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“Life is the art of drawing sufficient conclusions from insufficient premises.”

Samuel Butler





Abstract

In this thesis, we address the problem of analysing IoT data with a focus on
anomaly detection in data streams and behaviour analysis. Unsupervised learning
is highly preferred for real-life applications, especially in anomaly detection since
there is a lot of data without labels in this scenario. We propose an Enhanced
Locally Selective Combination in Parallel outlier ensembles (ELSCP) technique.
We define an unsupervised data-driven methodology and apply it in three case
studies; detection of crop damage in crop dataset, application to GPS logs of
combine harvesters and application to Cooperative Intelligent Transport System
(C-ITS) messages. The focus is the identification of anomalies that can be linked to
crop state/health during harvest, those that have an impact on harvest efficiency
and those impacting road safety and efficiency. Based on our results, it is possible
to link anomalies extracted to damaged crop state at the end of harvest. Also,
we were able to detect deviant behaviour of combine-harvester and to identify
anomalies on the roads. Therefore, anomaly detection could be integrated in the
decision process of farm and road operators to improve harvesting efficiency, crop
health, road safety and traffic flow.

Secondly, we considered the analysis of speed signatures generated from C-
ITS messages with the aim of understanding driving behaviour evolution under
a naturalistic driving environment. We have shown that with the application of
segmentation and aggregate statistics, one is able to get a better understanding of
general driving behaviour and infer information that relates to the road condition
and traffic situation. Finally, we considered the trajectory-linking problem and
applied it to C-ITS messages. Based on our analysis, it is possible to link tra-
jectories to the generating users if other distinguishing attributes and background
knowledge on generation of the messages are considered during similarity analysis.

Keywords: Anomaly detection, Data streams, Intelligent Transportation Sys-
tems, Smart farming, Traffic incident detection, Unsupervised learning.

iii





Résumé court

Dans cette thèse, nous abordons le problème de l’analyse des données IoT en nous
concentrant sur la détection des anomalies dans les flux de données et l’analyse
des comportements. L’apprentissage non supervisée est intéressant pour les ap-
plications de la vraie vie, en particulier pour la détection des anomalies, car il
y a beaucoup de données sans étiquettes dans ce scénario. Nous proposons une
technique ELSCP (Enhanced Locally Selective Combination in Parallel outlier en-
sembles). Nous définissons une méthodologie non supervisée axée sur les données
et nous l’appliquons à trois études de cas : la détection des dommages causés aux
cultures dans un ensemble de données d’agriculture, l’application aux traces GPS
des moissonneuses-batteuses et l’application aux messages issus des systèmes de
transport intelligent coopératif (C-ITS). L’accent est mis sur l’identification des
anomalies qui peuvent être liées à l’état ou à la santé des cultures pendant la
récolte, celles qui ont un impact sur l’efficacité de la récolte et celles qui ont un
impact sur la sécurité et le traffic routier. D’après nos résultats, il est possible
de relier les anomalies extraites à l’état des cultures endommagées à la fin de la
récolte. De même, nous avons été en mesure de détecter le comportement dé-
viant de la moissonneuse-batteuse et d’identifier les anomalies sur les routes. Par
conséquent, la détection des anomalies pourrait être intégrée dans le processus
de décision des exploitants agricoles et routiers afin d’améliorer l’efficacité de la
récolte, la santé des cultures, la sécurité routière et la fluidité du trafic.

Deuxièmement, nous avons considéré l’analyse des signatures de vitesse génér-
ées à partir des messages C-ITS dans le but de comprendre l’évolution du com-
portement de conduite dans un environnement de conduite naturalle. Nous avons
montré qu’avec l’application de la segmentation et des statistiques agrégées, on
est capable d’obtenir une meilleure compréhension du comportement général de
conduite et de déduire des informations relatives à l’état de la route et à la sit-
uation du trafic routier. Enfin, nous avons examiné le problème de la liaison de
trajectoires et l’avons appliqué aux messages C-ITS. Suite à notre analyse, il est
possible de relier les trajectoires aux utilisateurs qui les ont générées si d’autres
attributs discriminants et des connaissances de base sur la génération des messages
sont pris en compte pendant l’analyse de similarité.
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Résumé étendu

Introduction

Contexte

L’Internet des objets (IoT) automatise l’exécution d’actions intelligentes basées sur
des données provenant d’appareils connectés en s’appuyant sur des technologies
essentielles telles que la collecte automatisée de données par capteurs et l’analyse
de données massives dans le nuage. Cette automatisation permet un large éventail
d’applications pratiques dans le monde réel, notamment le transport intelligent,
l’agriculture intelligente, les villes intelligentes, etc. L’incorporation de l’IoT dans
la vie quotidienne, a entraîné la collecte de quantités massives de données. Les
flux de données sont des séquences vastes, continues et non limitées de données
qui arrivent à un rythme rapide et ont une distribution dynamique. L’exploration
des flux de données est un domaine de recherche actif qui a récemment évolué afin
de découvrir des connaissances à partir des vastes volumes de données générées
en permanence. Cette thèse apportera des contributions dans les contextes de
l’agriculture intelligente et des C-ITS, en mettant l’accent sur les C-ITS.

L’IoT dans l’agriculture fait référence à l’utilisation de capteurs et d’autres
dispositifs pour convertir en données chaque aspect et opération impliqués dans
l’agriculture. L’agriculture a grandement bénéficié des récentes avancées dans la
technologie des capteurs, la science des données et les approches d’apprentissage
automatique. Ces innovations sont une réponse aux défis environnementaux et dé-
mographiques auxquels notre société est confrontée, où de grandes augmentations
de la production agricole mondiale sont nécessaires pour nourrir une population
croissante. On prévoit que l’utilisation d’approches innovantes dans l’IdO con-
tribuera à améliorer la production agricole de 70% d’ici 2050 [1]. Par conséquent,
il est essentiel d’analyser les données générées afin de recueillir des informations
susceptibles de faciliter la prise de décision et l’amélioration de la productivité.

ix
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Les systèmes de transport intelligents coopératifs (STIC) avec des véhicules
connectés en réseau sont prêts à remodeler l’avenir de la mobilité. Cette tran-
sition est facilitée par les échanges de messages entre véhicules (V2V) et entre
véhicules et infrastructures de transport (V2I). Les informations en temps réel sur
les véhicules individuels proviennent des messages de sensibilisation coopératifs
(CAM). Néanmoins, en raison de la nouveauté du concept, l’impact des services
C-ITS sur les réseaux routiers n’a pas encore été complètement ressenti et évalué
[2].

Les incidents de circulation sont des événements non récurrents qui peuvent
provoquer des embouteillages et des retards dans les déplacements. Un incident
est "un événement inattendu qui perturbe temporairement le flux de circulation
sur un segment de route" [3]. Il est important de comprendre la fréquence des inci-
dents en identifiant les variations par rapport aux schémas de circulation réguliers
afin de réduire l’effet et la durée des incidents. Les accidents de véhicules, les
pannes de véhicules, les débris sur la route et les véhicules arrêtés au milieu de
la route sont tous des exemples d’incidents/anomalies routiers. Une détection
précoce de ces anomalies permet de réduire les risques d’incidents tels que les ac-
cidents et les embouteillages. La plupart de ces incidents peuvent être attribués
au comportement du conducteur et à l’état de la route. Les usagers de la route et
les autorités ont tout à gagner à connaître le lieu, l’heure et la fréquence de ces
anomalies routières.

L’objectif principal du C-ITS est d’améliorer la sécurité, le confort, le trafic
et l’efficacité énergétique. La vitesse du véhicule et d’autres indicateurs basés
sur la vitesse sont des paramètres couramment utilisés dans la recherche sur le
trafic pour générer des profils de conduite [4], [5]. Le principal objectif de l’étude
de la variation de la vitesse est de mieux comprendre pourquoi les conducteurs
réagissent de telle ou telle manière aux conditions de la route et du trafic et de
découvrir les facteurs qui influencent leurs actions. Les informations obtenues à
partir de l’analyse des vitesses des véhicules peuvent être utiles pour identifier les
points noirs (lieux propices aux accidents) et pour mieux comprendre la durée des
trajets. En outre, elles peuvent être utilisées pour évaluer la nécessité de mettre en
place des infrastructures, par exemple des ralentisseurs, des bosses et des radars
sur certaines sections de la route.

Dans cette thèse, nous abordons le problème de l’analyse des données IoT
en nous concentrant sur la détection des anomalies dans les flux de données et
l’analyse du comportement des conducteurs. Nous considérons une approche ori-
entée données avec l’objectif de détecter des anomalies à la volée en utilisant des
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approches de détection non supervisées pour la détection d’anomalies contextuelles
locales. Nous proposons une amélioration d’un détecteur d’anomalies d’ensemble,
Enhanced Locally Selective Combination in Parallel outlier ensembles (ELSCP).
ELSCP est adapté au contexte du streaming en utilisant un cadre de pipeline
qui met en œuvre une technique de fenêtre glissante. Cette adaptation permet le
traitement des données sous forme de flux, ce qui est important dans la mesure où
les performances de notre algorithme peuvent être évaluées dans le contexte des
flux de donées.

Il est essentiel pour la sécurité routière de comprendre les mécanismes de sélec-
tion de la vitesse des conducteurs et les variables de risque qui influent sur leur
comportement en matière de vitesse. Nous avons proposé une approche de seg-
mentation et d’analyse statistique des données pour l’analyse des signatures de
vitesse continues générées dans des segments de route contigus. Nous considérons
le mouvement collectif des véhicules le long d’un segment de route particulier et
évaluons leur comportement global de conduite par l’analyse des signatures de
vitesse.

L’exploration de trajectoires repose sur l’analyse des traces de mouvement /
trajectoires pour l’extraction de modèles comportementaux. Pour caractériser les
aspects comportementaux et le style de vie d’une entité, il est impératif d’analyser
les traces quotidiennes. Un principe de confidentialité est appliqué dans le C-ITS
où chaque message envoyé se voit attribuer un identifiant du véhicule émetteur.
Cet identifiant n’est conservé que pendant un intervalle de temps donné, ce qui
signifie qu’un véhicule peut avoir plusieurs identifiants. Pour reconstituer le mou-
vement du véhicule sur une longue période de temps, les identifiants des trajets
consécutifs doivent être identifiés par un processus de liaison. Nous proposons
de résoudre le problème de liaison des données en enchaînant des trajectoires
anonymes à des véhicules potentiels en considérant la similarité des modèles de
mouvement.

Contribution

Nous proposons une méthodologie de détection des anomalies dans les flux de don-
nées qui a été appliquée dans différentes études de cas présentées dans le chapitre 4.
Notre première contribution sur la détection d’anomalies dans les flux de données
en présence d’obstacles et de dérive de concept a été présentée à Nets4Workshop
: 15th International Workshop on Communication Technologies for Vehicles [6].
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Des travaux sur la détection des comportements anormaux des moissonneuses-
batteuses à l’aide d’une technique d’ensemble avec mise en œuvre du concept de
fenêtre glissante ont été présentés à la conférence International Conference on
Smart and Sustainable Agriculture (SSA’2021) [7]. En outre, des travaux sur la
détection d’anomalies pouvant être liées à l’état ou à la santé des cultures pen-
dant la récolte et celles qui ont un impact sur l’efficacité de la récolte ont été
publiés dans le journal Agriculture [8]. Des travaux sur la détection d’anomalies
à partir de messages C-ITS utilisant un ensemble non supervisé et le concept de
fenêtre glissante ont été soumis à IEEE Transactions on Intelligent Transportation
Systems [9].

L’analyse des signatures de vitesse générées par les messages C-ITS a égale-
ment été envisagée dans le but de comprendre l’évolution du comportement de
conduite dans un environnement de conduite naturaliste. Ce travail, développé
dans le chapitre 5, a été présenté à la conférence IEEE International Conference
on Communications (ICC 2021) [10].

Le dernier problème, celui de la liaison des trajectoires, est étudié en enchaînant
les trajectoires des messages C-ITS à des véhicules potentiels en considérant la
similarité des modèles de mouvement. Ce sujet est abordé dans le chapitre 6
et un article a été présenté à la Conférence 2020 IEEE Global Communications
Conference (GLOBECOM 2020) [11].

En résumé, il y a un total de cinq publications acceptées et une soumise :

1. Juliet Chebet Moso, Ramzi Boutahala, Brice Leblanc, Hacène Fouchal, Cyril
de Runz, Stéphane Cormier, and John Wandeto. Anomaly Detection on
Roads Using C-ITS Messages. In International Workshop on Communica-
tion Technologies for Vehicles, pages 25–38. Springer, November 2020.

2. Juliet Chebet Moso, Stéphane Cormier, Cyril de Runz, Hacène Fouchal, and
John Mwangi Wandeto. Anomaly Detection on Data Streams for Smart
Agriculture. Agriculture, 11(11), 2021. ISSN 2077-0472. Doi: 10.3390/agri-
culture11111083.

3. Juliet Chebet Moso, Stéphane Cormier, Hacène Fouchal, Cyril de Runz,
and John Mwangi Wandeto. Streaming-based Anomaly Detection in ITS
Messages. Submitted to IEEE Transactions on Intelligent Transportation
Systems, 2021.

4. Juliet Chebet Moso, Stéphane Cormier, Hacène Fouchal, Cyril de Runz, and
John Mwangi Wandeto. Abnormal behavior detection in farming stream
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data. In: Boumerdassi S., Ghogho M., Renault É. (eds) International
Conference on Smart and Sustainable Agriculture. SSA 2021.,Communica-
tions in Computer and Information Science, vol 1470, pp. 44-56. Springer,
Cham.June 2021.

5. Juliet Chebet Moso, Stéphane Cormier, Hacène Fouchal, Cyril de Runz,
John M. Wandeto, and Hasnaâ Aniss. Road Speed Signatures from C-ITS
messages. In ICC 2021-IEEE International Conference on Communications,
pages 1–6. IEEE,June 2021.

6. Juliet Chebet Moso, Stéphane Cormier, Hacène Fouchal, Cyril de Runz,
and John Wandeto. Trajectory User Linking in C-ITS Data Analysis. In
GLOBECOM 2020-2020 IEEE Global Communications Conference, pages
1–6. IEEE,December 2020.

Plan de la thèse

Cette thèse est organisée comme suit :

Le chapitre 2 présente l’état de l’art. Il commence par décrire le domaine de
l’agriculture intelligente dans la section 2.2 puis se poursuit par celui des systèmes
de transport intelligents dans la section 2.3. La détection d’anomalies est présen-
tée dans la section 2.4 où diverses approches et applications sont discutées. La
section 2.5 présente les concepts et les applications de l’exploration des données
de trajectoire et est suivie de la section 2.6 sur l’analyse du profil de vitesse des
véhicules. Il se termine par la section 2.7 avec un examen des approches de liaison
entre utilisateurs de trajectoires.

Le chapitre 3 présente les définitions et les méthodes. Il présente une discussion
sur les mesures de performance et les mesures qui seront utilisées dans l’évaluation
des performances des différents algorithmes et méthodologies utilisés. Une discus-
sion sur la structure et les règles de génération de la CAM est présentée ainsi que
les outils de simulation et la procédure utilisée pour générer des données CAM
simulées.

Le chapitre 4 est consacré à la détection des anomalies. Nous proposons une
technique ELSCP (Enhanced Locally Selective Combination in Parallel outlier en-
sembles). Nous définissons une méthodologie non supervisée basée sur les données
et l’appliquons à trois études de cas : la détection des dommages aux cultures
dans un ensemble de données sur les cultures, l’application aux journaux GPS des
moissonneuses-batteuses et l’application aux messages C-ITS. L’objectif principal
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est d’identifier les anomalies qui peuvent être liées à l’état ou à la santé des cul-
tures pendant la récolte, celles qui ont un impact sur l’efficacité de la récolte et
celles qui ont un impact sur la sécurité et l’efficacité des routes. Nous utilisons
des techniques basées sur des tests d’hypothèses sur l’occurrence d’un modèle de
mouvement anormal pendant la récolte dans le champ et sur les routes.

Le chapitre 5 traite de la génération et de l’analyse des signatures de vitesse
à partir des données C-ITS par l’application de la segmentation des trajectoires
et de l’analyse statistique. Les approches proposées dans ce chapitre utilisent un
ensemble de données réelles de CAMs collectées dans le cadre du projet SCOOP@F
[12] dans le but de comprendre l’évolution du comportement de conduite dans un
environnement de conduite naturaliste.

Le chapitre 6 considère le problème de la liaison trajectoire-utilisateur (TUL)
et l’applique aux messages générés par les véhicules dans un environnement C-
ITS. Le problème TUL est résolu par le chaînage de trajectoires anonymes à des
véhicules potentiels en considérant la similarité des modèles de mouvement.

Le chapitre 7 conclura cette thèse et proposera quelques travaux futurs pour
le travail présenté.

Synthèse

Dans cette synthèse, un résumé des informations importantes de chaque chapitre
sera présenté.

Chapitre 2 : État de l’art

Notre état de l’art présente une discussion sur l’agriculture intelligente, les sys-
tèmes de transport intelligent (STI), les techniques de détection des anomalies
et leur application dans les flux de données, les données agricoles et la gestion
du trafic routier. Il aborde également l’exploration des trajectoires, l’analyse des
profils de vitesse et les approches de liaison des trajectoires.

Agriculture intelligente

La population mondiale continue de croître et pourrait nécessiter une augmen-
tation significative de la production alimentaire. La production agricole dépend
de la gestion des sols, de l’eau, des ravageurs, des conditions climatiques et des
risques imprévus, pour une production agricole durable [13]. L’utilisation de pes-
ticides est un problème majeur ayant un impact sur l’environnement, la santé et la
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sécurité des agriculteurs [14]. L’agriculture intelligente s’attaque aux difficultés de
la production agricole en termes d’efficacité, d’impact environnemental, de sécu-
rité alimentaire et de viabilité à long terme. L’IoT a le potentiel de fournir des
solutions à une variété de préoccupations agricoles traditionnelles, notamment la
réponse à la sécheresse, l’amélioration du rendement, l’irrigation et la gestion des
pesticides.

Systèmes de transport intelligents

Les systèmes de transport intelligents offrent des avancées substantielles en matière
de sécurité, de mobilité, de productivité et de durabilité environnementale des
systèmes de transport. Les microsystèmes de transport spécialisés sont constitués
d’un nombre limité de véhicules coopérant à une tâche spécialisée (par exem-
ple, la récolte où coopèrent moissonneuses-batteuses, charrettes à grains et semi-
remorques) [15]. Une bonne coordination entre ces véhicules permet d’atteindre
un niveau d’efficacité raisonnable dans l’exécution de la tâche.

L’objectif des C-ITS est la connectivité des véhicules afin que les conducteurs
aient une bonne connaissance des conditions de circulation sur la route [16]. Les
C-ITS communiquent à travers deux types de réseaux: le réseau WiFi avec le pro-
tocole 802.11p / G5 [17] qui est principalement basé sur des messages de diffusion
et le réseau cellulaire. Les messages décentralisés de notification environnementale
(DENM) contiennent des informations sur un événement ayant un impact poten-
tiel sur la sécurité routière ou les conditions de circulation (par exemple, travaux
routiers, accidents, pannes de véhicules, etc.).

Détection des anomalies

Les anomalies sont des "modèles dans les données qui ne se conforment pas à une
notion bien définie de comportement normal" [18]. Une discussion est présentée sur
les types d’anomalies, les techniques, les applications et les défis rencontrés dans
la détection des anomalies (par exemple, la malédiction de la dimensionnalité,
la sélection et l’ajustement des hyperparamètres). Le type d’anomalies qui nous
intéresse dans cette thèse sont les anomalies contextuelles.

Plusieurs approches applicables à la détection d’anomalies dans les flux de
données ont été discutées. STORM [19] est un algorithme de distance basé sur le
modèle de la fenêtre glissante. DBOD-DS [20] est basé sur une fonction de densité
de probabilité adaptative. La théorie des valeurs extrêmes est adoptée par SPOT
pour les flux stationnaires et DSPOT pour les flux avec dérive du concept [21],
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[22]. Dans l’environnement de l’Internet des véhicules, SafeDrive utilise un modèle
de graphe d’état pour l’identification des comportements de conduite anormaux.
Notre approche applique le concept de fenêtre glissante dans la détection des
anomalies.

La détection de conditions anormales dans l’environnement agricole a vu l’ ap-
plication de la régression linéaire aux données des capteurs[23] où les données
anormales peuvent indiquer que l’environnement agricole n’est pas propice à la
croissance des cultures. L’apprentissage profond a également été appliqué à la
détection d’obstacles et d’anomalies dans un champ agricole à l’aide de Deep-
Anomaly [24], à la détection de l’occurrence de catastrophes régionales dues au
gel à l’aide de SVM et d’ANNs [25] et à la détection de lectures anormales de
données de capteurs à l’aide de modèles LSTM et ARIMA [26]. Le traitement
d’images a également été appliqué à la détection de la croissance aberrante de la
végétation en utilisant la forêt d’isolement [27]. Un filtre de Kalman et l’algorithme
DBSCAN ont également été utilisés pour détecter les mouvements anormaux des
moissonneuses-batteuses [28].

La détection des anomalies dans les données du trafic routier peut aider à
découvrir des modèles inhabituels dans le trafic, qui peuvent être analysés plus
en détail pour révéler des incidents de circulation. La congestion du trafic et la
gestion des routes sont deux types d’anomalies du trafic [29]. Pour les anomalies
locales du trafic, le réseau routier est divisé en segments indépendants, puis les
anomalies individuelles sont extraites par segment. Dans la catégorie des anoma-
lies de groupe, une anomalie dans un segment de route se propage à d’autres
routes adjacentes et est analysée en considérant les interactions causales entre les
segments de route.

