors including I 
have noted that a binomial distribution is not appropriate for 
biometric data under most circumstances. The problem 
with using the binomial distribution to describe the data is 
that it does not allow for intraindividual correlation in 
testing. [This is the correlation in repeated measurements 
for the same subject]. The Beta binomial distribution is 
appropriate for describing biometric data because it has 
the flexibility to model the correlation of observations 
by the same individual. The beta binomial distribution 
draws conclusions on false rejections and false acceptances. 
An ideal system has no false rejections and false acceptances 
whereas the real system those numbers are non-zero and 
depend on security level or security threshold. The false 
rejection rate decreases as the variability increases. The 
failed rejection depends on more variables, for which there 
doesn’t exist an explicit formula. Because the failures 
come from different set of mistakes and statistical uncertainty. 
We can conclude from the information above that the 
Huduma center will often prioritise user convenience over 
security. This way may be acceptable to users. The thinking 
behind this: We don’t want people to have to queue up at 
the door because the system is not working properly. 
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