Extraction de données sur les trajectoires

L’exploration de trajectoires peut être considérée comme un processus d’analyse
des traces de mobilité dans le but de découvrir des modèles spatiaux, spatio-
temporels et comportementaux par le biais du regroupement, de la classification,
de la détection d’anomalies et de la détection de lieux intéressants [30]. Le défi
actuel consiste à exploiter ces données pour en extraire des connaissances et des
informations utiles à l’amélioration des niveaux de mobilité [31]. Une caractéris-
tique discriminante commune est la distance entre deux trajectoires ou segments
de sous-trajectoire qui est calculée à l’aide d’une mesure ou d’une métrique de
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distance basée sur le type d’application. C’est l’approche que nous appliquons
dans le calcul de la similarité des modèles de mouvement.

Analyse du profil de vitesse

La vitesse du véhicule et d’autres indicateurs basés sur la vitesse sont des para-
mètres couramment utilisés dans la recherche sur le trafic pour générer des profils
de conduite. L’objectif principal de l’analyse des profils de vitesse est de mieux
comprendre pourquoi les conducteurs réagissent comme ils le font à différentes
conditions de circulation ou de route, et d’identifier les facteurs qui influencent
leur comportement. L’analyse des signaux de vitesse et d’accélération a trouvé
des applications dans la détection des feux de signalisation, des croisements de
rues, des ronds-points [32], des panneaux d’arrêt [33]. [34] et la génération de
cartes routières de haute qualité [35]. En outre, il est possible de détecter en
temps réel les encombrements et les incidents de la circulation routière à l’aide des
données sur la vitesse des véhicules [36].

Liaison Trajectoire-Utilisateur (TUL)

L’établissement d’un lien entre la trajectoire et l’utilisateur est motivé par le fait
que les applications LBSN génèrent un grand nombre de données qui sont générale-
ment dépouillées des identifiants de l’utilisateur afin d’anonymiser les données et
de préserver la vie privée [37]. Les approches d’apprentissage profond sont utilisées
dans l’état de l’art pour traiter les modèles de mobilité sémantique, l’hétérogénéité
et la rareté des données de mobilité lors de la résolution de TUL. Lier ces trajec-
toires aux utilisateurs qui les ont générées peut fournir des informations précieuses
pour les systèmes de recommandation et l’identification de criminels par le biais
de signaux téléphoniques et de check-ins, entre autres applications.

Chapitre 3 : Contexte et méthodes

Ce chapitre est consacré aux définitions des termes communs utilisés dans les trois
chapitres suivants. Il présente également une discussion sur les paramètres et les
mesures de performance qui seront utilisés dans l’évaluation des performances des
différents algorithmes et méthodologies utilisés. Les indicateurs de performance
sont l’aire sous la courbe de la caractéristique opérationnelle du récepteur (AUC-
ROC), l’aire sous la courbe de la précision du rappel (AUCPR) et le score F1. Il
est essentiel d’évaluer avec précision les similitudes des différentes approches afin
de choisir la meilleure. Une discussion sur la structure et les règles de génération
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de la CAM est présentée ainsi que les outils et la procédure utilisée pour générer
des données CAM simulées réalistes.

La simulation d’applications de réseaux ad hoc véhiculaires (VANET) nécessite
la simulation de la communication sans fil entre les véhicules et de la mobilité de
ces derniers. Les simulations ont été effectuées à l’aide du simulateur de réseau
OMNET++ [38], et du simulateur de trafic routier SUMO [39]. Artery V2X
Simulation Framework [40] est utilisé pour intégrer le simulateur de réseau et le
simulateur de trafic routier, ce qui facilite la communication. Cette intégration est
particulièrement importante pour le C-ITS qui met en œuvre des applications de
sécurité et d’efficacité du trafic. de sécurité et d’efficacité du trafic. La simulation
a porté sur la mobilité des véhicules équipés de C-ITS dans la ville de Reims, en
France. La mobilité et les communications entre les véhicules ont été réalisées
de manière à imiter le mouvement réel dans l’environnement C-ITS. Ceci afin de
garantir que les résultats produits soient aussi réalistes que possible.

Chapitre 4 : Algorithme LSCP amélioré pour la détection

des anomalies dans les données IoT

Nous considérons une approche orientée données avec l’objectif de détecter des
anomalies à la volée en utilisant des approches de détection non supervisées pour
la détection d’anomalies contextuelles locales. Nous proposons un détecteur
d’anomalies par ensemble appelé Enhanced Locally Selective Combination in Par-
allel outlier ensembles (ELSCP). ELSCP est adapté au contexte du streaming en
utilisant un système qui convertit les données en un flux et les transmet à ELSCP
en utilisant un modèle de fenêtre de référence qui met en œuvre une technique de
fenêtre glissante. Cette adaptation permet le traitement des données sous forme de
flux, ce qui facilite l’évaluation de notre algorithme dans le contexte du streaming.

Nous étudions la détection d’anomalies sur trois axes: la détection des dom-
mages causés aux cultures pendant la récolte, l’utilisation efficace des moisson-
neuses-batteuses et la détection de situations anormales sur la route. Pour chaque
cas, nous utilisons un ensemble de données pertinentes pour identifier les anoma-
lies. Nous proposons des techniques basées sur des tests d’ hypothèses sur l’ oc-
currence d’un modèle de mouvement anormal pendant la récolte dans le champ
et sur les routes. L’hypothèse principale de notre analyse est que "les instances
normales sont beaucoup plus fréquentes que les anomalies". L’hypothèse clé est
que "des points similaires dans un espace caractéristique ont des scores d’anomalie
similaires".
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Dans l’ensemble de données sur les cultures, notre analyse a montré que 30%
des anomalies détectées pouvaient être directement liées aux dommages causés aux
cultures. Dans le jeu de données sur les moissonneuses-batteuses, notre approche
obtient les meilleurs scores avec une AUC-ROC supérieure de 6,4% à celle de la
deuxième approche COPOD (99,8% contre 93,4%); une AUCPR de 97,2% alors
que les meilleurs scores des autres approches (celui de l’OCSVM) ne sont que
de 38,5%. Il convient également de mentionner que notre méthodologie permet
de détecter efficacement les comportements déviants des moissonneuses-batteuses.
Par conséquent, la détection des anomalies pourrait être intégrée dans le processus
de décision des exploitants agricoles afin d’améliorer l’efficacité de la récolte et la
santé des cultures.

Dans le contexte du C-ITS, nous avons considéré les anomalies qui pourraient
avoir des conséquences telles qu’un accident/incident ou un véhicule immobil-
isé sur la route qui oblige les véhicules sur cette section particulière de la route
à réduire considérablement leur vitesse lorsqu’ils rencontrent le point d’incident.
Nous constatons que ELSCP surpasse toutes les autres techniques, avec des perfor-
mances en AUC-ROC supérieures de 3,64% (89,45% contre 85,81%) et en AUCPR
supérieures de 9,83% (38,41% contre 28,58%) à celles de la deuxième meilleure
technique LSCP. Cette détection pourrait être intégrée dans le processus de déci-
sion des opérateurs routiers afin d’améliorer la sécurité et la fluidité du trafic.

Chapitre 5 : Signatures de données à partir de données IoT

Il est essentiel pour la sécurité routière de comprendre les mécanismes de sélec-
tion de la vitesse des conducteurs et les variables de risque qui influent sur leur
comportement en matière de vitesse. Nous avons envisagé l’analyse des signatures
de vitesse générées par les messages C-ITS dans le but de comprendre l’évolution
du comportement de conduite dans un environnement de conduite naturaliste.
Les données C-ITS sont utilisées pour évaluer la pertinence des limites de vitesse
indiquées sur l’itinéraire considéré.

La génération et l’interprétation des signatures de vitesse sont réalisées en
évaluant les données à l’aide de techniques d’analyse statistique descriptive. Sur
la base de l’analyse de la variation de la vitesse médiane, nous pouvons conclure
que pour la plupart des parties de la route, en amont comme en aval, la politique
de limitation de vitesse est respectée.

En ce qui concerne la plage de vitesse préférée par conducteur, les résultats
montrent que sur la section amont, à l’exception de deux conducteurs, tous les
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autres conducteurs respectent la limite de vitesse dans 80% des cas. La plage de
vitesse la plus préférée est de 11 à 80 km/h. Sur la section aval, à l’exception de
deux conducteurs, tous les autres conducteurs ont dépassé la limite de vitesse à
un moment donné. La majorité des conducteurs dépassant la limite de vitesse, il
pourrait être nécessaire de revoir la limite de vitesse ou d’introduire une limite de
vitesse variable afin d’atténuer le comportement affiché.

Une application possible des signatures de vitesse générées est celle des véhicu-
les autonomes, où elles peuvent être utilisées comme données d’entrée afin de
vérifier si la conduite respecte la vitesse normale ou le comportement naturel
attendu. Les signatures peuvent également être utilisées par les ingénieurs de la
circulation et les planificateurs des transports pour évaluer l’efficacité des limites
de vitesse affichées, de sorte que des ajustements puissent être effectués en fonction
du comportement observé des conducteurs. Cela peut nécessiter une réduction ou
une augmentation de la limite de vitesse actuelle en évaluant la vitesse du 85e
percentile du flux de données sur le trafic.

Chapitre 6 : Liaison des données IoT

Les véhicules d’un réseau de transport intelligent échangent un grand nombre
de messages. Chaque message envoyé est généré avec un identifiant du véhicule
émetteur. Pour respecter la vie privée des utilisateurs, un identifiant n’est conservé
que pendant un intervalle de temps déterminé. Le besoin qui se pose est le suivant
: étant donné que plusieurs identifiants sont attribués à un véhicule, sommes-nous
capables de regrouper les identifiants et de détecter ceux qui appartiennent au
même véhicule ? Nous avons résolu ce problème en enchaînant des trajectoires
anonymes à des véhicules potentiels en considérant la similarité des schémas de
mouvement.

Notre objectif était de relier les identifiants qui se sont produits à la même
date dans un court laps de temps (quelques secondes) afin d’obtenir des trajec-
toires continues dans l’espace et le temps. En outre, pour tester la continuité,
les trajectoires correspondantes devaient se déplacer dans la même direction lors
du changement d’identifiant. Le fait que les trajectoires soient contraintes par
un réseau routier augmente la probabilité de relier les segments de trajectoire à
l’utilisateur générateur.

Sur les 3866 trajectoires, nous n’avons pu relier que 867 paires, soit 22,43%
du nombre total de trajectoires. D’après notre analyse, il est possible de relier les
trajectoires aux utilisateurs générateurs si d’autres attributs distinctifs (comme la
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vitesse, l’angle de cap, l’altitude et la direction de conduite) et les connaissances
de base sur la génération des messages sont pris en compte lors de l’analyse de
similarité. Cependant, l’association complète de tous les segments aux utilisateurs
générateurs est une tâche difficile et pourrait ne pas être possible. Il convient égale-
ment de noter que l’utilisation de pseudonymes comme mesure de confidentialité
et de sécurité s’est avérée être une approche viable puisque nous n’avons pas été
en mesure de briser l’exigence de non-liaison.

Conclusion et perspectives

Conclusion

Dans cette thèse, nous avons abordé le problème de l’analyse des données IoT
en mettant l’accent sur la détection des anomalies dans les flux de données et
l’analyse du comportement des conducteurs. Un examen de l’état de l’art a été
réalisé dans le chapitre 2 où une discussion détaillée sur l’agriculture intelligente,
les STI, la détection d’anomalies, l’exploration de données de trajectoire, l’analyse
du profil de vitesse et les approches de liaison entre utilisateurs de trajectoire a été
présentée. Nous avons apporté des contributions dans les contextes de l’agriculture
intelligente et des C-ITS, en mettant l’accent sur les C-ITS.

De nombreux développements ont été réalisés dans le domaine des systèmes de
détection des anomalies, avec de nombreuses techniques proposées pour résoudre
le problème de l’identification des anomalies. Les domaines d’application de la dé-
tection d’anomalies sont également très variés, ce qui nécessite une solution fiable
et précise. L’apprentissage non supervisé est privilégié pour les applications de la
vie réelle, en particulier pour la détection d’anomalies, car il y a beaucoup de don-
nées sans étiquettes dans ce scénario. Dans le chapitre 4, nous avons proposé un
nouvel algorithme basé sur un détecteur d’anomalies d’ensemble appelé Enhanced
Locally Selective Combination in Parallel outlier ensembles (ELSCP) pour la dé-
tection d’anomalies de flux. Sur cette base, nous avons défini une méthodologie
non supervisée pilotée par les données qui est appliquée dans trois études de cas,
avec l’objectif de détecter les anomalies à la volée.

Dans le premier cas d’étude, nous avons effectué une détection non supervisée
d’anomalies sur des données de cultures. Nous avons étudié le lien entre l’état des
cultures (endommagées ou non) et les anomalies détectées en analysant les données
sur les dommages aux cultures enregistrées par les agriculteurs sur une période de
trois saisons de récolte. Sur la base de nos résultats, il a été possible de relier les
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anomalies extraites de l’analyse multivariée de diverses caractéristiques à l’état de
la culture endommagée à la fin de la récolte. La deuxième étude est consacrée à
la détection d’anomalies dans les flux de données obtenus à partir des traces GPS
des moissonneuses-batteuses collectées pendant la récolte du blé. D’après nos
résultats, notre méthodologie permet de détecter efficacement les comportements
déviants des moissonneuses-batteuses. Les performances obtenues ont été évaluées
par rapport à d’autres approches, et les résultats obtenus sont pertinents (sur
la base de métriques de performance connues) avec la possibilité de sa mise en
œuvre en temps réel pour détecter les anomalies et aider les agriculteurs pendant
la récolte. Par conséquent, la détection des anomalies pourrait être intégrée dans
le processus de décision des exploitants agricoles afin d’améliorer l’efficacité de la
récolte et la santé des cultures.

Dans le troisième cas d’étude, les messages CAM C-ITS recueillis dans le cadre
d’un projet de collaboration entre des opérateurs routiers, des constructeurs au-
tomobiles et des universitaires ont été analysés afin de détecter les anomalies sur
la route. Nous considérons les anomalies qui pourraient avoir des conséquences
telles qu’un accident/incident ou un véhicule bloqué sur la route qui oblige les
véhicules sur cette section particulière de la route à réduire considérablement leur
vitesse lorsqu’ils rencontrent le point d’incident. Nous avons utilisé des approches
en continu car, dans les environnements C-ITS réels, la détection des anomalies
serait mise en œuvre dans les unités routières qui recueillent de nombreux messages
des véhicules à portée. Cela signifie qu’il faudrait traiter les messages à la volée
pour de nombreuses raisons (limitation de la mémoire, temps de réponse, etc.).
D’après nos résultats, ELSCP est capable de détecter les anomalies des CAMs.
Cette détection pourrait être intégrée dans le processus de décision des opérateurs
routiers afin d’améliorer la sécurité et la fluidité du trafic. La détection rapide des
anomalies est essentielle, notamment pour les équipes d’intervention d’urgence, ce
qui permet d’améliorer l’efficacité des opérations de sauvetage.

Dans le chapitre 5, nous avons considéré l’analyse des signatures de vitesse
générées à partir des messages C-ITS dans le but de comprendre l’évolution du
comportement de conduite dans un environnement de conduite naturaliste. Nous
avons montré qu’avec l’application de la segmentation et des statistiques agrégées,
il est possible d’obtenir une meilleure compréhension du comportement général
de conduite et de déduire des informations relatives à l’état de la route et à la
situation du trafic. Avec l’adoption actuelle du C-ITS, il reste un problème de
quantité insuffisante de données pour une analyse plus détaillée des profils de
conduite à un niveau microscopique (niveau de l’itinéraire).
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Dans le chapitre 6, nous avons considéré le problème de liaison de trajec-
toire et l’avons appliqué aux messages générés par les véhicules dans le C-ITS.
D’après notre analyse, il est possible de relier les trajectoires aux utilisateurs qui
les ont générées si d’autres attributs distinctifs (comme la vitesse, l’angle de cap,
l’altitude et la direction de conduite) et les connaissances de base sur la génération
des messages sont pris en compte lors de l’analyse de similarité. Il est également
intéressant de noter que l’utilisation de pseudonymes comme mesure de confiden-
tialité et de sécurité s’est avérée être une approche viable puisque nous n’avons
pas été en mesure de briser l’exigence de non-liaison.

Limites

La première limitation d’ ELSCP concerne l’extraction des points de données
voisins qui constituent la région locale d’une instance de test en utilisant des
mesures de distance appliquées à l’algorithme KNN Ball Tree. Cette approche
pose deux problèmes :

1. Il faut beaucoup de temps pour déterminer les plus proches voisins de l’ in-
stance de test ;

2. Les performances dans un espace multidimensionnel peuvent être affectées,
notamment lorsque de nombreuses caractéristiques ou attributs ne sont pas
pertinents.

Pour remédier à ce problème, la définition de la région locale pourrait être
résolue par l’utilisation de méthodes approximatives rapides [41] ou par le pro-
totypage [42], ce qui peut réduire de manière significative le temps requis pour
établir le domaine local car tous les points de données ne sont pas requis par ces
techniques. La deuxième limite concerne la génération de la pseudo-vérité terrain,
pour laquelle nous avons appliqué une technique de maximisation simple. Cela
pourrait être amélioré en considérant des stratégies exactes, par exemple, avec
l’élagage actif des détecteurs de base [43].

La troisième limite concerne la disponibilité des données du C-ITS. Avec l’adop-
tion actuelle du C-ITS, il reste un problème de quantité insuffisante de données
pour une analyse plus détaillée des profils de conduite à un niveau microscopique
(niveau de la route). Avec les données actuelles, il n’est pas possible d’analyser
efficacement les données pour une analyse horaire ou hebdomadaire du comporte-
ment de conduite sur des routes spécifiques.
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Perspectives

Nos travaux futurs se concentreront sur la calibration des scores aberrants en
introduisant des fonctions de perte dépendantes, car un faux négatif dans les
scénarios d’agriculture intelligente et de C-ITS peut induire des problèmes gênants,
notamment sur la production agricole, l’efficacité des exploitations et la sécurité
routière.

Nous proposons également d’introduire un calibrage automatique des paramè-
tres dans le but d’améliorer les chances de déploiement de l’algorithme pour les
opérateurs d’infrastructures agricoles et routières. Une autre partie critique sera
l’ optimisation du processus afin de gagner en complexité avec des ajustements
fins des règles de décision de l’apprentissage d’ensemble pour améliorer l’efficacité.

La configuration des sous-espaces locaux peut également être améliorée pour
diminuer le temps passé à localiser les plus proches voisins d’une instance de test
en remplaçant la stratégie de recherche kNN par une technique de clustering. Nous
proposons également de développer la méthodologie ELSCP en un outil pouvant
être utilisé pour la détection et l’analyse en temps réel de flux de données.

Dans l’analyse des signatures de vitesse et des profils de conduite, il sera in-
téressant de faire une analyse plus détaillée des données pour identifier les facteurs
causant ou influençant le comportement observé, en particulier sur les points de
pointe. Les messages DENM peuvent également être utilisés pour extraire les
points où des incidents ont été signalés, puis utiliser ces emplacements comme
POI pour la détection des incidents de circulation. En comparant les signatures de
vitesse extraites des segments de route avec les points d’incidents connus provenant
des DENM, il pourrait maintenant être possible de mieux comprendre l’évolution
du comportement de conduite.

Pour résoudre le problème de l’insuffisance des données dans le C-ITS, les
signatures de vitesse générées dans un environnement de conduite naturaliste réel
dans cette étude peuvent être utilisées pour générer des données synthétiques à
partir des caractéristiques apprises des modèles de mouvement des véhicules. Les
signatures peuvent également être appliquées dans les véhicules autonomes où les
signatures peuvent être utilisées comme entrées afin de vérifier si la conduite suit
le comportement de vitesse naturaliste attendu.

Il existe un certain nombre de stratégies de changement de pseudonyme dans
le C-ITS qui affectent la manière dont les identifiants sont changés. Les données
utilisées dans cette étude appliquaient une stratégie round robin. Il serait intéres-
sant d’évaluer la méthodologie de liaison de données développée dans cette thèse
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sur des données provenant d’autres stratégies de changement afin de valider son
efficacité.
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Chapter 1

Introduction

1.1 Context

Internet-of-Things (IoT) automates the execution of data-driven intelligent actions
on connected devices by leveraging essential technologies such as sensor-based au-
tonomous data collection and cloud-based big data analysis. This automation
enables a wide range of practical real-world applications, including smart trans-
portation, smart agriculture, smart cities, and so on. The incorporation of IoT
into everyday life, has resulted in the collection of massive amounts of data. Data
streams are vast, continuous, unbounded sequences of data that arrive at a fast
rate and have a dynamic distribution. Data stream mining is an active research
field that has recently evolved in order to uncover knowledge from the vast vol-
umes of continually generated data. This thesis will make contributions in the
contexts of smart agriculture and C-ITS, with a focus on C-ITS.

IoT in agriculture refers to the use of sensors and other devices to convert
every aspect and operation involved in farming into data. Agriculture has bene-
fited greatly from recent advances in sensor technology, data science, and machine
learning approaches. These innovations are in response to the environmental and
population challenges that our society is facing where large worldwide agriculture
production increases are required to feed a growing population. It is anticipated
that the use of innovative approaches in IoT will contribute to improving agricul-
tural output by 70% by 2050 [1]. As a result, it is vital to analyze generated data
in order to gather information that may aid in decision making and productivity
enhancement.

Cooperative Intelligent Transport Systems (C-ITS) with networked vehicles are
primed to reshape the future of mobility. This transition is facilitated by the flow
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of messages between vehicles (V2V) and between vehicles and transport infrastruc-
ture (V2I). Real-time information on individual vehicles is derived from Cooper-
ative Awareness Messages (CAM). Nonetheless, owing to the concept’s newness,
the impact of C-ITS services on road networks has yet to be completely felt and
evaluated [2].

Traffic incidents are non-recurring events that may cause traffic congestion and
travel time delays. An incident is “an unexpected event that temporarily disrupts
the flow of traffic on a segment of a roadway” [3]. It is important to understand
the frequency of incidents by identifying variations from regular traffic patterns
to reduce the effect and length of incidents. Vehicle crashes, vehicle breakdowns,
debris on the road, and vehicle(s) stopped in the middle of the road are all examples
of road incidents / anomalies. An early detection of such anomalies will reduce
incident risks such as accidents and traffic jam. Most of these incidents can be
traced back to driver behaviour and road conditions. Road users and authorities
benefit from knowing the place, time, and frequency of these road anomalies.

The main aim of C-ITS is to improve safety, comfort, traffic and energy ef-
ficiency. Vehicle speed and other speed based indicators are commonly used pa-
rameters in traffic research for generation of driving profiles [4], [5]. The main
goal for studying speed variation is to gain a better understanding on why drivers
respond in certain ways to road/traffic conditions and to discover factors which
affect their actions. The information acquired from analysis of vehicle speeds can
be useful in identification of black-spots (accident prone locations) and for gaining
a better understanding of travel time. Further, it can be used to evaluate the need
for infrastructure, for example speed bumps, humps and speed cameras on certain
sections of the road.

In this thesis, we address the problem of analyzing IoT data with a focus on
anomaly detection in data streams and driver behaviour analysis. We consider a
data driven approach with the objective of detecting anomalies on the fly using
unsupervised detection approaches for the detection of local contextual anomalies.
We propose an enhancement of an ensemble anomaly detector, Enhanced Locally
Selective Combination in Parallel outlier ensembles (ELSCP). ELSCP is adapted
to the streaming context using a pipeline framework which implements a sliding
window technique. This adaptation enables the processing of data as a stream
which is important in that the performance of our algorithm can be evaluated in
the streaming context.
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Understanding drivers’ speed selection mechanisms and the risk variables im-
pacting their speeding behaviour is critical for road safety. We proposed a seg-
mentation and statistical data analysis approach for analysis of continuous speed
signatures generated within contiguous road segments. We consider the collective
movement of vehicles along a particular road segment and evaluate their aggregate
driving behaviour through analysis of speed signatures.

Trajectory mining entails the analysis of movement traces / trajectories for
extraction of behavioural patterns. To characterize the behavioural and lifestyle
aspects of an entity, an analysis of daily traces is imperative. A privacy principle
is applied in C-ITS where every message sent is assigned an identifier of the trans-
mitting vehicle. This identifier is kept only over a specified time interval thus one
vehicle will have multiple identifiers. To reconstruct the movement of the vehicle
over a long period of time, the identifiers from the consecutive trips must be iden-
tified through a linking process. We propose to solve the data linking problem by
chaining anonymous trajectories to potential vehicles by considering similarity in
movement patterns.

1.2 Contribution

We propose a methodology for detection of anomalies in data streams which has
been applied in different case studies discussed in chapter 4. Our first contribu-
tion on anomaly detection from data streams in presence of obstacles and concept
drift was presented in Nets4Workshop: 15th International Workshop on Commu-
nication Technologies for Vehicles [6]. Work on abnormal behaviour detection of
combine harvesters using an ensemble technique with implementation of sliding
window concept was presented in International Conference on Smart and Sustain-
able Agriculture (SSA’2021) [7]. Additionally, work on detection of anomalies that
can be linked to crop state/health during harvest and those that have an impact
on harvest efficiency was published in Agriculture journal [8]. Work on detection
of anomalies from C-ITS messages using unsupervised ensemble and sliding win-
dow concept was submitted to IEEE Transactions on Intelligent Transportation
Systems [9].

Also considered was the analysis of speed signatures generated from C-ITS
messages with the aim of understanding driving behaviour evolution under a nat-
uralistic driving environment. This work, developed in chapter 5, was presented
in IEEE International Conference on Communications (ICC 2021) [10].
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The last problem of trajectory linking is investigated by chaining trajectories
from C-ITS messages to potential vehicles by considering similarity in movement
patterns. This topic is addressed in chapter 6 and a paper was presented in the
2020 IEEE Global Communications Conference (GLOBECOM 2020) [11].

In summary there are a total of five publications and one submitted paper:

1. Juliet Chebet Moso, Ramzi Boutahala, Brice Leblanc, Hacène Fouchal, Cyril
de Runz, Stéphane Cormier, and John Wandeto. Anomaly Detection on
Roads Using C-ITS Messages. In International Workshop on Communica-
tion Technologies for Vehicles, pages 25–38. Springer, November 2020.

2. Juliet Chebet Moso, Stéphane Cormier, Cyril de Runz, Hacène Fouchal, and
John Mwangi Wandeto. Anomaly Detection on Data Streams for Smart
Agriculture. Agriculture, 11(11), 2021. ISSN 2077-0472. Doi: 10.3390/agri-
culture11111083.

3. Juliet Chebet Moso, Stéphane Cormier, Hacène Fouchal, Cyril de Runz,
and John Mwangi Wandeto. Streaming-based Anomaly Detection in ITS
Messages. Submitted to IEEE Transactions on Intelligent Transportation
Systems, 2021.

4. Juliet Chebet Moso, Stéphane Cormier, Hacène Fouchal, Cyril de Runz, and
John Mwangi Wandeto. Abnormal behavior detection in farming stream
data. In: Boumerdassi S., Ghogho M., Renault É. (eds) International
Conference on Smart and Sustainable Agriculture. SSA 2021.,Communica-
tions in Computer and Information Science, vol 1470, pp. 44-56. Springer,
Cham.June 2021.

5. Juliet Chebet Moso, Stéphane Cormier, Hacène Fouchal, Cyril de Runz,
John M. Wandeto, and Hasnaâ Aniss. Road Speed Signatures from C-ITS
messages. In ICC 2021-IEEE International Conference on Communications,
pages 1–6. IEEE,June 2021.

6. Juliet Chebet Moso, Stéphane Cormier, Hacène Fouchal, Cyril de Runz,
and John Wandeto. Trajectory User Linking in C-ITS Data Analysis. In
GLOBECOM 2020-2020 IEEE Global Communications Conference, pages
1–6. IEEE,December 2020.
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1.3 Outline

This thesis is organized as follows:
Chapter 2 presents the state of the art. It starts with an exposition of smart

agriculture in section 2.2 followed by a review of Intelligent Transportation Sys-
tems in section 2.3. Anomaly detection is presented in section 2.4 where various
approaches and applications are discussed. Section 2.5 presents trajectory data
mining concepts and applications and is followed by section 2.6 on vehicle speed
profile analysis. It ends with section 2.7 with a review of trajectory user linking
approaches.

In chapter 3 the definitions and methods are presented. It presents a discus-
sion on the performance metrics and measures which will be used in performance
evaluation of various algorithms and methodologies used. A discussion on CAM
structure and generation rules is presented together with the simulation tools and
procedure used to generate simulated CAM data.

Chapter 4 is dedicated to anomaly detection where we propose an Enhanced
Locally Selective Combination in Parallel outlier ensembles (ELSCP) technique.
We define an unsupervised data-driven methodology and apply it in three case
studies; detection of crop damage in crop dataset, application to GPS logs of
combine harvesters and application to C-ITS messages. The main focus is the
identification of anomalies that can be linked to crop state/health during harvest,
those that have an impact on harvest efficiency and those impacting road safety
and efficiency. We utilize techniques based on hypothesis testing on the occurrence
of an anomalous movement pattern during in-field harvesting and on the roads.

Chapter 5 discusses the generation and analysis of speed signatures from C-ITS
data through the application of trajectory segmentation and statistical analysis.
The approaches proposed in this chapter use a real dataset of CAMs collected
under the SCOOP@F project [12] with the goal of understanding driving behaviour
evolution in a naturalistic driving environment.

Chapter 6 considers the trajectory-user-linking (TUL) problem and applies it
to messages generated by vehicles in C-ITS environment. The TUL problem is
solved by chaining anonymous trajectories to potential vehicles by considering
similarity in movement patterns.

Chapter 7 will conclude this thesis and propose some future works to the
presented work.





Chapter 2

State of the art

2.1 Introduction

The advent of location-aware technology such as mobile communication and sens-
ing devices in the big data age has digitized the geographic position of people
and things. The properties of generalized data include huge size, rapidly updat-
ing, and high value, has resulted in significant changes in people’s lives, company
operations, and scientific study. This chapter presents a discussion on smart agri-
culture, ITS, anomaly detection techniques and their application in data streams,
agricultural data and road traffic management. It also discusses trajectory mining,
speed profile analysis and trajectory linking approaches.

2.2 Smart Agriculture

Agricultural crop production is dependent on the management of elements such
as soil, water, pests, as well as climate conditions and unforeseen hazards, for
sustainable agricultural output [13]. Pesticide usage in agriculture is a major
issue on a worldwide scale, not just in terms of the environment, but also in
terms of the health and safety of farmers [14]. Precision agriculture is a strategic
approach that collects, processes, and evaluates temporal, spatial, and individual
data, as well as other information, in order to support managerial decisions based
on estimated variability for increased resource utilization efficiency, productivity,
quality, profitability, and stability of agricultural production.

Data-Driven Agriculture, also known as Agriculture 4.0, Digital Farming, or
Smart Farming, was created when telematics and data management were inte-
grated with the previously established notion of Precision Agriculture, boosting
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Figure 2.1: Representation of key technologies used in Smart Agriculture [44]

operational precision [54]. Smart Agriculture refers to the application of digital
methods to innovate, control, and optimize agricultural production systems (as
shown in figure 2.1). Human intervention in agriculture is boosted by digital
transformation, which aids in reducing effort, implementing particular measures,
calibrating the use of chemical products on soil and crops, as well as ensuring and
boosting yield. It also aids in the management of all procedures that permit or
support agricultural output, such as economic and administrative ones.

Smart Agriculture’s goal is to provide solutions that can be used by all farmers,
independent of farm size, location, or industry, while leveraging scale effects and
keeping costs low. The benefits envisioned from the introduction and integration of
technology processes in agriculture are now attributed to increased production and
quality efficiency, cost reduction, input optimization, and environmental impact
minimization. IoT has the potential to produce solutions for a variety of traditional
agricultural concerns, including drought response, yield enhancement, irrigation,
and pesticide management. A summary of the applications, services and sensors
applied in smart agriculture are shown in figure 2.2.
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Figure 2.2: Representation of applications, services, and sensors used in Smart
Agriculture [44]

2.3 Intelligent Transport Systems

Intelligent Transport Systems (ITS) offer substantial advances in transportation
system safety, mobility, productivity and environmental conservation [55]. ITS
makes use of sensing, analysis, control, and communication technologies. This
section highlights the working of Specialized Micro Transportation Systems and
C-ITS which are subsets of ITS.

2.3.1 Specialized Micro Transportation Systems

Specialized Micro Transportation Systems (SMTS) are a subset of ITS which
comprise of a limited number of vehicles cooperating on a specialized job [15].
SMTS vehicles frequently follow predictable and recognized patterns of activity,
which vary depending on the operation at hand. Due to the highly developed
and mechanized state of agriculture, it is quite usual for farmers to use numerous
vehicles in various essential agricultural operations in order to increase efficiency.

Harvesting is perhaps one of the more engaging of these tasks, since it often
involves three types of vehicles: combine harvesters, grain carts, and semi trucks.
During grain harvesting a single combine harvester is sufficient for the majority of
harvesting activities. However, due to its limited storage capacity and transport
speed, a semi truck is generally needed to convey harvested grain from fields to
a grain elevator for storage or sale. Since trucks are not adapted to the uneven
field surfaces, grain carts are engaged to deliver the grain from the harvesters to
the trucks at the edges of the fields. With good coordination between these three
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types of vehicles, a reasonable level of efficiency may be achieved in completing the
work. ITS can be used to enhance SMTS management, monitoring, and efficiency.

In the developing countries most farmers cannot afford farm machinery, with
55% of farmers in Africa having never used a tractor1. When tractor services
are required, farmers engage dealers who offer the services to them at a fee. Hello
Tractor has created a very low-cost tractor monitoring device with computationally
intensive software and tools that can be fitted on any tractor. The smartphone
application offer visibility into the whereabouts of a tractor. Vodafone’s network
serves as the platform for IoT connection. This gadget monitors the tractor’s
condition and communicates any problems that arise [56]. The technology is also
being used by tractor dealers to track engine hours and planned maintenance.

In an effort to mitigate fatalities caused by farm vehicles, standards group ETSI
presented the first tractor connected to a car using IoT technology in France2. To
avoid collisions, the tractor sends a warning message to vehicles at a distance of
1 km using an ETSI-standardized IoT communication protocol. The car follows
the ITS G5 requirements for transmission of CAM and DENM messages and the
802.11p V2V standard, whilst the tractor complies to the oneM2M (One Machine-
To-Machine Partnership Project) protocols designed for IoT.

2.3.2 Cooperative Intelligent Transport Systems

The development of Cooperative Intelligent Transport Systems (C-ITS) focuses on
improving safety, comfort, traffic and energy efficiency. The idea behind C-ITS is
connectivity of vehicles such that drivers have a good knowledge of the prevailing
traffic conditions on the road [16]. C-ITS protocols are standardized by European
Telecommunications Standards Institute (ETSI)3 in Europe, and the European
Union is pushing for the development of C-ITS in Europe. These systems are de-
ployed in collaboration with road operators, automobile manufacturers, telecom
operators, academia, and other industrial providers. The goal of this standardiza-
tion is to lay the groundwork for vehicle communication interoperability.

C-ITS communication is accomplished through two network types: WiFi net-
work utilizing the protocol 802.11p / G5 [17] which is primarily based on the

1Africa’s IoT Uber for tractors: https://www.iotworldtoday.com/2021/07/06/africas-iot-
uber-for-tractors-highlighted-at-evolution-expo/

2World’s first connected tractor:https://www.eenewseurope.com/news/iot-tech-enables-
worlds-first-connected-tractor

3ETSI: https://www.etsi.org/
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broadcast message transmission and cellular network. To transmit and forward
messages, three different types of stations are used:

• The On-Board Units (OBU) that are placed in the vehicles.

• The Road Side Units (RSU) that are infrastructures located along the roads.

• The Central Station (ITS-C) architecture has a global network view and is
utilized to manage cellular communication of events.

C-ITS exploits the use of V2X communication where by, data sharing is done
using Vehicle-to-Vehicle communication (V2V) and Vehicle-to-Infrastructure com-
munication (V2I) [57]. The G5 channel is used for communication between OBUs
in V2V mode. V2V communication enables vehicles to communicate wirelessly
about their speed, position, and heading. V2V communication technology enables
vehicles to send and receive omni-directional signals (up to 10 times per second),
giving them 360-degree “awareness” of other vehicles. Vehicles with the right soft-
ware (or safety apps) can use the messages from nearby vehicles to detect possible
collision hazards as they arise. To warn drivers, the system can provide visual, tac-
tile, and auditory signals or a mix of these alerts. These warnings provide drivers
the chance to take action in order to avoid collisions. These V2V communication
signals may identify threats masked by traffic, topography, or weather and have a
range of more than 300 meters.

V2V communication complements and improves existing collision avoidance
systems that rely on radars and cameras to identify potential collisions. This new
technology not only assists drivers in surviving a collision, but it also assists them
in avoiding a collision. V2V communication technology might be used in a variety
of vehicles, including automobiles, trucks, buses, and motorcycles (as shown in
Figure 2.3) .

The cellular network is utilized by vehicles to convey status information, au-
tomated events, and relay events created by other vehicles that do not handle
cellular connections to the ITS-C during V2I communication. The G5 network
serves the same function, but using the RSU instead (as shown in Figure 2.4).

C-ITS provide real time information on individual vehicles through the use of
CAMs. While DENM contains information related to an event that has potential
impact on road safety or traffic condition (e.g. road works, accidents, vehicle
breakdown etc.) resulting in prompt and active incident prevention. However, the
impact of C-ITS services on road networks is yet to be fully felt and evaluated
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Figure 2.3: Representation of V2V communication

due to the novelty of the concept. This can be attributed to the current low
penetration rate of C-ITS equipped vehicles and their compliance rate [2].

2.4 Anomaly detection

Anomalies are “patterns in data that do not conform to a well-defined notion of
normal behaviour” [18]. Anomalies are also referred to as outliers, novelties, devi-
ations, rarities or interesting events. Anomaly detection is the task of identifying
observations that do not follow the expected pattern. In the presence of labeled
data, anomaly detection can be done using supervised learning techniques as a
binary classification task, with data instances being either normal or abnormal.
However, due to the scarcity of labeled data and the rarity of anomalous events,
this is rarely the case. Since large amounts of unlabeled data are accessible, most
anomaly detection approaches use unsupervised learning techniques [18].
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Figure 2.4: Representation of V2I communication

Environmental surveillance, fraud detection, structural fault detection, intru-
sion detection, and disease diagnosis are only a few of the fields where anomaly
detection methods have been used. Anomalies can be roughly divided into two
categories: (i) incorrect data produced as a result of device failure or system
faults, and (ii) irregular data reflecting events that are anomalous but actually oc-
curred [58]. Surprising data is specific to a specific case and as such, using generic
methods to identify these anomalies is very difficult.

Techniques for detecting anomalies are typically based on finding occurrences
that do not adhere to what is generally considered normal or expected behaviour.
According to [59], the challenge in anomaly detection lies in the fact that:(i) the
line between normal and abnormal behaviour is blurry; (ii) normal behaviour may
evolve into an abnormal depiction in the future; (iii) anomaly detection techniques
are not easily transferable across domains due to differences in applications and
concepts; (iv) presence of noise in the data makes distinction between noise and
true anomalies challenging.

2.4.1 Anomaly types and detection techniques

According to [18] anomalies can be categorized as point anomalies, contextual
anomalies and collective anomalies. Individual data elements that are inconsistent
or unusual in comparison to all other data elements are called point anomalies.
Point anomalies are also known as "outliers" [60]. They are the most fundamental
and well-studied types of anomalies. For Example, a vehicle is fitted with sensors
which record the vehicle speed as it moves on the road. The captured data has
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a regular shape with certain raise/fall in the speed value. At some point, a high
raise or low fall in the data can be considered an abnormal behaviour. Figure 2.5
illustrates the speed evolution of the car over time with a sharp increase and fall
in speed at the fourth time point representing a point anomaly.

Data items that are regarded uncommon or abnormal in a certain context
are known as contextual or conditional anomalies. Anomalies of this nature are
widespread in time series data streams. For example, heavy traffic on a roadway
during business hours is typical, but at midnight it is contextually abnormal traffic
behaviour [45]. Such a circumstance might happen as a result of an accident,
disabled vehicles, poor vision owing to foggy weather, or some other reasons. In
this form of anomaly, we must also examine other dependant factors to determine
if it is an abnormality or regular routine behaviour. When looking at the context,
contextual attributes (such as time of day, season, and location) and behaviour
attributes describe each data element [18]. Figure 2.6 illustrates distribution of
number of cars on the road at different times of the day. Based on the time, the
first two peaks are normal while the third peak is abnormal and is considered a
contextual anomaly.

A collection or sequence of linked data components that are inconsistent with
the entire data set is referred to as a collective or group anomaly. Individual
data pieces in collective anomalies may not be abnormal in and of itself, but may
constitute a group anomaly when coupled with additional elements. In cardiac
behaviour monitoring, a single time interval observation is insufficient to detect
cardiac behaviour, but cumulative signals can indicate normal or abnormal be-
haviour. Figure 2.7 illustrates collective anomaly for heart rate monitoring signal
[46].

Figure 2.5: Illustration of a point anomaly detection
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Figure 2.6: Illustration of Contextual anomaly detection [45]

Figure 2.7: Illustration of Collective anomaly detection [46]

A great deal of research has gone into the development of a wide range of
anomaly detection algorithms which can be broadly categorised as: Classification
based, Nearest Neighbour based, Clustering based, Statistical methods, Informa-
tion Theoretic based, Spectral and Graph based methods [18], [47]. These cate-
gories are summarised in figure 2.8 together with the workflow followed in anomaly
detection.

2.4.1.1 Statistical approaches

Histogram-based Outlier Score (HBOS) [61] is based on the assumption that fea-
tures are independent and so computes outlier scores by creating histograms for
each feature. HBOS does not require data labeling and provides a quick computa-
tion time. Computing time is very important, particularly for C-ITS where there
is a very large amount of data to be analyzed to detect anomalies. Anomalies
are identified by modeling the detailed characteristics of generated histograms of
different traffic features [62] and detecting deviations from the normal road traffic
data. When considering numerical elements two types of histograms can be build:
static bin-width and dynamic bin-width histograms.

The histograms are normalized in such a way that the maximum height of the
bin will be equal to one, this is to ensure an equal weight of each feature. Then,
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Figure 2.8: Anomaly detection workflow and anomaly detection techniques
[47]

Figure 2.9: HBOS workflow for anomaly detection

measured values are reversed such that there is a high score for anomalies and
a low score for normal instances. This is done to reduce the sensitivity to errors
due to floating point precision which results in extremely unbalanced distributions
causing very high scores. The HBOS of every instance x is calculated using the
corresponding height of the bins where the instance is located:

HBOS(x) =
d∑

i=0

log(
1

histi(x)
) (2.1)

where d is the number of features, x is the vector of features, and histi(x) is the
density estimation of each feature instance. The workflow of HBOS is shown in
figure 2.9.
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The scoring part of HBOS generates values which describe the degree of “out-
lierness” of each data instance within the learning dataset. The final step is the
thresholding step which gives the decision label on whether an element is a normal
instance or an anomaly based on a threshold parameter Th. Parameter Th can
be set using statistical deviation measures like standard deviation, Median Abso-
lute Deviation (MAD), quantiles, running a moving average on the data within
a specific window during stream analysis etc. An instance for example, can be
considered an anomaly if it’s score is greater than three times the standard devia-
tion. Another technique is to perform a ranking on the scores such that a top_k
algorithm returns the k most abnormal observations.

Another method for detecting anomalies is to assume that data is created by
a certain probability distribution and classify points with low probability density
as anomalous. This may be accomplished in generalized multivariate analysis
(elliptical distribution) by determining the Mahalanobis distance from each point
to the mean and classifying anomalies as points with distances greater than a
certain threshold. Minimum Covariance Determinant (MCD) [63] is a very reliable
estimate for multivariate anomaly identification due to its resistance to outlying
observations.

Given a multivariate dataset represented by an n × p matrix such that n is
the number of instances and p is the number of features. The first step in the
derivation of the MCD estimator is to compute the determinant of the covariance
matrix. A subsample of h observations (with n/2 ≤ h ≤ n) is obtained using
a sample of n data points, such that the generalized variance computed on h is
minimized. The following location and scatter estimates are defined by the MCD
estimator [64]:

1. µ̂0, the mean of the h observations with the smallest feasible determinant of
the sample covariance matrix.

2. Σ̂0 is the associated covariance matrix multiplied by a consistency factor c0.

The mean and the covariance matrix are applied in the computation of the
robust distance for a point x defined as [64]:

RD(x) = d(x, µ̂MCD, Σ̂MCD) (2.2)

where µ̂MCD is the MCD estimate of location and Σ̂MCD is the MCD covariance
estimate.
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The reasoning behind minimizing the determinant is that the determinant of
a covariance matrix defines how broad the distribution is. As a result, MCD picks
the most closely distributed part of the data. This is done to rule out outliers,
which are more likely to be located further away from the remainder of the data
and thus reduce the masking effect caused by deviating observations [65].

2.4.1.2 Ensemble-based approaches

Isolation Forest (IForest) [66] anomaly detection algorithm is applied in the de-
tection of outliers in high dimensional data. IForest is an unsupervised algorithm
that does not require labelled data and does not presume data distribution. It is
also non-parametric and performs well on normal unbiased data with few noise
points [60]. This makes it suitable for anomaly detection in C-ITS data since the
data is unlabelled with no known distribution apriori. IForest is constructed from
a forest of random distinct isolation trees (itrees). Due to the fact that anomalies
are rare and different from normal instances, a tree can be constructed to isolate
every instance. The first step of IForest involves the construction of a forest of ran-
dom itrees. In an itree data is recursively partitioned such that in each iteration,
an attribute is randomly selected and a split point is randomly chosen between
the minimum and maximum values of the attribute. The recursive partitioning
isolates the instances into nodes with fewer and fewer instances until the points
are isolated into singleton nodes containing one instance.

The second step is the scoring phase where IForest assigns an anomaly score
for every observation in the dataset. A decision is made at each tree on whether
an observation is normal or not. Due to their vulnerability to isolation, anomalies
are isolated closer to the root of the tree, while normal points are located at deeper
ends of the tree. Thus, the distance of the leaf to the root is used as the outlier
score. The final score is achieved by averaging the path lengths of the data points
in the different itrees of the isolation forest. Given an instance x, the anomaly
score is defined as:

c(n) = 2H(n− 1)− (2(n− 1)/n) (2.3)

E(h(x) =
t∑

i=1

hi(x) (2.4)

s(x, n) = 2−
E(h(x))

c(n)
(2.5)
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where E(h(x)) is the average path length of sample x over t itrees. c(n) is the
average path length of unsuccessful search in the Binary Search Tree and H(i) =

ln(i) + γ (γ is Euler’s constant). Based on the anomaly score s, the following
conclusions can be made [67]:

1. If instances return s(x,n) very close to 1, then they are anomalies,

2. If instances have an s(x,n) less than 0.5, then they are considered normal
instances, and

3. If all the instances return an s(x,n) of 0.5, then their is no distinction between
normal and anomalous instances.

Robust Random Cut Forest (RRCF) [68] is an adaptation of Isolation Forest
for stream, that considers concept drift and tree evolution process to define a score
of isolation. The anomaly score is determined by how much a new point alters
the tree structure. As a result, RRCF is less sensitive to sample size. A robust
random cut data structure is used as a synopsis / sketch of the input stream.
RRCF preserves pairwise distances during anomaly detection.

LSCP (Locally Selective Combination in Parallel Outlier Ensembles) [48] is an
unsupervised detector which defines a local region around a test instance using
the consensus of its nearest neighbours in randomly selected feature subspaces.
The implementation of LSCP uses an Average of Maximum strategy where a
homogeneous list of base detectors is fitted to the training data, then a pseudo
ground truth is generated for each instance by selecting the maximum outlier
score. It finds and integrates the finest detectors in the local region. By training
base detectors on the entire dataset and emphasizing data locality during detector
combination, LSCP examines both global and local data relationships. Its strength
is that it can measure the degree of local outliers. The process flow of LSCP is
summarized in figure 2.10.

A collection of k one-dimensional histograms is used by the Lightweight on-
line detector of anomalies (LODA) [69] to identify anomalies. The probability
density of input data projected onto a single projection vector is approximated
by each histogram. Because LODA’s output is proportional to the sample’s neg-
ative log-likelihood, the greater the anomaly value, the less likely the sample is.
This approach may be used to rank features according to their contribution to the
sample’s anomalousness since each histogram with sparse projections in LODA
provides an anomaly score on a randomly generated subspace. LODA works ef-
fectively with data streams and isn’t influenced by missing values.
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Figure 2.10: LSCP flow chart. Steps requiring re-computation are highlighted
in yellow; cached steps are in gray [48]

2.4.1.3 Density-based approaches

Clustering and nearest-neighbour algorithms are examples in this category. These
approaches determine the distance (similarity measure) between two data points
using well-defined distance metrics. Local Outlier Factor (LOF) [70] determines
how far a sample’s density deviates from its neighbours on a local scale. It is
local in the sense that the anomaly score is determined by the object’s isolation
from the surrounding area. The locality is determined by the distance between
the k-nearest neighbours, which is used to estimate the local density. One can
discover outliers (samples that have a much lower density than their neighbours)
by comparing the local density of a sample to the local densities of its neighbours.

The first step in LOF is to calculate the k-distance between a point p and its
k-th neighbour. The distance can be measured in any way, however the Euclidean
distance is commonly employed (Equation 2.6).

d(p, o) =

√√√√ n∑
i=1

(pi − oi)2 (2.6)

Given a dataset D and a positive integer k, the k-Nearest Neighbours of p is any
data point q whose distance to p is not greater than k-distance(p) (Equation 2.7):

Nk−distance(p)(p) = {q ∈ D \ {p}| d(p, q) ≤ k-distance(p)} (2.7)

The reachability distance of data point p with respect to data point o is defined
using Equation 2.8

reach-distk(p, o) = max {k-distance(o), d(p, o)} (2.8)
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Figure 2.11: The reachability distance for different data points p with regard
to o, when k equals 5 [49]

Figure 2.11 illustrates the idea of reachability distance with k = 5. If object p is
far away from object o (e.g., p6 in the illustration), then the reachability distance
between the two is just their actual distance. The real distance is substituted by
the k-distance of o if they are "sufficiently" near (e.g., p1, p2, p3 and p4 ). The
rationale for this is that by doing so, the statistical volatility of d(p, o) for all p’s
near o may be greatly decreased. The smoothing effect’s strength can be adjusted
using the k parameter. The greater the value of k, the closer the reachability
distances for objects in the same neighbourhood.

The next step is the estimation of the local reachability density (lrd), which
is inversely proportional to the average reachability distance of p to its nearest k
neighbours (Equation 2.9).

lrdMinPts(p) = 1

/[∑
o∈NMinPts(p)

reach-distMinPts(p, o)

|NMinPts(p)|

]
(2.9)

The LOF is then computed, which is the average ratio of the lrd of point p to
the lrds of its neighbouring points (Equation 2.10). A point is termed anomalous
if it is much further apart from its neighbours than they are from each other.

LOFMinPts(p) =

∑
o∈NMinPts(p)

lrdMinPts(o)
lrdMinPts(p)

|NMinPts(p)|
(2.10)

The main advantage of LOF is that it can successfully identify local outliers.
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If a point is close to an extremely dense cluster, it is labeled an outlier. However,
because LOF is a ratio, it is difficult to interpret. There is no particular threshold
at which a point is considered an outlier. The detection of an outlier is dependent
on the problem and the user.

Anomaly detection strategies based on clustering presume that abnormal in-
stances are either in sparse and tiny clusters, far from their cluster centroid, or are
not assigned to any cluster at all. Clustering-based Local Outlier Factor (CBLOF)
[71] determines the density region of a dataset using a cluster. First, the dataset
is clustered using k-means. Then a heuristic technique is utilized to categorize the
resulting clusters as large or small. Finally, the outlier score is computed by multi-
plying the distance of each data point from the central data point in its cluster by
the number of data points in the cluster. The distance to the next large cluster is
utilized in the case of a small cluster. CBLOF has the problem of being sensitive
to the k value in k-means clustering. It also has a large number of parameters and
is inefficient at detecting local outliers.

2.4.1.4 Copula-based approach

A copula is defined as “a multivariate cumulative distribution function for which
the marginal probability distribution of each variable is uniform on the interval [0,
1] ” 4. Copula-based approaches are commonly applied in joint probability distri-
bution modeling due to their advantages in describing heavy tails [72]. Copulas are
highly effective in modeling anomalies since they may be thought of as occurring
at the tail of the probability distribution. Copula-Based Outlier Detection (CO-
POD) [73] is a deterministic, non-parametric, fast, and computationally efficient
anomaly detection algorithm. It is known to scale effectively in high-dimensional
datasets. It is also interpretable, with easy display of anomalies. COPOD first
builds an empirical copula, which it then utilizes to forecast the tail probability
of each given data point in order to evaluate its level of “extremeness".

It is a three-stage technique that accepts a d-dimensional input dataset and
generates an outlier score vector with values ranging from 0 to ∞. Stage one
fits the left tail and right tail empirical cumulative distribution functions to each
dimension in a dataset and computes the skewness coefficient. In stage two, the left
tail empirical copula, right tail empirical copula, and skewness-corrected empirical
copula values for each row are computed. Stage three computes anomaly scores
for each row based on the values calculated in stage two. For each row, the sums

4https://en.wikipedia.org/wiki/Copula_(probability_theory)
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of the negative log of the left tail empirical copula, the right tail empirical copula,
and the skewness-corrected empirical copula are computed. The anomaly score is
the greatest value of these sums in the dataset. A higher anomaly score implies
that the data instance has a low probability since it is on the tail of the data
distribution. The outlier scores evaluate a row’s likelihood in comparison to other
instances in the dataset.

2.4.1.5 Linear-based approach

One-Class Support Vector Machine (OCSVM) [74] is an unsupervised learning
algorithm. OCSVMs were developed for situations where only one class is known
and the objective is to detect anything outside of this class (novelty detection)
[75]. It detects the density of the majority class and classifies cases at the density
function’s extremes as outliers. It repeatedly identifies the maximal margin hy-
perplane that optimally separates the training data from the origin by mapping
input data into a high dimensional feature space (through a kernel).

While OCSVM is efficient at constructing decision surfaces from well-behaved
feature vectors, it is poor at modeling variance in big, high-dimensional datasets.
As the size of the train set expands, typical OCSVMs impose considerable memory
needs and are computationally costly at prediction time, requiring space and time
that scales with the number of training points. In realistic, real-world deployments,
where extensive training sets are often required to construct correct models when
fitting complicated decision boundaries, these memory and computing limits might
be prohibitive.

2.4.2 Anomaly detection in Data streams

Streaming data is typically continuously arriving data which is potentially infinite
in nature and can be viewed as a multivariate time series. This boundless sequence
of arriving data creates a scenario where data may evolve with time resulting in
a situation where the most recent data is more relevant in modeling behaviour as
opposed to older data [19]. Stream data model [76] can be defined as:

Z ≡ {z(1), z(2), . . . , z(t), z(t+ 1), . . .} (2.11)

where z(t) ∈ RN for t ≥ 1
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In streaming scenarios where fast processing speed and optimized storage are
a priority, anomaly detection algorithms should be able to identify anomalies effi-
ciently. STream OutlieR Miner (STORM), a distance based algorithm for outlier
detection was proposed in [19]. Based on the sliding window model, two variants
of STORM (exact-STORM and approx-STORM) are proposed to handle outlier
queries. In a scenario where the entire window can be allocated in memory, then
exact-STORM is used to compute the outliers. In a situation where there is lim-
ited memory such that the window cannot fit in the memory, approx-STORM is
used to approximate the outliers by introducing effective approximations with a
statistical guarantee in exact-STORM.

STORM takes into account the temporal properties of a data point in a data
stream. Each data point stays in the sliding window for a certain length of time.
Distance-Based Outlier Detection for Data Streams (DBOD-DS) based on adap-
tive probability density function is proposed in [20]. The probability density func-
tion is computed by weighting the data points such that the most recent values
are assigned the highest weight with the oldest getting the lowest weight. In this
approach there is no assumption on the data distribution, the adjustment of the
probability density function is done on-the-fly, thus it is able to capture concept
drift.

Anomaly detection in time series data considers the detection of peak values
or extreme values where an applicable approach is the use of Peak Over Threshold
(POT) [77]. POT method works by isolating all data values which are extreme
relative to the rest of the data using a threshold and modelling the tail of all
these extreme values by fitting a Generalized Pareto Distribution (GPD). The
extreme value theory was adopted by [21], [22] where they propose two algorithms;
Streaming Peak Over Threshold (SPOT) for stationary streams and Drift SPOT
(DSPOT) for streams with concept drift. In case of a mid-term seasonality, the
local peaks will not be detected by SPOT. To mitigate this challenge DSPOT
[21] is proposed which applies SPOT to relative values instead of absolute values
under the drifting scenario. A moving average approach is applied which uses
the windowing concept. In the Internet of Vehicles environment, [78] propose
SafeDrive, an online, unsupervised and status aware anomaly detection approach
which uses a State Graph model extracted from normal instances as a benchmark
for identifying abnormal driving behaviour. Online detection is done by splitting
a data stream into segments and comparing each segment with the state graph
model. A segment that substantially deviates from the State Graph is marked as
an anomaly.
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2.4.3 Anomaly detection in agricultural data

Detection of anomalous conditions in the farm environment was done in [23] by
application of linear regression to sensor data (soil temperature, soil humidity, soil
electrical conductivity, light intensity, air temperature and air humidity). Anoma-
lous data may indicate that the agricultural environment is not conducive for crop
growth. The slopes of the regression line were used to determine the trends of
each sensor data over time. The outlier detection threshold was set using the
Interquartile range (IQR) technique which was used to calculate the upper and
lower bounds such that any slopes exceeding the set thresholds were classified as
anomalies.

The proposed technique can be improved by combining the environmental data
with real-time images of the farm environment in the anomaly detection process.
Comparing image variations obtained at different time periods or recognizing par-
ticular pest and disease features can also help enhance the accuracy of evaluating
abnormal agricultural conditions. This study differs from ours in that we are con-
sidering anomaly detection at the tail end of production cycle during harvest with
our focus being crop state and harvest efficiency of farm machinery. We also apply
Geometric Mean and F1 measure as thresholds for optimum performance of our
model as apposed to IQR techniques use in this study.

Deep learning techniques have been applied in agriculture with DeepAnomaly
being proposed in [24]. DeepAnomaly uses a combination of background subtrac-
tion and Deep Learning for detection of obstacles and anomalies in an agricultural
field. It takes advantage of the fact that the visual characteristics of an agri-
cultural field are uniform, and obstacles are uncommon. The major goal is to
find things that are far away and severely obscured, as well as unknown object
categories. People, barrels, wells, and a distant home were among the observed
obstacles. At greater distances, DeepAnomaly identifies persons more precisely
and in real time. DeepAnomaly applies image data in anomaly detection and is
suitable for real-time applications running on an embedded GPU. This varies with
our approach in that we analyse numerical time series data with a purpose of de-
veloping an approach that can be applied in general purpose computing systems
where memory and processing power are constrained.

Support Vector Machine (SVM) and Artificial Neural Networks (ANNs) are
applied in [25] in the detection of occurrence of regional frost disasters using tea
frost cases. The study forecasts multiple degrees of hazard for tea tree frost catas-
trophes, so that producers may not only detect frost incidence and non-occurrence
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using the model, but also respond to varying levels of hazard. In [26], two machine
learning models, Autoregressive Integrated Moving Average model (ARIMA) and
Long Short-Term Memory (LSTM), are used to find anomalies in time series data.
The temporal linkages between digital farm sensor data are taken into consider-
ation in the development of a temporal anomaly detection technique. With the
goal of finding abnormal data readings, LSTM and ARIMA models are evaluated
on actual data gathered from deployed agricultural sensors. It was observed that
employing LSTM improves anomaly detection prediction while also necessitating
additional training time. LSTM and ARIMA approaches consider important train-
ing dataset and time for each case of application, therefore they are not always
usable in the case of spatial multivariate data stream with limited computational
power allowed.

Precision agriculture is now grappling with the automated detection of crop
plots with aberrant vegetation growth. Detecting crop patches that have signifi-
cantly different phenological patterns than the rest of the crop might help farmers
and agricultural cooperatives improve their agricultural practices, disease detec-
tion, and fertilizer management. The Isolation forest unsupervised outlier detec-
tion algorithm is used in [27] to detect the most abnormal wheat and rapeseed crop
parcels within a growing season using synthetic aperture radar (SAR) and multi-
spectral images acquired using Sentinel-1 and Sentinel-2 satellites. Heterogeneity
problems, growth anomalies, database inaccuracies, and non-agronomic outliers
were the four major categories of anomalies studied. Experiments revealed that
using both Sentinel-1 and Sentinel-2 characteristics in anomaly detection resulted
in the discovery of more late growth abnormalities and heterogeneous parcels. Our
approach adopts the use of Isolation forest as one of the base detectors in the en-
semble technique with a focus of detecting local and contextual anomalies during
crop harvest.

Yield maps are crucial in farmers’ decision making when it comes to precision
farming, with many farmers having multiyear yield maps [79]. The use of spatial-
trend and temporal-stability maps can give valuable information on the spatial
and temporal variability of a field. In [79], a contour yield map was generated
by interpolating the data into a regular grid using a Kriging [80] linear unbiased
estimator. Classification management maps were generated which highlighted
homogeneous zones that could be targets for investigation, or sections where inputs
might need to be increased or reduced on the basis of yield performance. To
identify spatial and temporal trends, a quantitative analysis of yield data from
four fields over a six-year period was conducted in [81]. Their previous work in [79]
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was modified to separate the temporal effects into two parts: interyear offset (total
variations in yield from one year to the next ) and temporal variance (the degree
of change across time). On the basis of obtained results, interyear variability had
the greatest influence on overall yield, with spatial variability being significant
within each year and cancelling out over time.

Precision farming has benefited from the integration of high-accuracy GPS
technology into farm machinery such as combine harvesters, grain carts, tractors
and trucks. Machine data generated by modern agricultural machinery provides
crucial information that may be used to obtain valuable insights and forecasts
about a farm’s operating plan, present status, and productivity. Additionally,
based on predictive analytics, farm operators will be able to make adaptive logis-
tical decisions. Visualization of GPS data from farm machinery can provide vital
information on operational status and efficiency of the machine. As an example,
figure 2.12 presents the movement trajectory of a tractor as it worked in a citrus
field and also the path followed to and from the field. From the image, it is clear
that a row was skipped during the working of the tractor which can be detrimental
to plant growth especially during spraying and fertilizer application.

A Kalman filter and the DBSCAN algorithm were used to detect abnormal
activity movement of combine harvesters in [28]. The easting and northing co-
ordinates from GPS logs are iteratively applied to a Kalman filter based on a
constant velocity dynamical model. The amount of divergence of the filter esti-
mations from the actual data is calculated using the Kalman filter residual. The
Kalman filter residual is a measure of the smoothness of the combine harvester
motion, with a greater residual value indicating a rapid shift in motion. The DB-
SCAN algorithm method is then applied to the engine load, vehicle speed, and
calculated Kalman filter residual, which creates clusters indicative of the com-
bine harvester’s activity. It was feasible to identify clusters for uniform motion
on the road, stationary spots, and nonuniform movements based on the findings.
Our approach focuses on in-field harvest efficiency with special emphasis on local
contextual anomalies which differ from the activity detection in this study.

2.4.4 Road traffic anomaly detection

Road traffic data anomaly detection can aid in discovery of unusual patterns in
traffic which can be analysed further to reveal traffic incidents. Most of the current
research focus on traffic incidents caused by short term events like protests, acci-
dents, sporting events, celebrations, vehicle breakdowns etc. [82], [83]. Short term
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Figure 2.12: Movement trajectory of a tractor in a citrus grove [50]

anomalous events generally resolve within a short time frame. There can also be
long term anomalies caused by things like establishment of a mall which attracts
a huge number of people resulting in increased volumes on the routes leading to
the mall [84]. These long term anomalies generally do not resolve automatically
unless urban planning measures are instituted to mitigate their impact.

Traffic congestion and road management are two types of traffic anomalies [29].
Short-term traffic congestion anomalies can last anywhere from a few minutes to
several hours. They usually cause a reduction in traffic speed or an increase in
traffic volume on the affected roadways. Anomalies in road management are long-
term and difficult to resolve. Analysis of traffic anomalies can be carried out by
considering the local traffic anomalies or group traffic anomalies. For local traffic
anomalies, the road network is partitioned into independent segments, then indi-
vidual anomalies are extracted per segment. Key features used include attributes
like vehicle speed which is extracted from the independent segments. It is then
applied to detection algorithms (e.g. clustering based, statistical methods, traffic
flow models etc.) to extract traffic anomalies. In the group anomaly category, an
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anomaly in one road segment propagates to other adjacent roads and is analyzed
by considering the causal interactions among road segments.

In [3] incident detection is done using a real dataset of GPS data from vehicle
traces. The authors divide the road network into segments based on the road
type, date, time and prevailing weather conditions. Each road segment is assigned
a normal average speed range e.g. 80-120 km/h for a motorway type on weekday’s
peak time. The segments whose average traveling speed is considerably lower
than the assigned normal speed are considered abnormal and are extracted. The
anomalous segments are further divided into smaller segments so as to isolate the
potential incident area. A segment with an incident causing a blockage will have
the average speed of the segment in front of it being higher with fewer vehicles.
They also consider the behaviour of individual vehicles from the anomalous road
segments where they identify vehicles with significantly lower speed than the sub-
segment current average speed, stopped vehicles and those moving in a different
direction to the traffic flow. The challenge with this approach is that the seg-
mentation process is affected by the accuracy of polygonal line coordinates. Also
the accuracy range of GPS affects the distinction of incidence from normal traffic
congestion.

Long-term traffic anomaly detection (LoTAD) is proposed in [84] where the
main aim is to identify long term anomalous traffic regions in urban cities. In this
approach, the road network is partitioned into segments based on bus line data and
a real bus trajectory dataset is also segmented based on time slots into temporal
and spatial segments (TS-segments) which depict city wide traffic situation. Two
trajectory features are extracted, average velocity which defines the traffic condi-
tion and average stop time which defines the travel demand. A computation of
an anomaly index for TS-segments is done to identify anomalous segments in each
bus line which are then consolidated to form anomalous regions. The information
extracted from the anomalous regions can be used to offer recommendations for
future urban traffic planning.

In [85] Filter-Discovery-Match (FDM) technique is proposed which uses speed
patterns to identify incident scenes by partitioning a road network into segments.
Speed vectors are generated for consecutive sequences of road segments traveled
by a vehicle based on average speed. Real incident data is used to identify in-
cident sections of the road from where incident speed vectors are extracted from
vehicles which passed through these sections at the time of the incident. Normal
speed vectors are extracted from the road segments by averaging the speed of the
vehicles which passed the segments at a specific time frame and were not affected
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by the traffic incident. Candidate speed patterns are extracted by computing the
speed difference between incident speed vectors and normal speed vector for each
segment. These candidate patterns are then clustered using K-means algorithm.
Extensive experiments with real taxi data and simulated data revealed that FDM
yielded a lower mean time-to-detect (MTTD) than the compared existing tech-
niques.

2.5 Trajectory data mining

According to Liu, Wang and Qu cited in [30], trajectory mining can be viewed as
a process of analyzing mobility traces with the aim of discovering spatial, spatial-
temporal and behavioural patterns through clustering, classification, anomaly de-
tection, and interesting location detection. Trajectory data mining can also be
categorized into the following phases [86]: (a) pre-processing (trajectory compres-
sion, stay-point detection, trajectory segmentation and map matching), (b) data
management (indexing and storing the data for efficient retrieval) and (c) pat-
tern mining (clustering, classifying, and detecting outliers). The key driving force
in trajectory data analysis can be “economic (logistical optimization, customer
behaviour analysis, targeted advertising), scientific (animal behaviour analysis,
healthcare), administrative (urban planning, criminal investigation), or private”
[87]. The present challenge is how to exploit these data to extract useful knowledge
and information for improvement of mobility levels [31].

In order to gain useful knowledge from trajectories, the raw points need to be
enriched with semantic features, which is essentially a challenging task. One tech-
nique for solving this problem is to use experts to annotate the semantic features
on the raw trajectories or to let the users attach semantic labels to their trajecto-
ries. Another approach is to associate points of interest (POIs) with the location
information such that the POIs become the semantic labels [86], [88]. Semantically
enriching a trajectory with background information makes querying and analysis
simpler and enhances pattern identification [89]. This in turn facilitates behaviour
analysis of moving entities. Semantic trajectories can be applied in context-aware
computing, trip recommender systems and life experience sharing [86].

In extraction of semantic patterns, the purpose of visits to a location and
the time when the particular pattern occurred are important aspects to consider.
However, it is challenging to identify the reason for visiting a region due to the
fact that the region can cover multiple POIs and most of the time the POIs are
not captured as attributes of the trajectory. Also, moving objects generate a lot
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of redundant highly sampled data over a long period of time, as a result of the low
cost of storage and advances in battery technology. The high sampling-rates over
a long period of time is an effective method to increase the probability of capturing
more patterns during pattern mining. However, making one-by-one comparisons
of the un-simplified raw trajectories is practically impossible and computational
intensive. To mitigate this challenge, compression and pruning techniques can be
employed during trajectory data mining [90].

Trajectory classification is a process of identifying the class of a moving ob-
ject based on its movement path. The goal can be to identify a type of vessel,
the transportation mode, type of animal or a specific user based on their move-
ment patterns [91]. The key input to a trajectory classification task is a sequence
of spatio-temporal points. The main classification process follows three stages
[86]: (a) Trajectory segmentation, (b) Feature extraction from the segments, and
(c) Building of the classification model (e.g. Dynamic Bayesian Network (DBN),
Hidden Markov Model (HMM), and Conditional Random Field (CRF) which con-
sider information from local points/segments and the sequential patterns between
contiguous points/segments).

Trajectory segmentation splits a sequence of data points into a series of sub-
sequences comprising of homogeneous points based on some defined criteria. A
criteria can be derived from the attributes of the trajectory. For example, speed
can be used to segment a trajectory by setting a threshold for the difference be-
tween the minimum and maximum speed within each sub-sequence. We can also
set a threshold for the standard deviation of speed within each sub-sequence. Seg-
mentation of trajectories using spatial density and temporal criteria is considered
a cluster-based segmentation problem [92]. A common application of cluster-based
segmentation is the detection of stop/move patterns [93],[94]. Segmentation meth-
ods can be based on time interval, shape of trajectory and semantic meaning of
points (stay point based).

When classifying trajectories, clustering can be performed by assigning similar
trajectories to groups (clusters) such that the inter-class similarity is low and
the intra-class similarity is high. Clustering facilitates the extraction of collective
movement characteristics of objects resulting in behaviour prediction which is used
for decision support in location recommendation, destination prediction, weather
forecast, urban planning and market research [95]. The current focus of trajectory
clustering research is finding appropriate features for trajectory representation,
similarity measures and development of algorithms for spatial data clustering [96].
The main challenge is how to identify relevant features that distinguish the class
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of a single point, trajectory segment or the whole trajectory and how to select
the most discriminate features to be used in building the classification model [97].
A common discriminant feature is the distance between two trajectories or sub-
trajectory segments which is computed using a distance measure or metric based
on the type of application.

Trajectory similarity encompasses the geometric patterns of moving objects
as well as the semantic generalizations derived from the raw trajectories. Several
works in literature have considered the geometric or sequential features of trajec-
tories when analyzing user similarity. Similarity among trajectories is often mea-
sured in terms of the co-location frequency (feature-based representations), which
is the number of times two moving objects appear spatially close to one another.
Other approaches for measuring similarity include subsequence similarity metrics
such as the length of the Longest common subsequence(LCSS) [98], Edit Dis-
tance on Real Sequences (EDR) [99], Common Visit Time Interval (CVTI) [100],
Maximal Semantic Trajectory Pattern (MSTP) [101], Multidimensional Similarity
Measure (MSM) [102], and Stops and Moves Similarity Measure (SMSM) [103].

LCSS reduces the impact of noisy data by defining distance and matching
thresholds. Two points match when their distance is less than a given threshold
in all dimensions. However, LCSS ignores possible gaps in sequences, which, for
certain problems, results in the same similarity value for different pairs of trajecto-
ries. EDR uses an edit distance measure to compute similarity between elements
where a match considers all dimensions. Penalties are assigned according to the
length of the gaps between two matched sub-sequences resulting in more accurate
results than LCSS. CVTI integrates the semantic dimension of stops with tempo-
ral dimension. It does not allow heterogeneous data such as stops and moves to
be modeled and measured together.

MSTP measures the similarity between two semantic trajectory patterns by
considering the frequency at which stops are visited. However, it does not handle
multiple data dimensions and does not consider moves between stops. In MSM the
similarity score is built upon the matching scores of all pairs of elements that have
at least one matching dimension. Partial similarity is assigned according to the
number of dimensions in which elements match. It allows definition of different
weights for every dimension. It however, ignores the order of stops and does not
consider moves. It may assign a high similarity score even if two trajectories are
only similar for a small portion of their length. SMSM considers both stops and
moves within the trajectory and performs partial dimension matching and partial
ordering of stops through assignment of weights. However, estimation of weights
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may be challenging for users.
Trajectory data have diverse formats which are unique to application require-

ments; therefore, different mining techniques and similarity measures are appli-
cable based on the scenario being modeled. When looking at the applicability of
similarity measures based on trajectory dimensions, LCSS and EDR require all
elements to match across all dimensions, while MSM considers matching pairs in
a single dimension. In scenarios where the trajectory data contains outliers LCSS,
EDR, MSM and SMSM can be applied since they are robust to noise. When deal-
ing with semantic trajectories MSM and SMSM are good options though, LCSS
and EDR can be extended for semantic trajectory mining. When considering
applications that use GPS trajectories annotated with stops only or trajectories
extracted from social media, the best measure is MSM since it handles sparse
data. MSM is particularly useful when one wants to find users who visited the
same place at similar times without considering the order of visits. When order of
visits is important, SMSM is the most appropriate since it considers the order of
the stops. SMSM is also applicable in situations where one wants to extract the
most similar paths or most popular routes between stops.

2.6 Speed profile analysis

Vehicle speed and other speed based indicators are commonly used parameters
in traffic research for generation of driving profiles. Continuous speed data can
be analyzed to reveal speed variation patterns over a particular length of road,
acceleration behaviour and generation of total travel time. Based on speed data
collected over a relative length of time and distance, information on individual
driver behaviour can be extract from analysis of data for a particular vehicle.
The research interest may also be on road infrastructure, where the aim is to
extract behaviour profiles of road users at intersections, roundabouts, speed humps
etc. In this kind of scenario, collective analysis of data from all the vehicles
passing through these infrastructure sections will provide a better understanding
of movement behaviour.

The primary purpose of analyzing speed profiles is to obtain a better under-
standing of why drivers react in certain ways to different road/traffic conditions,
as well as to identify factors that influence their behaviour. A key feature is the
speed of the vehicle, which has a direct consequence on safety, productivity and
the magnitude of environmental impact on the traffic ecosystem. Although nu-
merous factors impact collision risk, speed is obviously one of them, with higher
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speed being connected with a greater frequency of crashes. When a critical situ-
ation occurs, speed affects safety by providing road users less time to react and
narrower margins for mistakes [104].

According to [5], speed can be analyzed in three different ways: spot mea-
surements using radar or loop detector, speed profile as a function of time (time-
speed profile) or speed profile as a function of space (space-speed profile). The
space-speed profiles consider speed against the vehicles position (i.e. speed versus
distance traveled from an initial point), and is quite useful in driver behaviour
analysis. Space-speed profiles have been applied in the study of driver behaviour
in presence of traffic calming measures (speed humps, cushions and chicanes) [105],
and at signalized intersections [106].

In [32], outlier detection and machine learning algorithms were used to detect
traffic lights, street crossings and roundabouts by analyzing speed and accelera-
tion signals estimated from GPS data. The proposed techniques gave very good
results for street crossings and roundabouts. However, for traffic signal detection,
lower precision and recall scores were observed across all classification algorithms.
A possible extension to this study on infrastructure detection would be to do col-
lective analysis of the data from all vehicles which traveled along a particular road
section.

In [107] vehicle speed profiles are used to detect traffic lights using classification
techniques. Three methods were used: use of raw speed measurements; use of
image recognition techniques; and use of functional data analysis. A comparative
analysis of the derived feature approaches shows that functional description of
speed profiles with wavelet transformation outperforms the other two approaches.
They also show that Random Forests yield an accurate detection of traffic signals,
irrespective of the selected feature extraction technique, while keeping a very low
confusion rate in stop signs detection.

Under normal driving, vehicle speed reduces to zero or close to zero as a vehicle
approaches a stop sign and then picks up after that. This behaviour at stop signs is
exploited in [33] where they propose a clustering based stop sign detection method
using speed profiles. The deceleration followed by acceleration at stop signs is also
used in [34] as a characteristic to detect stop signs from analysis of data generated
by on-board car sensors and mobile phone inertial sensors. Extraction of road
network properties (intersections and traffic rules) from GPS data was used in
[35] to produce high-quality routable maps. Further, it is possible to detect road
traffic congestion and incidents in real time using vehicle speed data [36].

In the study of driver profiles, unsupervised machine learning techniques were
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applied to a real dataset in [108]. They extracted driving profiles through clus-
tering and obtained communication latency within the globally acceptable range
for road safety. Vehicle heading angles were also used in [109] to detected driver
profiles within the neighbourhood of Points of Interest (e.g. traffic lights, yield
signs, toll zones etc).

In [110], the impact of penetration rate of Dedicated Short Range Communica-
tion (DSRC)/ 802.11p and Lane Changing Advisory (LCA) application is studied
with a focus of improving travel delay and traffic fluidity. Through simulation,
multiple communication densities and vehicle velocities are applied in the evalua-
tion of the impact of different penetration rates on travel speed and traffic fluidity.
Their findings show that a 10 percent penetration rate of DSRC is appropriate for
LCA to be beneficial for drivers at medium road densities. It is worth noting that
V2V communication has an impact on the application efficiency and subsequently
on driver behaviour.

2.7 Trajectory-User Linking (TUL)

Trajectory-User Linking is a recent area of research in location based social net-
work applications (LBSNs) [37]. It is motivated by the fact that LBSN applications
generate a lot of data which are usually stripped of the user identifiers as a way
of anonymizing the data and preserving privacy. On the other hand, linking these
trajectories to the users who generated them can provide invaluable information
for recommendation systems and identification of criminals through phone signals
and check-ins among other applications. Solving TUL is a challenging task due
to the large number of user classes and the sparsity of data. A Recurrent Neu-
ral Networks (RNN) based semi-supervised learning model, called TULER (TUL
via Embedding and RNN) is proposed in [37] which learns the semantic mobility
patterns of spatio-temporal data by correlating trajectories to the users who gen-
erated them. TULER is designed to identify the dependencies inherent in check-in
data and infer hidden patterns of users.

Another semi-supervised learning framework, TULVAE (TUL via Variational
AutoEncoder) is proposed in [111] which learns human mobility in a neural gener-
ative architecture with stochastic latent variables that span hidden states in RNN.
It considers the fact that human trajectories especially in geo-tagged social me-
dia are sparse with high-dimensionality and may contain embedded hierarchical
semantic structures. TULVAE handles the data sparsity problem by analyzing
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large volumes of unlabeled data which is a source of useful knowledge and unique
individual mobility patterns.

While considering the heterogeneity of mobility data due to the growing num-
ber of location based services and the need for a deep understanding of user be-
haviour across multiple services, DPLink [112] is proposed. DPLink is an end-to-
end deep learning based framework for performing user identity linkage task on
heterogeneous mobility data collected from different services with different prop-
erties. It is made up of a feature extractor including a location encoder and a
trajectory encoder to extract representative features from the trajectory and a
comparator to compare and decide whether to link two trajectories as the same
user. A multi-modal embedding network and a co-attention mechanism in DPLink
handle the low-quality problem of mobility data.

2.8 Discussion

The world’s population is continually increasing, necessitating a significant in-
crease in food production. Smart Agriculture tackles agricultural production dif-
ficulties in terms of efficiency, environmental impact, food security, and long-term
viability. Various approaches and applications have been discussed on how tech-
nology is changing the agriculture and transportation landscape.

Anomaly detection was discussed with a highlight of the anomaly types, tech-
niques, applications and challenges encountered in anomaly detection. The pre-
sented techniques have drawbacks, for example, some suffer from the curse of
dimensionality and are limited to low-dimensional data. Others require selec-
tion and tweaking of hyperparameters (for example, the number of clusters for
clustering-based models and individual classifier selections for ensemble models).
The selection of hyperparameters is sometimes subjective, resulting in varying
results.

The anomaly types of interest in this thesis are contextual, and will be inves-
tigated further in the agriculture and transportation domains. An unsupervised
ensemble technique will be developed to handle multivariate anomaly detection
with application of statistical, density-based and tree-based techniques. The idea
will be to apply non-parametric techniques so as to minimize the impact of hy-
perparameters selection.

Trajectory mining was also discussed highlighting the various approaches used
to extract knowledge from movement data. Concepts on speed profile analysis were
presented highlighting the techniques, features and applications of speed profiles.
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A discussion on techniques for linking trajectories to the users who generated
them was also presented. Trajectory segmentation and similarity measures are
particularly interesting in this thesis and will be applied in driver behaviour anal-
ysis. Trajectory segmentation will be applied in generation of speed signatures (in
chapter 5) with similarity measures and movement pattern analysis being applied
in generation of continuous trajectories through data linking (in chapter 6).

Based on this state of the art, our contributions will propose solutions to
anomaly detection, trajectory signature and trajectory linking. Our solutions and
their evaluation are based on tools and methods presented in the next chapter.





Chapter 3

Background and methods

3.1 Introduction

This chapter is dedicated to definitions of common terms used in the succeed-
ing three chapters. It also presents a discussion on the performance metrics and
measures which will be used in performance evaluation of various algorithms and
methodologies used. A discussion on CAM structure and generation rules is pre-
sented together with the simulation tools and procedure used to generate simulated
CAM data.

3.2 Definitions

Definition 3.1: GPS log : Each GPS log li is defined by < cid, t, x, y, s, b, a >

where:

• cid is the combine harvester identifier,

• t is the timestamp of the GPS log,

• x is the longitude of the combine ck at time t,

• y is the latitude of ck at time t,

• s is the speed of ck at time t in miles/hour,

• b is the bearing of ck at time t in degrees

• a is the accuracy of the captured GPS location of ck at time t

39
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Definition 3.2: Combine Trajectory : A raw trajectory consists of time-
ordered sequence of n GPS logs of a specific combine harvester such that T =

[p1, p2, . . . , pn].
Definition 3.3: Message: Each CAMmessagemi is defined by< vid, t, x, y, s, h >

where:

• vid is the vehicle identifier,

• t is the timestamp of the message,

• x is the longitude of the vehicle vk at time t,

• y is the latitude of vk at time t,

• s is the speed of vk at time t in metres/second,

• h is the heading of vk at time t in degrees

Definition 3.4: Vehicle Trajectory : A trajectory consists of a sequence of time
ordered n messages belonging to a specific vehicle such that Tk =< m1,m2, . . . ,mn >

In this thesis a trajectory is the set of all messages uniquely identified by a
single identifier. Another important notion is that of a sub-trajectory. A sub-
trajectory is a sequence of consecutive messages that is included in a trajectory.

Definition 3.5: Sub-Trajectory T i
k is a sub-trajectory of Tk if and only if :

• T i
k is a trajectory: T i

k = 〈mi1 , ...,mip〉

• ∀mij ∈ T i
k,mij ∈ Tk

• All consecutive messages in T i
k are also consecutive in Tk, i.e. there does not

exist a message of Tk situated between messages of T i
k that does not belong

to T i
k:

@mj ∈ Tk and mj /∈ T i
k with

Rank(Tk,mi1) ≤ Rank(Tk,mj) ≤ Rank(Tk,mip)

3.3 Performance indicators

Anomaly detection research is primarily concerned with the development of new
methods and the computational improvement of existing approaches. However,
it is critical not to overlook the significance of meaningfully analyzing the perfor-
mance of existing approaches. Furthermore, it is critical to accurately evaluate
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and assess the similarities of different approaches in order to eventually pick the
best approach. Anomaly detection is an issue that is intrinsically imbalanced.
As a result, the class imbalance problem should be included in the assessment
measures of anomaly detection techniques.

The balance between false positives and false negatives in anomaly detection
tasks is determined by the application case. False negatives (when no anomaly
is discovered while one exists) are usually penalized far more severely than false
positives (a false warning). We use Receiver Operating Characteristic (ROC)
curves (that is, the true positive rate as a function of the false positive rate)
to allow a complete evaluation that is independent of these application-specific
trade-offs.

In order to evaluate the performance of the different approaches, we use the
Area Under the Curve of the Receiver Operating Characteristic (AUC-ROC) [113]
and the Area Under the Curve of Precision-Recall (AUCPR) [114]. Both indicators
are based on the concepts of:

• True Positive (TP): True Positives are the correctly identified anomalies.

• False Positive (FP): False positive are incorrectly identified normal data.

• True Negative (TN): True negative are correctly identified normal data.

• False Negative (FN): False negative are incorrectly rejected anomalies.

The True Positive Rate (TPR), or Recall, is:

TPR =
TP

TP + FN
.

The False Positive Rate (FPR) is:

FPR =
FP

FP + TN
.

AUC-ROC receiver operating characteristics are TPR and FPR. The higher the
AUC-ROC, the better the detection. AUC-ROC is the most popular evaluation
measure for unsupervised outlier detection methods [115].

AUCPR uses Precision and Recall. Precision is the fraction of retrieved in-
stances that are relevant [116]. Recall or Sensitivity is the ability of a model to
find all the relevant cases within a dataset.

Precision =
TP

TP + FP
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Recall =
TP

TP + FN

The AUCPR baseline is equivalent to the fraction of positives [117]:

AUCPR− baseline =
TP

TP + FP + FN + TN

The F1 score (F Measure) is the weighted average of Precision and Recall and
considers both precision (P) and recall (R) rates. It balances the information
provided by precision, which indicates how accurate the model is for correctly
categorizing the observations, and recall, which determines how resilient it is, a
quality that is obtained when a sufficient number of cases are not missed. The
metric is computed as follows:

F1 = 2× P ×R
P +R

AUCPR is a very robust assessment measure that works well for a wide range
of classification tasks. It is particularly useful when dealing with imbalanced data,
when the minority class is more significant, like in anomaly detection. Therefore,
for the purpose of this study, we evaluate the performance of anomaly detection
algorithms using these indicators.

3.4 CAM data generation

Cooperative awareness in road traffic implies that road users and roadside infras-
tructure are aware of each other’s position, dynamics, and characteristics. Road
users include all types of road vehicles, such as automobiles, trucks, motorbikes,
bicycles, and even pedestrians, while roadside infrastructure are road signs, traf-
fic signals, fences and gates. The information to be exchanged for cooperative
awareness is contained in the Cooperative Awareness Message (CAM), which is
broadcast periodically. A CAM contains information on the originating vehicle’s
status and attributes. The status information comprises time, position, motion
state, activated systems, and so on, while the attribute information includes di-
mensions, vehicle type, and role in road traffic, among other things.

A CAM is made up of an ITS PDU (Packet Data Unit) header and numerous
containers (figure 3.1) that organize the data fields based on the sender’s function
and the frequency with which they appear in the message. The protocol version,
message type, and sender address are carried by the ITS PDU header; the basic
container contains the station type and position. The high-frequency container
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Figure 3.1: CAM structure (ETSI EN 302 637-2) [51]

holds mostly highly dynamic data (e.g., vehicle heading, speed, and acceleration)
and is transmitted in every CAM. The low-frequency container contains data that
has less safety implications (e.g., vehicle role, path history). The special vehicle
containers are optionally included if they are required for the sender’s function,
such as public transportation, dangerous goods, road maintenance, or rescue. The
container idea guarantees a flexible message format that can be tailored to the
demands of the transmitting and receiving vehicles while reducing the load on the
wireless channel [52].

CAM transmission is activated when a vehicle’s engine is running. The CAM
generation rate as defined in ETSI EN 302 637-2 standard [51] varies between the
lower and upper limits of the CAM period TMin = 100 ms and TMax = 1000 ms
respectively (corresponding to a CAM rate of 1 to 10 in 1 second). This limits
are controlled by vehicle dynamics, application, and wireless channel congestion
state. A CAM is created if the vehicle dynamics exceed the preset criteria for
heading, movement, and acceleration as highlighted in condition one of the CAM
generation triggering conditions defined in ETSI EN 302 637-2 standard:

1. The time elapsed since the last CAM generation is equal to or greater than
TDCC , as applicable, and one of the following ITS Station dynamics related
conditions is given:

• If the absolute difference between the current heading value of the ve-
hicle and the heading value included in the last transmitted CAM by
the same vehicle exceeds 4°;

• If the distance between the current position of the vehicle and the
position included in the last transmitted CAM by the same vehicle
exceeds 4 meters;
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• If the absolute difference between the current speed of the vehicle and
the speed included in the last transmitted CAM by the same vehicle
exceeds 0.5 m/s.

2. The time elapsed since the last CAM generation is equal to or greater than
TAPP and, in the case of ITS-G5, is also equal to or greater than TDCC .

The second condition restricts the minimum and maximum time periods be-
tween two CAMs based on the needs of Decentralized Congestion Control (DCC)
and the applications to TDCC and TAPP , respectively. If the load on the wireless
channel is high, the minimum time period is increased, while the application is
able to decrease the maximum time period if required based on the safety sit-
uation. A low-frequency container and special vehicle container are included in
the transmitted CAM if at least 500 ms have passed since the last CAM gener-
ation. Figure 3.2 summarizes the rules for CAM generation as specified in the
ETSI EN 302 637-2 standard. To guarantee message integrity and authenticity,
CAMs include an electronic signature and the relevant certificate. Elliptic Curve
Digital Signature Algorithm (ECDSA), which uses elliptic-curve cryptography, is

Figure 3.2: CAM generation rules (ETSI EN 302 637-2) [52]
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selected as the signature algorithm. The recipient of the CAM can then crypto-
graphically validate the message and confirm its temporal validity. The impact
of cryptographic data signing is that the data’s existence is non-disputable [118].
This means that transmitted CAMs are non-disputable.

3.4.1 Simulation software

The simulation of Vehicular Ad-hoc Network (VANET) applications requires the
simulation of both the wireless communication between the vehicles and the mo-
bility of the vehicles. Simulations were carried out using the OMNET++ network
simulator [38], and SUMO road traffic simulator [39]. Artery V2X Simulation
Framework [40] is used to integrate the network simulator and the road traffic
simulator, allowing ease in communication. This integration is particularly im-
portant in C-ITS which implements traffic safety and efficiency applications.

OMNET++ is a component-based, extensible, modular C++ simulation li-
brary and framework designed particularly for constructing network simulators. It
includes an Eclipse-based Integrated Development Environment (IDE), a graph-
ical runtime environment, and a slew of additional tools. Real-time simulation,
network emulation, database integration, SystemC integration, and a variety of
additional capabilities are supported through extensions. The selection of this
software for simulation is due to its functionalities and the widespread use of this
platform in the scientific community as well as in industrial settings.

SUMO is an open source software that can be easily integrated with other
applications such as OMNeT++ via its Traffic Control Interface (TraCI) (as show
in figure 3.3). This simulator provides for the simulation of intermodal traffic
systems such as road vehicles, public transport, and pedestrians. It allows for
online interaction with TraCI and the simulation of time-scheduled traffic signals
imported or created automatically by SUMO. Another key aspect is that SUMO
has no restrictions on the size or quantity of simulated vehicles.

Artery is one of the available frameworks that offers an implementation that
incorporates European specification ITS-G5 for vehicular communications. It
wraps several entities of an ETSI ITS-G5 stack as OMNeT++ modules, e.g.
router, congestion control and security entities. Vanetza provides the implemen-
tation of these entities, however, Artery makes them accessible in OMNeT ++.
Artery enables V2X simulations based on ETSI ITS-G5 protocols like GeoNet-
working and Basic Transport Protocol (BTP). Individual vehicles can be config-
ured with a variety of ITS-G5 services using the Artery middleware, which also
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offers common facilities for these services. Each vehicle then has its own instance
of the ITS-G5 stack (as show in figure 3.4). Some fundamental services are already
incorporated, such as cooperative awareness (CAM) and decentralized notification
(DENM).

Figure 3.3: Major components of Artery simulation framework 1

3.4.2 Data generation

The simulation featured the mobility of C-ITS equipped vehicles within the city
of Reims, France. The simulation parameters were set as described in table 3.1.
The first step was the setup of SUMO simulator where the map of the city of
Reims in France was extracted from Openstreetmap 2 and added to the simulator.
Then random trips for 100 vehicles were created. The positions and information
of each vehicle were periodically transmitted from the SUMO simulator to the
OMNeT++ simulator. The transmitted data was then retrieved from the OM-
NeT++ simulator by Veins framework and CAM messages created by the Artery
framework

The security headers and certificates for the CAM messages were implemented
in the Vanetza framework Public Key Infrastructure (PKI) system as defined in the
ETSI TS 103 097 technical specifications [119] using the secure message structure.

1http://artery.v2x-research.eu/architecture/
2https ://www.openstreetmap.org/
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Figure 3.4: Artery Architecture [40]

The signature and validation systems of the CAM messages were built using the
pseudonyms provided by the PKI system. Each generated CAM was signed by a
pseudonym by adding the signature at the end of the message. This signature is
used by the validation system at the receiving vehicle to authenticate the received
message. The mobility and communications between the vehicles was done in such
a way that it mimics the actual movement in C-ITS environment. This was to
ensure that the produced results were as realistic as possible. The simulation was
run for a maximum of two hours with each vehicle assigned a random route. The
CAM messages for each vehicle for the whole simulation were stored in separate
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Table 3.1: Simulation parameters

Parameter Value
Network simulator OMNeT++
Road traffic simulator SUMO
Framework Artery (Vanetza, INET, Veins)
Number of nodes 100
Simulation time 7200s
Road map of Reims 10000m * 10000m
CAM message interval 0.1s
Carrier Frequency 5.9 GHz
Number of channels 180
Transmitter power 20 mW

files.
We will now present our contribution to anomaly detection in the next chapter

where the simulated data will be applied to our proposed technique and evaluated
against other state of the art techniques. The performance measures presented
here will be used to evaluate the efficacy of our proposed algorithm.



Chapter 4

Enhanced LSCP Algorithm for

anomaly detection on IoT data

4.1 Introduction

The evolution of sensor monitoring technologies and low-cost solutions, together
with the incorporation of IoT into everyday life, has resulted in the collection
of massive amounts of data [45]. Data streams are vast, continuous, unbounded
sequences of data that arrive at a fast rate and have a dynamic distribution (e.g.
web searches, sensor data, etc.). Data stream mining is an active research field
that has recently evolved in order to uncover knowledge from the vast volumes
of continually generated data. Algorithms designed for data streams can handle
massive amounts of data. The essential premise of data stream processing is that
instances may only be evaluated once since they arrive in a high-speed stream and
must then be discarded to create space for subsequent instances. The algorithm
analyzing the stream has no control over the sequence of the instances seen and
must adjust its model incrementally as each instance is inspected. An additional
desirable quality, known as the "anytime property" requires that the model be
ready to be used at any moment between training instances [120].

Anomaly detection in data streams has three main challenges [121]: (i) because
the stream is endless, any off-line learning algorithms that attempt to save the
complete stream for analysis will run out of memory; (ii) streams are unbalanced
datasets that comprise primarily normal data with a few anomalies thus, detectors
requiring labelled data are inappropriate in this situation; (iii) streaming data
displays concept drift with time, necessitating the adaptation of anomaly detection
models in order to maintain high detection accuracy. Due to their fast speed and

49
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constrained memory, streaming anomaly detection techniques are easy to adapt to
real-world applications [122]. Nevertheless, the state of the art stream detection
approaches are often oriented to detect a specific type of anomaly.

Outlier detection may be divided into two types: global and local. Global
outliers are data points that are beyond the normal range for the whole dataset,
whereas local outliers may be within the normal range for the entire dataset but
outside the normal range for the data points around them [49]. Anomaly detection
is an inherently subjective problem in which the efficacy of detection algorithms
varies substantially depending on the problem domain, data characteristics, and
types of anomalies [45], [123]. It is also possible that some anomaly detection algo-
rithms will succeed at detecting certain subspaces while others may present poor
detection performance [124]. This means that an algorithm can have a domain of
expertise in a local domain yet perform poorly over the entire feature space. It is
critical to merge the domains of knowledge of each algorithm in order to reduce
overall error[125].

The notion of data locality was first presented by the authors of [126], and it
was later enhanced in [127] to perform dynamic classifier selection in local spaces
of training points. In comparison to static strategies, such as those that simply
take a vote based on all base classifier outputs, strategies that dynamically pick
and combine base classifiers have produced better results. Ensemble learning
approaches merge the predictions from several base models in order to generate
more robust, dependable outcomes. To attain unbiased overall detection accuracy
with little variance, a desirable anomaly detection ensemble should incorporate
the capabilities of various base detectors while carefully combining their outputs
to form a robust detector.

Existing anomaly detection ensembles combine several detectors using either
parallel or sequential combination structures in an attempt to increase overall
detection accuracy by deriving a combined result from the detectors. The purpose
of parallel combination structures is to reduce variance, whereas the purpose of
serial combination structures is to reduce bias [128]. Nonetheless, incorporating
the results of all base detectors may degrade an ensemble’s overall performance
since, depending on the data sources and underlying rules of a detector, certain
detectors may fail to identify anomalies of interest, especially in the unsupervised
learning setting.

Unsupervised anomaly detection algorithms aim to automatically identify de-
viating observations from unlabelled datasets, under some assumptions. Thus, a
model performance will be determined by the different characteristics present in
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a dataset. This specialization of the models to different characteristics of obser-
vations results in varying detection rates. The combination of these individual
abilities through an ensemble will be more robust than relaying on just one of
them [129].

In this study our focus is on contextual anomalies. The concept of a context is
inspired by the structure in the dataset, in which each data instance is specified
using two sets of attributes [18]:

• Contextual attributes : These are used to define the context (or neighbour-
hood) of an instance. In spatial datasets the longitude and latitude of a
location are contextual features. Time is a contextual attribute in time
series data that specifies an instance’s placement in relation to the entire
sequence.

• Behavioural/indicator attributes : These are attributes that relate directly
to the process of interest in anomaly detection since they determine the
anomalous behaviour. In a spatial dataset describing the average rainfall
received for a particular country, the amount of rainfall recorded in any
location will constitute a behavioural attribute.

We consider a data driven approach with the objective of detecting anoma-
lies on the fly using unsupervised detection approaches for the detection of local
contextual anomalies. We propose an enhancement of an ensemble anomaly detec-
tor called Enhanced Locally Selective Combination in Parallel outlier ensembles
(ELSCP). ELSCP is adapted to the streaming context using a pipeline framework
which converts data into a stream and passes it to ELSCP using a reference win-
dow model which implements a sliding window technique. This adaptation enables
the processing of data as a stream which is important in that we can evaluate the
performance of our algorithm in the streaming context.

We investigate anomaly detection in three fronts; detection of crop damage
during harvest, efficient utilization of combine harvesters and detection of abnor-
mal situations on the road. For each case, we use relevant dataset to identify
anomalies and link them to real situations on the ground. We propose techniques
based on hypothesis testing on the occurrence of an anomalous movement pattern
during in-field harvesting and on the roads. The primary assumption of our anal-
ysis is that, “normal instances are far more frequent than anomalies”. The key
hypothesis is that, “similar points in a feature space have similar anomaly scores”.

We seek to investigate the following questions:
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1. How can the detection rate of anomalies in IoT data streams be improved?

2. Can adaptation of LSCP algorithm yield better results in IoT data stream
anomaly detection?

3. How can the adapted technique be applied to real world problems?

We propose the following contributions:

1. We define and investigate the issue of completely unsupervised anomaly
ensemble construction;

2. We propose a robust ensemble-based methodology for the detection of anoma-
lies from data streams in smart agriculture and C-ITS context;

3. We apply the proposed technique to crop data with the aim of identifying
anomalies that reveal the state of the crop during harvest; and

4. We apply the proposed technique to a data stream of combine-harvester GPS
logs with the aim of identifying anomalies that impact harvest efficiency of
farm machinery; and

5. We evaluate the proposed technique using a dataset of CAM messages gen-
erated in C-ITS environment and compare its performance with state of the
art techniques under the streaming context.

4.2 Problem statement

Suppose we have a dataset Z = {z1, z2, . . . , zn}, where n is the total number
of instances. Each instance i of Z consists of both contextual and behavioural
attributes. Also, within Z we have a set O of instances which are outliers or
anomalies. Our goal is to assign each instance i with an outlierness score Si such
that outliers in O have much higher values than other instances. The outlierness
of an instance results from the abnormal behavioural attributes in its context.
Given the contextual attributes, there is an underlying pattern that limits the
behavioural attributes to some expected values, beyond which an instance will be
considered as an outlier.

Definition 4.1: Contextual outlier : This is an instance whose behavioural
attributes violate the dependent pattern based on its contextual attributes.

Definition 4.2: Contextual neighbours : Contextual neighbours of instance i
are the instances that are similar to it based on its contextual attributes.
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Theoretically, the set of contextual neighbours of instance i is:

CNi = {j : j ∈ D ∧ j 6= i ∧ sim(xi, xj) ≥ φ} (4.1)

where
xi and xj are contextual attribute vectors, D = {1, 2, ..., N} denotes the set of

instances indexes, sim(·) is a similarity function of two vectors which in our case
is a correlation measure, and φ is a predefined similarity threshold.

The focus of this study is on unsupervised contextual anomaly detection. It
is desirable to create a robust model capable of learning efficiently and accurately
predicting an observation as an anomaly when the behavioural attributes are an
anomaly given the context. Furthermore, it is preferable for such a model to be
sensitive to anomalies in the contextual attributes and to generate meaningful
predictions using the best available relevant context. An ensemble based anomaly
detection approach with heterogeneous base detectors is applied with the aim of
achieving better detection performance in anomaly detection.

4.3 Proposed Enhanced LSCP Algorithm(ELSCP)

The implementations of unsupervised outlier ensembles do not have labels for "out-
liers" and "inliners". As a result, finding a reliable method for selecting competent
base detectors and ensuring model stability is difficult. Traditional unsupervised
combination techniques in parallel ensembles are typically generic and global (e.g.,
averaging, maximization, weighted averaging), but they do not take locality into
account. The idea of nearest neighbours in randomly selected feature subspaces
is used by LSCP [48] to construct a local region around a datapoint (as discussed
in chapter 2 section 2.4.1.2). To create the final model, the top-performing base
detectors in this local region are chosen and ensembled. LSCP algorithm was de-
veloped to solve two issues: a lack of ground truth and a lack of reliable method
for determining suitable base detectors. We developed a new algorithm ELSCP
which is an enhancement of LSCP with improvements on how the local region
definition is extracted and the selection of competent detectors.

An inherent challenge in anomaly detection algorithms is how to handle vari-
ance and bias, especially in ensemble techniques. According to [130], variance is
reduced by integrating heterogeneous base detectors by using techniques such as
averaging, maximum of average, and average of maximum. A combination of all
base detectors, on the other hand, may contain inaccuracies, resulting in greater
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bias. As described in Aggarwal’s bias-variance framework, ELSCP combines vari-
ance and bias reduction. It improves variance reduction by introducing diversity
through the initialisation of heterogeneous base detectors with different hyperpa-
rameters. ELSCP also focuses on detector selection based on local competency,
which helps identify base detectors with conditionally low model bias.

LSCP uses KD-Tree KNN algorithm with euclidean distance to compute the
local region. The efficiency of search trees is determined by the space partitioning
approach used, which can be binary or multi-dimensional [131]. KD-tree employs
binary splitting, in which only one dimension is considered in each split. For
example, in a two-dimensional space, the binary splitting hyperplane is parallel
to either the X or Y dimension. Ball tree uses a multidimensional approach in
which the split criteria is more flexible and can take into account values from
multiple or all dimensions. Furthermore, the splitting criteria constraints define
the shape of the resulting partitions, with KD-trees having rectangular partitions
and ball-trees having spherical partitions.

When dealing with skewed datasets, binary slits produce long skinny rectan-
gles, which might result in a greater number of backtrack levels during search as
well as very unbalanced trees. Furthermore, rectangles and squares are not the
optimum forms for partitioning because if a target point falls into a corner of a
rectangle, tracing over a large number of nodes around the corner to identify near-
est neighbour increases the complexity of the search algorithm [132]. As a result,
using metric-trees like the Ball tree, where the space partitioning using hyper-
spheres is explicitly tuned for the distance function, is the most efficient approach
[131], [133].

Our focus in anomaly detection is to detect local contextual anomalies where
our contextual attributes are longitude and latitude since we are dealing with
spatial-temporal data. The most precise metric for computing spherical distances
on the earth’s surface is the harvesine distance. Therefore, to improve the local
region definition, we propose to implement local neighbour search using Ball Tree
KNN algorithm with Harvesine distance metric.

The computation of Harvesine distance is presented in equation 4.2

d = 2rsin−1(

√
sin2(

φ2 − φ1

2
) + cos(φ1)cos(φ2)sin2(

λ2 − λ1
2

) (4.2)

where r is the radius of the earth(6371 km), d is the distance between two
points, φ1, φ2 is the latitude of the two points, and λ1, λ2 is the longitude of the
two points respectively.
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Suppose we have a dataset R which we split into training and test datasets: let
Xtrain ∈ Rm×a represent the set of training data with m points and a attributes,
and Xtest ∈ Ry×a be the set of test data with y points and a attributes. The
procedure for ELSCP starts with a heterogeneous list of base detectors D being
fitted to the training data. The result of this training is a predicted set of outlier
scores Otrain which is presented in equation 4.3

O(Xtrain) = [D1(Xtrain), D2(Xtrain), ..., Dk(Xtrain)] ∈ Rm×k (4.3)

The second step is the generation of training pseudo ground truth (target)
which is done by selecting the maximum score across all the detectors from Otrain.
The third step is the definition of the local region (ξ) for each test instance, Xtesti .
It is defined by computing the k nearest neighbours of each instance using Ball
tree KNN algorithm with Harvesine distance. This is formalized as:

ξ = xj|xj ∈ Xtrain), xj ∈ Lens (4.4)

where Lens is the collection of a test instance’s nearest neighbours subject to Ball
tree ensemble criteria.

To define the local region Lens, feature spaces are constructed by randomly
selecting t groups of [d/2, d] features. In each group, the k nearest training objects
to Xtesti are identified using harvesine distance. The training objects which appear
more than t/2 times are added to Lens. With the local region defined, a local
pseudo ground truth (targets ∈ Rs×l) is generated by extracting the points in ξ

from target. The local training outlier score for the test instance is extracted from
the pre-computed training score matrix Otrain using equation 4.5

O(Xtrains) = [D1(Xtrains), D2(Xtrains), ..., Dk(Xtrains)] ∈ Rs×k (4.5)

The fourth step is the selection of the optimal detector which is done by com-
puting the similarity between the base detector score and the pseudo target using
correlation measures. Similarity computation is motivated by the absence of direct
and reliable access to binary labels in unsupervised outlier detection. Although it
is possible to convert pseudo outlier scores to binary labels, determining an exact
conversion threshold is difficult [134]. Furthermore, because unbalanced datasets
are typical in outlier identification tasks, using similarity metrics is more reliable
[48]. We propose two implementations of ELSCP, one which uses Pearson correla-
tion and weights to compute the final score and the second one uses Kendall rank



Anomaly detection in IoT data 56

correlation scoring technique.
Definition 4.3: Kendall Rank Correlation: Let (x1, y1), ..., (xn, yn) be a set

of observations of the joint random variables X and Y , such that all the values of
xi and yi are unique [135]. Kendall rank correlation is a statistic of dependence
between two variables[136]. It is a measure of the similarity of the orderings of the
data when ranked by each of the quantities. Kendall correlation is non parametric
and does not make any assumptions on the distribution of the data. It is preferred
when the relationship between two variables is none linear and when the normality
assumption for the two variables is invalid. Its definition is presented in equation
4.6

τ =
2

n(n− 1)

∑
i<j

sgn(xi − xj)sgn(yi − yj) (4.6)

Definition 4.4: Pearson Correlation: Let x and y be two vectors of length
n, where x and y are the means of the vectors. Pearson correlation coefficient is
defined as the ratio of the co-variance of the two vectors to the product of their
respective standard deviations (presented in equation 4.7). It measures the linear
association between two numerical variables. Also, it is applicable for features
that are normally distributed.

rxy =

∑n
i=1((xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(4.7)

where
n is the sample size; x =

∑n
i=1 xi

n
denotes the mean of x; y =

∑n
i=1 yi
n

denotes
the mean of y

ELSCP implementation with Kendall rank correlation computes the correla-
tion between the local pseudo ground truth (targets) and the local detector scores
Di(Xtrains) as τ(targets, Di(Xtrains)) using equation 4.6. This computation iter-
ates over all the k base detectors. A histogram is built with b equal intervals out
of Kendall rank correlation scores, and detectors in the largest bin are selected as
competent base detectors for the given test instance. Finally, the selected detectors
scores are combined using the average of maximum strategy as avg(D∗t (Xtesti)),
yielding the final detection score.

ELSCP implementation with Pearson correlation computes the correlation
between the local pseudo ground truth (targets) and the local detector scores
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Di(Xtrains) as r(targets, Di(Xtrains)) using equation 4.7. This computation it-
erates over all the k base detectors. A histogram is built with b equal inter-
vals out of Pearson correlation scores, and detectors in the largest bin are se-
lected as competent base detectors for the given test instance. Weights are then
computed by ranking the Pearson correlation scores. Finally, the selected de-
tectors scores are combined using the weighted average of maximum strategy as
weighted_avg(D∗t (Xtesti)), yielding the final detection score. The implementation
of ELSCP is summarized in algorithm 1, with figure 4.1 showing the flow chart.

Algorithm 1: Enhanced LSCP
Input : the pool of heterogeneous detectors D, training data Xtrain, test

data Xtest, the local region size k
Output: Outlier scores for each instance in Xtest

Train all base detectors in D on Xtrain
Generate training outlier scores Otrain with Eq.4.3
Generate pseudo ground truth: target := max(O(Xtrain))
for each test instance Xtesti in Xtest do

Define local region (ξ) by Ball tree kNN ensemble
Extract local pseudo ground truth targets by selecting k neighbours in
(ξ) from target
for each base detector Di in D do

Get the outlier scores associated with training data in the local
region Di(ξ)
if ELSCP_K then

Evaluate the local competency of Di by computing the
similarity between targets and Di(ξ) using Kendall correlation
with Eq.4.6

else
Evaluate the local competency of Di by computing the
similarity between targets and Di(ξ) using Pearson correlation
with Eq.4.7

Select a group of t most similar detectors and add to the empty set D∗t
if LSCP_P then

Compute weights by ranking the Pearson correlation scores
return weighted avg(D∗t (Xtesti))

else
return avg(D∗t (Xtesti))

return scores



Anomaly detection in IoT data 58

4.3.1 ELSCP Algorithm using Kendall rank correlation

(ELSCP_K)

ELSCP_K implementation applies three base detectors, HBOS, MCD, and iso-
lation forest (IForest). Histogram-based outlier score (HBOS) [61] is based on
the assumption that features are independent, and hence computes outlier scores
by creating histograms for each feature (detailed discussion in chapter 2 section
2.4.1.1). Modelling the precise features of produced histograms and identifying
deviations are used to identify anomalies. HBOS does not require data labeling
and does not require any training or learning phase. With scoring-based detec-
tion, it also provides quick computation, which is important in our context since
we process data streams. The IForest [66] anomaly-detection algorithm is un-
supervised, does not assume the distribution of the data, and does not require
labelled data. It also performs well on normal unbiased data with few noise points
and is nonparametric [60]. IForest is constructed from a forest of random distinct
isolation trees (itrees) (detailed discussion in chapter 2 section 2.4.1.2). IForest
properties inform the choice for application in this study because anomalies are
rare and different from normal instances; therefore, a tree can be constructed to
isolate every instance.

Figure 4.1: ELSCP flow chart: The results for steps 1 and 2 are cached; steps
3 - 5 are re-computation for each test instance
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Diagnostics are frequently used in combination with a standard fitting tech-
nique to detect outliers. Outliers, on the other hand, can impact these methods,
causing the fitted model to miss deviating observations (masking effect) [65]. Ro-
bust statistics is a useful technique for discovering these deviating observations
since it fits the majority of the data to the fitted model and then identifies data
points that differ from the fitted model. In this study, we mitigate the masking
effect by implementing minimum covariance determinant (MCD) [63] (detailed
discussion in chapter 2 section 2.4.1.1), which is a very reliable estimate for mul-
tivariate anomaly identification as one of the base detectors in ELSCP_K. The
determinant of a matrix and Mahalanobis distances are two multivariate feature
statistics on which MCD relies. It searches the dataset for observations with the
lowest possible determinant in the classical covariance matrix.

The procedure for ELSCP_K starts with HBOS, MCD, and IForest base de-
tectors being fitted to the training data. A pseudo ground truth for each train
instance is generated by taking the maximum outlier score from all the base detec-
tors. We implement Kendall correlation in the model selection and combination
phase. For each test instance:

1. Using a ball tree nearest neighbour algorithm with Haversine distance met-
ric, the local region is defined to be the set of nearest training points in
randomly sampled feature subspaces that occur more frequently using a de-
fined threshold over multiple iterations.

2. Using the local region, a local pseudo-ground truth is defined, and Kendall
correlation is calculated between each base detector’s training outlier scores
and the pseudo-ground truth.

3. A histogram is built out of Kendall correlation scores, and detectors in the
largest bin are selected as competent base detectors for the given test in-
stance.

4. Using the correlation scores, the best detector is selected. The final score
for the test instance is computed by using the average of the best detector’s
local region scores.
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4.3.2 ELSCP Algorithm using Pearson correlation

(ELSCP_P)

ELSCP_P implementation applies two base detectors, HBOS and LOF. Local
Outlier Factor (LOF) [70] determines how far a sample’s density deviates from its
neighbours on a local scale (detailed discussion in chapter 2 section 2.4.1.3). It is
local in the sense that the anomaly score is determined by the object’s isolation
from the surrounding area. The locality is determined by the distance between
the k-nearest neighbours, which is used to estimate the local density. One can
discover outliers (samples that have a much lower density than their neighbours)
by comparing the local density of a sample to the local densities of its neighbours.

The procedure for ELSCP_P starts with HBOS and LOF base detectors being
fitted to the training data. A pseudo ground truth for each train instance is
generated by taking the maximum outlier score from all the base detectors. We
implement Pearson correlation in the model selection and combination phase. In
the computation of the final ensemble score, we implement a weighted average
where the weight is computed by ranking the Pearson correlation scores. For each
test instance:

1. Using Ball Tree nearest neighbour algorithm with Haversine distance met-
ric, the local region is defined to be the set of nearest training points in
randomly sampled feature subspaces which occur more frequently using a
defined threshold over multiple iterations.

2. Using the local region, a local pseudo ground truth is defined and the Pearson
correlation is calculated between each base detector’s training outlier scores
and the pseudo ground truth.

3. Weights are computed for each detector by ranking the Pearson correlation
scores such that the detector with the best score gets the highest weight.

4. Using the correlation scores, the best detector is selected. The final score for
the test instance is computed using a weighted average of the best detector’s
local region scores.

ELSCP_P is adapted to streaming context by implementing it through a
pipeline as shown in figure 4.2. Given a dataset of CAMs the stream simulator
converts the data into a data stream. The stream is passed to ELSCP_P through
a reference window model which implements the windowing concept. Within the
specified window size, a sliding window is implemented such that partial anomaly
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Figure 4.2: ELSCP workflow

Figure 4.3: Anomaly Detection framework

scores are generated for each model. The partial scores are then evaluated and
final scores generated for each instance.

A sliding window approach is employed in streaming anomaly detection, in
which data samples inside a window are sorted by an outlier score, with highly
ranked data samples being labeled anomalies. For ELSCP_P adapted to stream-
ing context a pipeline framework was adopted where each incoming new instance
xt is passed through a pre-processor (unit norm scaler) which transforms xt into a
scaled feature vector without changing its dimensions. The scaled feature vector
is then processed by the streaming anomaly detection model which predicts the
label yt for the instance. This predicted label is then passed to the running average
post-processor which converts the score to the average of all previous scores in the
current window. Figure 4.3 depicts the proposed anomaly detection framework.

The key advantage of using sliding window is that, with the arrival of a new
data instance, a sliding window may be modified, resulting in an online and in-
cremental updating process. The update mechanism necessitates the deletion of
an old data instance and the storage of a new one, making it computationally
efficient. The sliding window contains the latest subset of the dataset at any given
time. As a result, a sliding window approach finds outliers based on the most
recent subset and addresses the temporal property of data streams.

4.4 Application Scenarios

The implementation of ELSCP is applied to three scenarios. The first scenario is
detection of anomalies in crops which can be linked to crops state (i.e. if the crop
is alive or is damaged at harvest time). The second scenario is applied to detection
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of anomalies which reflect abnormal harvesting behaviour of combine harvesters.
The third application is in Cooperative Intelligent Transport Systems where we
detect anomalies on the road.

4.4.1 Scenario A: Crop dataset

The first scenario considers anomalies in crop data where the aim is to link the
detected anomalies to the state of the crop at harvest, whether it is alive in good
health or is damaged. The crop dataset [137] was collected by various farmers
at the end of the harvest season spanning a period of three seasons. To simplify
the analysis, we assume that all other factors like variations in farming techniques
were controlled. This dataset has ten variables as summarized in Table 4.1.

In this study we consider the data for crop type zero(0), which we extract from
the crop dataset. The first pre-processing step was to check for missing values in
the data which reveals 6397 missing values in Number_Weeks_Used variable.
The missing values were filled using Iterative imputation technique [138] which
does multivariate imputation by chained equations. In iterative imputation each
feature is modeled as a function of the other features. Each feature is imputed
one after the other, allowing previously imputed values to be utilized as part of a
model to predict future features. The next step was to check for the distribution
of the data per attribute, which is summarized in Figure 4.4.

Exploratory data analysis was done on the crop data so as to gain a bet-
ter understanding of the data through generation of a correlation heatmap (as

Table 4.1: Crop Data Description.

Column Name Description
Id UniqueID
Estimated_Insects_Count Estimated insects count per square meter
Crop_Type Category of Crop(0, 1)
Soil_Type Category of Soil (0, 1)
Pesticide_Use_Category Type of pesticides used (1 - Never, 2 - Previously

Used, 3 - Currently Using)
Number_Doses_Week Number of doses per week
Number_Weeks_Used Number of weeks used
Number_Weeks_Quit Number of weeks pesticide not used
Season Season Category (1, 2, 3)
Crop_Damage Crop Damage Category (0 = alive, 1 = Damage due

to other causes, 2 = Damage due to Pesticides)
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Figure 4.4: Histograms showing data distribution per attribute in the crop
dataset

shown in Figure 4.5). Based on the heatmap, Estimated_Insects_count, Pesti-
cide_use_category and Number_weeks_used are positively correlated with Crop
damage. This indicates that the state of the crop at harvest time will be greatly im-
pacted by the presence and number of insects, the type of pesticides used to control
these insects and the duration of exposure to the pesticides. On the other hand,
Number_weeks_used is positively correlated with Estimated_Insects_count and
Pesticide_use_category. High negative correlation exists where Number_weeks-
_Quit is negatively correlated with Pesticide_use_category and Number_weeks-
_used. In addition, a box-and-whisker plot (boxplot) was generated to determine
the existence of outliers in the dataset. Each graph’s box depicts the attribute
range between the first Quartile (25th percentile) and the third Quartile (75th
percentile), while the lines within each box depict the median value. The whiskers
extend to the most extreme data points that are not regarded outliers, whereas
outliers are represented separately using the ’o’ symbol. Figure 4.6 shows that
except for soil type and season, all other attributes have outliers.

4.4.2 Scenario B: Combine harvester GPS logs

We used a GPS dataset [139] collected using Nexus 7 tablets on a farm in Colorado
U.S.A during 2019 wheat harvesting season. A GPS recorder application was kept
running for each involved vehicle (combine harvesters, grain carts and trucks)
during harvesting. The combine harvester moves in a straight line at a near
constant speed in a normal combine harvester operation (whether harvesting or
traveling between fields). The sampling frequency of the data was 1 sample (GPS
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Figure 4.5: Heat map showing the correlation between the attributes of the
crop dataset

Figure 4.6: Attribute-based Box plots showing the presence of outliers in the
crop dataset

log) per second. In a typical harvesting scenario, there are more than one harvester
working simultaneously in the field. This results in overlap of the trajectories of
the vehicles. A single trajectory is considered as the consolidation of all collected
GPS logs belonging to a single combine harvester.

For the purpose of this study, we use the movement trajectory of a single
combine harvester recorded over a period of three days. The behaviour of combine
harvesters depend on the task at hand (harvesting in a field or traveling between
fields). Changes in combine harvester speed, usually signal in-field or on-road
actions such as turning and accelerating. During harvesting a combine harvester
should operate at a maximum of 4mph in order to be efficient with minimal grain
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loss and a maximum of 20mph on the road or when moving between fields [15].
The American Society of Agricultural and Biological Engineers (ASABE) rec-

ommends a typical field speed of 3mph, with a range of 2–5mph [140]. It has
been shown that when the combine harvester’s field speed is too high, it increases
field efficiency but decreases material capacity because grain spills out on the
ground [141]. Moving at high speed can result in grain loss, thus lowering the
yield. The focus of this research is the identification of abnormal harvesting be-
haviour by focusing on local regions (i.e. local contextual anomalies). A deviation
based anomaly detection approach is applied with a focus on in-field harvesting
efficiency.

Trajectory mining was done using Quantum Geographic Information System
(QGIS), an open-source cross-platform desktop GIS application that supports
viewing, editing and visualization of geospatial data. The key focus was on the
GPS logs generated in the field during harvesting, therefore visualization and map
matching was done using QGIS to ensure the GPS points were mapped to a field.
The second step was to extract only those points within a specific field using a
bounding box. The extracted data exhibited normal harvesting behaviour with
all data points below 4mph which is the maximum harvesting speed [15].

The data was further processed by removing all data points with zero speed
since our interest is on GPS points associated to actual grain harvest. To create an
evaluation dataset, anomalies were introduced in the original dataset by varying
the vehicle speed at specific points along the trajectory such that for specific
sections of the trajectory a sequential number of points had their speed increased
by a random number between a given range of values above 4mph. Figure 4.7
presents the trajectory of a combine harvester after introduction of anomalies with
normal points in green, anomalies in red. To visualize the effect of the introduced
anomalies, outlier analysis was done using box plots (as shown in Figure 4.8),
which show presence of outliers in speed and accuracy attributes.

Further data analysis was done to establish existence of any correlation be-
tween the data attributes through generation of a correlation heatmap (as shown
in Figure 4.9). The map shows correlation between latitude and longitude which
is expected since these are spatial coordinates. There is also a high positive corre-
lation between the speed and class attribute which is a true representation since
the anomalies introduced in the data affect the speed attribute.
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Figure 4.7: Field of interest: Trajectory of a combine harvester showing nor-
mal points in green and anomalies in red

Figure 4.8: Attribute-based Box plots showing the presence of outliers in
combine harvester GPS logs

4.4.3 Scenario C: C-ITS messages

The third level of our consideration involved anomaly detection on roads by
analysing CAMs generated in a C-ITS environment. A common approach to traffic
incident detection is to learn traffic patterns using previously observed accumu-
lated traffic data and identify incidents when real-time traffic data is substantially
different from the learned patterns [3], [142]. In this regard, a key feature is the
speed of the vehicle, which has a direct consequence on safety, productivity and
the magnitude of environmental impacts for the traffic ecosystem.

It is expected that a vehicle’s speed values recorded at consecutive timestamps
exhibit temporal continuity with small, calculated variations. Therefore the speed
standard deviation of the set of speed of messages that belongs to a short sub-
trajectory T k

i of trajectory Tk should be low in normal condition, and could be
high for anomalies. Also, speeds recorded at spatially close locations should ex-
hibit spatial continuity with minimal variation. Detecting anomalies using CAM
messages is a multivariate task that should consider a sub-trajectory size in order
to be able to learn normal situations and to detect abnormal ones. Anomalies are
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latitude longitude  speed  bearing  accuracy Class
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Figure 4.9: Heat map showing the correlation between the attributes of the
combine harvester GPS logs dataset

identified as points that don’t seem to fit in with the rest of the dataset, based on
the premise that the majority of the occurrences in the dataset are normal.

We propose techniques based on hypothesis testing on the occurrence of an
incident on a road segment. The primary assumption of our analysis is that, “if
there is a traffic incident on the road, the vehicle speed, as captured from the sent
messages, will substantially vary from the typical speed or the expected speed
at that section”. Therefore, the key hypothesis is that: "If vehicles change their
speed rapidly at a particular point, then it implies an incident has occurred". Our
focus is on nonrecurring traffic disruptions whose occurrence is usually unexpected
and random. In a scenario where an incident blocks the whole lane, we expect a
substantial change in speed and also a change in heading as the vehicles encounter
the incident location (as shown in figure 4.10). The main concern is on local
contextual anomalies whereby an incident will affect a subtrajectory such that the
contextual anomaly can be identified from the behaviour attributes, speed and
heading.

A real dataset of CAMs collected from 80 vehicles in France between September

Figure 4.10: Illustration of an accident scenario on the road
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2018 and August 2019 under a C-ITS project was available. However, the number
of messages exchanged by vehicles on a road segment was not enough to build
a real dataset for robust anomaly detection. Therefore, in our study we use a
dataset of CAMs generated by the OMNET simulator together with SUMO, and
artery plug-in. The simulation process is explained in chapter 3 section 3.4. In
order to produce realistic data, the generation is calibrated according to the ETSI
standard [51] specification. A vehicle sends CAMs to its neighbourhood using
V2V or V2I communications. The frequency of CAM message generation varies
from 10Hz to 1Hz (100 milliseconds to 1000 milliseconds).

To extract the sample data to be used in the study, trajectory mining was
performed using PostgreSQL database system with the spatial extension PostGIS
used for storing and processing spatial data. The focus was on the CAMs generated
by vehicles which passed through Boulevard Dauphinot (route N51) in the city
of Reims, France. The first step was to convert the latitude and longitude values
for each message to a geometry data type using Spatial Reference Systems SRID
4326 (WGS 84), the projection for Europe. Using the ST_DWithin function in
PostGIS to create a bounding box, all messages within a 150 meter radius of an
identified reference point were extracted. This yielded messages for a 300 metre
stretch of the road which forms our study area. The 300-metre limit was chosen
due to the fact that C-ITS vehicles have a 150 meters communication range [143],
thus a Road Side Unit (RSU) can be placed at the centre of the selected route.
The extracted dataset includes trajectories for 40 vehicles.

To create an evaluation dataset, anomalies were introduced in the extracted
dataset by introducing an "obstacle" at the centre of the road section [6]. When a
message is in range of the obstacle (based on distance computation using latitude
and longitude), the driver is said to have detected the obstacle, and the data in
the message is updated. The speed is reduced by a random number between a
given range of values. The following messages, in range of the obstacle according
to the position of the obstacle and length of the obstacle, will be modified as well.
The anomalies in the data represented incidences on the road where vehicles will
have to reduce their speed as they approached the obstacle’, maintain the reduced
speed for the length of the obstacle and resume regular speed after passing the
obstacle. The introduced obstacles mimics road incidents (like stalled vehicle,
accident or debris on the road) allowing us to flag the messages of the vehicles
affected by this incident as anomalous. The remaining messages were left intact.
Figure 4.11 presents the trajectories on Boulevard Dauphinot (route N51) and the
obstacle section showing normal points in green with anomalies in red.
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Figure 4.11: Area of interest; (a) trajectories on Boulevard Dauphinot (route
N51), (b) Obstacle section: Normal instances in green, Anomalies in red

Multivariate anomaly detection is performed by considering the vehicle Id,
timestamp, latitude, longitude, vehicle speed and heading. The data is modelled
as a data stream and applied to ensemble based technique for incident detection
using windowing concept.

The interest is in non-recurrent incidents, thus the anomalies of interest are
resulting in an imbalanced dataset. Therefore, let Am be the set of CAM message
anomalies, then:

∀ CAM message m,Pr(m ∈ Am) << 1− Pr(m ∈ Am).

And, let AT , the set of (sub-)trajectory anomalies, then:

∀ trajectory Tk, P r(Tk ∈ AT ) << 1− Pr(Tk ∈ AT ).

4.5 Experimental Evaluation and Results

4.5.1 Scenario A: Crop damage

The pre-processed data was then applied to ELSCP using Kendall correlation
where the aim was to evaluate its performance by looking at the true positive rate
and false positive rate using a ROC curve. The AUC-ROC was also computed
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as an evaluation measure of the model. In the unsupervised outlier detection
setting, it is often problematic to judge the effectiveness of the algorithms in a
rigorous way especially when it outputs an outlier score which is converted to a
label based on a threshold. If the threshold selection is too restrictive (to minimize
the number of declared outliers), then the algorithm will miss true outlier points
(false negatives). On the other hand, too many false positives will be generated if
the algorithm declares too many data points as outliers. To deal with this issue
we performed threshold selection with the aim of identifying the threshold on the
ROC Curve that results in the best balance between the true positive rate and the
false positive rate for our imbalanced dataset. The Geometric Mean or G-Mean
was used to compute the optimal threshold such that the best threshold was the
one with the largest G-mean value.

ELSCP was trained with 67% of the data and prediction performance tested
with 33% of the data. The baseline area under the ROC curve is usually set at
a value of 0.5 which represents a random guess scenario where the detector has
no discrimination of the normal and anomalous data. Figure 4.12 represents the
ROC curve showing the best threshold value for ELSCP model. ELSCP achieved
0.641 AUC-ROC, G-mean value of 0.605 and a best threshold value of 0.1404
which shows that it is able to detect anomalies resulting in crop damage. We
also evaluated ELCSP performance in terms of precision and recall. The optimal
threshold for the Precision-Recall curve which focuses on the performance of a
model on the positive (minority class/anomalies) was computed by optimizing the
F-measure. The baseline AUCPR for the dataset was 0.17 (based on a sample
size of 63589 with 10811 true positive anomalies). Based on the results obtained
from precision recall curve, ELSCP achieved AUCPR of 0.277 with F1 score of
0.343 and best threshold value of 0.1404 (as shown in Figure 4.13). The obtained
AUCPR value is acceptable since it is above the acceptable baseline for the crop
dataset.

The second phase of analysis sought to determine if the detected anomalies
were linked to the state of the crop being damaged at the end of the harvest
season. We extracted all the data that was labelled as anomalies by the model
and compared to the actual ground truth. The model detected 6324 samples as
anomalies of which 1922 (30%) are actual anomalies which are linked to crop
damage. In the dataset the crop state at the end of the harvest can be categorised
as alive, damaged due to other causes or damaged due to pesticides. Based on
the 30% actual anomalies, we categorized them according to the cause of damage
where we established that 1641 samples (85.38%) were damages caused by other



Anomaly detection in IoT data 71

Figure 4.12: ELSCP ROC Curve indicating the best prediction threshold for
crop dataset

Figure 4.13: ELSCP Precision-Recall Curve indicating the best prediction
threshold for crop dataset

sources and 281 samples (14.62%) were damages caused as a result of pesticide
use.

The third phase sought to identify the anomaly detection algorithm which best
estimates the anomalous instances within the crop dataset. We applied the data to
ELSCP, baseline LSCP with variants of LOF as base detectors, LODA, COPOD,
OCSVM and CBLOF. The performance evaluation was done by considering each
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Table 4.2: Performance comparison of various detectors on Crop dataset

Model AUC-ROC AUCPR F1 score
ELSCP 0.641 0.277 0.343
OCSVM 0.595 0.253 0.291
LODA 0.580 0.200 0.122
COPOD 0.675 0.297 0.282
CBLOF 0.636 0.226 0.212
LSCP 0.452 0.169 0.135

detectors performance in terms of AUC-ROC, AUCPR and F1 score. The results
obtained from the experiments are summarized in Table 4.2. According to the
results, we remark that our approach obtains competitive results in this context
where it comes second to COPOD with an AUC-ROC margin of 5.4% (64.1% vs.
67.5%) and an AUCPR of 27.7% vs.29.7% of COPOD which gives a margin of
3.0%. It achieves the highest F1 score which is 5.2% (34.3% vs. 29.1%) better
than the second best detector OCSVM. Therefore, our approach is clearly very
competitive in this context, and can help farmers in real-time to detect potential
issues on crop health.

4.5.2 Scenario B: Combine harvester GPS data

The pre-processed data was then applied to ELSCP using Kendall correlation
where the aim was to evaluate its performance by looking at the true positive rate
and false positive rate using a ROC curve. The AUC-ROC was also computed
as an evaluation measure of the model. The baseline AUC-ROC is usually set
at a value of 0.5 which suggests that the detector has no discrimination of the
normal and anomalous data, 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is
considered excellent, and more than 0.9 is considered outstanding [144]. ELSCP
was trained with 67% of the data and prediction performance tested with 33% of
the data. ELSCP achieved global AUC-ROC value of 0.998 which is outstanding
performance (as shown in Figure 4.14). We also evaluated ELCSP performance
in terms of precision and recall. The baseline AUCPR for the dataset was 0.0199
(based on a sample size of 51580 with 1026 true positive anomalies). Based on
the results obtained ELSCP achieved global AUCPR of 0.972 which is very good
performance (as shown in Figure 4.15).

In the second set of experiments we sought to identify the anomaly detection
algorithm which best estimates the anomalous instances within GPS logs. We
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Figure 4.14: ELSCP ROC Curves performance evaluation for Combine har-
vester GPS dataset

Figure 4.15: ELSCP Precision-Recall performance evaluation Combine har-
vester GPS dataset

apllied the data to ELSCP, baseline LSCP with variants of LOF as base detectors,
LODA, COPOD, OCSVM and CBLOF. The performance evaluation was done by
considering each detectors performance in terms of AUC-ROC, AUCPR and F1

score. The results obtained from the experiments are summarized in Table 4.3.
According to the results, we remark that our approach obtains the best scores in
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Table 4.3: Performance comparison of various detectors on combine harvester
GPS Logs

Model AUC-ROC AUCPR F1 score
ELSCP 0.998 0.972 0.921
OCSVM 0.897 0.385 0.167
LODA 0.913 0.215 0.078
COPOD 0.934 0.173 0.228
CBLOF 0.756 0.038 0.014
LSCP 0.533 0.022 0.032

this context with an AUC-ROC 6.4% better than the second approach COPOD
(99.8% vs. 93.4%); an AUCPR of 97.2% when the best scores of the other ap-
proaches (the one of OCSVM) is only 38.5%. The F1 score reflects the same thing
(92.1% vs. 22.8%). Therefore, our approach is clearly the best one in this context,
and can help farmers in real-time during the harvest to detect potential issues.

4.5.3 Scenario C: C-ITS CAM data

In this section, we present results obtained by experimenting anomaly detection
techniques on CAMs. The algorithms were implemented in Python programming
language using PySAD framework [145] which allows us to integrate batch pro-
cessing algorithms from PyOD [146] and to apply them to streaming data using
sliding windows. The first set of experiments were to evaluate whether the pro-
posed ELSCP using Pearson correlation achieves better performance than LSCP.
We sought to find out the model which best estimates anomalous instances and the
impact of variation in window size on model performance. Multiple experiments
with variation in the window size were carried out. Two base detectors HBOS and
LOF were implemented in both algorithms. Table 4.4 summarises the parameters
used in the experiments.

Table 4.5 summarises the results from the experiments. Based on the results it

Table 4.4: Experimental parameters

Parameters Values
Window sizes 50, 100, 200, 300, 400, 500, 600
Sliding window size 50
Initial window (training set) 1000
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Table 4.5: ELSCP AUC-ROC and AUCPR performance results for window
size variation

AUC-ROC AUCPR
Window size LSCP ELSCP LSCP ELSCP
50 0.7408 0.7794 0.1793 0.2157
100 0.7763 0.8065 0.2126 0.2496
200 0.8203 0.8453 0.2525 0.3125
300 0.8706 0.8977 0.2989 0.3841
400 0.8833 0.9138 0.3145 0.4208
500 0.8910 0.9247 0.3206 0.4331
600 0.8917 0.9277 0.3206 0.4373
Average 0.8392 0.8707 0.2713 0.3504

is clear that the enhancements on ELSCP yielded better performance in AUC-ROC
and AUCPR. Figure 4.16 and 4.17 shows that the performance of both algorithms
in terms of AUC-ROC and AUCPR increases progressively with increase in window
size. In Figure 4.18, the execution time of both algorithms increases with increase
in window side with LSCP giving a better time. This performance was expected
since LSCP uses KDTree to compute local regions while ELSCP uses Ball Tree
which is less efficient in terms of time.

The second set of experiments were to evaluate the performance of ELSCP by
looking at the true positive rate and false positive rate using a ROC curve. Also,

Figure 4.16: Comparison of models’ AUC-ROC performance
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Figure 4.17: Comparison of models’ AUCPR performance

Figure 4.18: Comparison of models’ Execution time performance

the performance in terms of precision and recall was evaluated. The baseline
AUC-ROC is usually set at a value of 0.5 which suggests no discrimination, 0.7
to 0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and more than
0.9 is considered outstanding [144]. ELSCP was trained with 67% of the data
and prediction performance tested with 33% of the data. ELSP achieved 0.97
area under the ROC curve in both the true normal data(class 0) and true anoma-
lies(class 1) which is outstanding performance (as shown in Figure 4.19). The
baseline AUCPR for the dataset was 0.087 (based on a sample size of 6341 with
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Figure 4.19: ELSCP ROC Curves performance evaluation

Figure 4.20: ELSCP Precision-Recall performance evaluation

552 true positive anomalies). Based on the results obtained from precision recall
curve, ELSCP achieved 0.66 for the positive class, which is good performance.

In the third set of experiments, we sought to identify the anomaly detection
algorithm which best estimates the anomalous instances within C-ITS data. We
applied the data to MCD, IForest, RRCF, exact-STORM, LSCP and ELSCP
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Table 4.6: Average AUC-ROC and AUCPR performance results for various
anomaly detection models on C-ITS data

Model AUC-ROC AUCPR
MCD 0.7587 0.1665
IForest 0.7825 0.2210
LSCP 0.8581 0.2858
ELSCP 0.8945 0.3841
RRCF 0.6042 0.1146
Exact-STORM 0.5000 0.0885

algorithms and evaluated their performance in terms of AUC-ROC and AUCPR.
Table 4.6 summarises the results from the experiments. Based on the results,
it is clear that the batch processing models (MCD, IForest, LSCP and ELSCP)
which have been adapted to streaming context using reference window model
achieve better performance than the steaming models (RRCF and exact-STORM).
In terms of AUC-ROC, both LSCP and ELSCP achieved excellent performance
with ELSCP outperforming LSCP by 3.64 percent. MCD and IForest achieve
acceptable performance. Exact-STORM is at the baseline and does not really
seem to be discriminating between the positive and negative class. In terms of
AUCPR, all models except Exact-STORM are able to discriminate between the
positive and negative class since they achieve an average AUCPR value above the
baseline 0.087.

4.6 Discussion

Improving agricultural productivity is critical for increasing farm profitability and
fulfilling the world’s fast expanding food demand, which is fueled by rapid pop-
ulation increase. Precision farming seeks to reduce waste and negative outcomes
by precisely focusing agricultural inputs. It has benefited from the integration of
high-accuracy GPS technology into farm machinery. Several factors such as water
availability, soil fertility, pest protection, timely pesticide application, and nature,
all contribute to a healthy yield. Precise application of pesticides protects the
crop from pests while wrong dosage can result in crop damage or even death.

A significant amount of development has been achieved in the area of anomaly
detection systems, with numerous techniques proposed to address the issue of
anomaly identification. Since the data is typically unlabeled and the outliers
signify novel or unknown behaviours, semi-supervised or unsupervised learning
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approaches are frequently utilized. Furthermore, because most of the world’s data
is streaming, time series data, anomaly detection algorithms must be able to an-
alyze in real-time, learn, and make predictions. Anomaly detection’s application
areas are likewise highly diverse, necessitating a dependable and accurate solu-
tion. Anomaly detection approaches are domain specific, with no one-size-fits-all
solution.

The most versatile, but also the most error-prone, anomaly detection technique
is unsupervised anomaly detection. In this case, no data assumptions are made,
i.e. the data comprises both normal and anomalous records, and algorithms should
be able to distinguish between the two without any prior training. Unsupervised
learning is highly preferred for real life application especially in anomaly detection
since in this scenarios there is a lot of data without labels.

In this study we have performed unsupervised anomaly detection in data
streams obtained from movement tracks of combine harvesters during wheat har-
vest, data for crop damage recorded by farmers over a period of three harvest
seasons and CAM data from C-ITS environment. Based on our results, it is pos-
sible to link anomalies extracted from multivariate analysis of various features to
damaged crop state at the end of harvest. Also, it is worth mentioning that deviant
combine harvester behaviour can be effectively detected using our methodology.
Therefore, anomaly detection could be integrated in the decision process of farm
operators to improve harvesting efficiency and crop health.

In the C-ITS context, we considered anomalies which could have consequences
such as an accident/incident or stalled vehicle on the road which forces the vehicles
on that particular section of the road to reduce their speed substantially as they
encounter the incident point. We have used streaming approaches since in real life
C-ITS environments the anomaly detection would be implemented in the road side
units which collect a lot of messages from the vehicles within range. This means
that it would have to process the messages on the fly due to many reasons (memory
limitation, response time, etc.). The implementation of the windowing concept
facilitates the detection of anomalies on the fly. The merging of the techniques in
the ensemble is done such that the overall complexity does not exceed that of the
individual model with the highest complexity.

In the next chapter we present our contribution on behaviour analysis where we
generate speed signatures from CAM messages collected in a naturalistic driving
environment.





Chapter 5

Data Signatures from IoT data

5.1 Introduction

Despite the numerous advantages of highway transportation, it has certain draw-
backs, such as congestion, noise, air pollution, delays, and collisions. Traffic engi-
neers and transportation planners require information about road traffic in order
to develop solutions to these problems and propose operational frameworks for
the development of efficient and sustainable transportation systems. This neces-
sitates the need for traffic studies, to systematically collect data and analyze it to
understand and suggest improvement of road traffic engineering activities. Spot
speed study is one such study, with the objective of estimating the distribution of
speeds of cars in a stream of traffic at a specific site on a highway [147].

Speed is one of the most critical aspects affecting a driver’s safety, with research
demonstrating that increased speed leads to increase in collision frequencies and
their severity [148]. Driving speed is regarded as a critical risk factor in road
collision occurrences since drivers are frequently observed driving beyond the ap-
propriate speed limits [149]. Drivers’ speed selection is known to be impacted by a
variety of factors related to driver attributes (like perseverance, negative urgency
and normlessness) and the road conditions (like curves, barriers and delineators)
[150]. Perseverance refers to a person’s capacity to stay focused on a task that
may be monotonous or challenging. Negative urgency is the propensity to behave
rashly or regrettably as a result of extreme negative emotion. The notion that it
is permissible to do whatever one can get away with is referred to as normlessness
[150].

Understanding drivers’ speed selection mechanisms and the risk variables im-
pacting their speeding behaviour is critical for road safety. The credibility of speed

81
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restrictions is highly related to drivers’ speed choice, and it is commonly observed
that drivers tend to respect speed limits when they believe them to be reason-
able [151]. Underestimation of driving speed when approaching a low-traffic zone
frequently results in over-speeding. As a result, drivers’ compliance with speed
restrictions is heavily reliant on their views of safe speed in relation to the road
environment in which they are traveling [149].

Cooperative Intelligent Transport Systems(C-ITS) focus on improving safety,
comfort, traffic and energy efficiency. Vehicle speed and other speed based indi-
cators are commonly used parameters in traffic research for generation of driving
profiles. Speed characteristics are significant in assessing traffic performance, ex-
amining highway consistency and safety, establishing appropriate traffic control
devices and speed restrictions, and developing simulation programs [4].

The main goal for studying speed profiles is to gain a better understanding
on why drivers respond in certain ways to road/traffic conditions and to discover
factors which affect their actions. The speed of the vehicle has a direct consequence
on safety, productivity and a magnitude of environmental impact on the traffic
ecosystem. As an example, very aggressive accelerations result in higher emissions,
impacting the environment negatively.

The information acquired from analysis of vehicle speeds can be useful in iden-
tification of black-spots (accident prone locations) and for gaining a better under-
standing of travel time. Further, it can be used to evaluate the need for infras-
tructure, for example speed bumps, humps and speed cameras on certain sections
of the road. It is also possible to evaluate the impact of the introduction of these
infrastructures by analyzing the speed profiles of vehicles as they pass through
this sections and comparing it to their behaviour before the infrastructure was
introduced on the road.

Naturalistic driving behaviour in real world situations can assist fleet managers
and usage-based insurance providers with important information about drivers’
habits, styles, and driving patterns. In this study we use a real dataset of CAMs
collected from a collaborative project between road operators, car manufacturers
and academia in a naturalistic driving C-ITS environment. The aim is to gener-
ate speed signatures from CAMs using segmentation and statistical data analysis
approach. Speed signatures are movement patterns extracted from vehicle trajec-
tories which can also be considered as speed profiles when analysing individual
driver behaviour.

Spot speed studies are commonly used to measure the speed distribution of a
traffic stream on a specific site of a motorway [152]. Our proposed approach varies
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with the state of the art in that instead of using spot speeds we analyse continuous
speed signatures generated within contiguous road segments. We consider the
collective movement of vehicles along a particular road segment and evaluate their
aggregate driving behaviour through analysis of speed signatures.

We seek to investigate the following questions:

1. How can data-driven segmentation be applied in generation of speed signa-
tures?

2. Based on the speed signatures, what is the observed evolution of the driving
behaviour on the road?

3. Do drivers maintain the speed limit restriction in force on the road segment?

4. What is the most preferred speed range by the drivers?

We make the following contributions:

1. We propose a segmentation and statistical based methodology for generation
and analysis of speed signatures;

2. We evaluate the methodology using a real dataset of CAM messages gener-
ated in C-ITS naturalistic driving environment.

5.2 Problem Statement and Methodology

5.2.1 Problem Statement

Vehicles in a C-ITS environment exchange a lot of messages. Every message
contains the position and movement information of the vehicle for the case of
CAMs and the prevailing road condition and hazard information in the case of
DENMs. The high frequency of generation of CAMs makes it possible to extract a
concise mobility pattern of a vehicle. However, due to the current low penetration
rate of C-ITS equipped vehicles [2] there is a challenge of insufficient amount of
data for a more detailed analysis of driving behaviour on a microscopic level (route
level).

We consider a situation where mobility data is captured for a specific road
section for a period of eight months. On each day, a single trajectory for one or
two vehicles was captured. Cases of missing data were reported in some days.
In addition, the trajectories were collected at different times of the day. With
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this kind of data, hourly or daily mobility analysis might not give comprehensive
results since we have very few trajectories at varying times of the day.

The generation of simulated data is generally used to solve the data insuffi-
ciency issue but this still raises another issue, how to generate realistic data such
that the mobility patterns are indistinguishable from those of real vehicles. In this
study we analyze CAM messages with the purpose of generating collective road
level speed signatures through the application of a segmentation approach and
statistical analysis techniques. We consider the collective movement of vehicles
along a particular road segment and evaluate their aggregate driving behaviour
through analysis of the speed signatures.

5.2.2 Methodology

In a C-ITS environment, cooperative awareness is achieved through exchange of
CAMs which contain the vehicle’s information. The purpose of CAMs is to give
dynamic information about the vehicle (i.e. speed, position, heading (direction of
motion with regard to true north) etc.). A vehicle sends CAMs to its neighbour-
hood using V2V or V2I communications. The sending and receiving of mobility
data is done through On-Board Units (OBUs) installed in the vehicles, road side
units among other techniques. These data contains details that explain the move-
ment of vehicles. Each trajectory of a vehicle is considered a multi-attribute,
time-ordered sequence of locations traversed and is viewed as a trip.

A real dataset of Cooperative Awareness Messages (CAM) collected in France
between September 2018 and August 2019 under the SCOOP@F project [153],
[12] is used. SCOOP@F is a C-ITS project whose aim was to deploy Cooperative
ITS in a nation-wide scale in France. This was to be done by equipping 2,000 km
of road with Road Side Units and 3,000 vehicles with On-Board Units to enable
communication between the infrastructure (the road operator) and the user (the
driver). The first deployment was done in five sites: Ile de France, Bordeaux and
its ring, Paris-Strasbourg highway, Brittany and Isère counties. These sites are
distinguished by a wide range of road types (highways, urban expressways, two-
way interurban and local roads). Its objective was to improve the safety of road
users and road operating staff. It was also to assist in improving traffic manage-
ment and multimodality. This was a collaborative project between road operators,
car manufacturers and academia. The C-ITS CAM messages were generated by
vehicles under naturalistic driving environment. The frequency of CAM message
generation varied between 10Hz to 1Hz (100 milliseconds to 1000 milliseconds).
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Each message has an identifier (stationid) associated with the transmitting vehi-
cle but this vehicle is unknown. The message also includes a timestamp, latitude,
longitude, altitude, speed, heading angle and the drive direction of the vehicle.
Latitude, longitude, altitude will be considered as the position variables. The
speed, heading angle and drive direction are used as variables of the behaviour of
the transmitting vehicle. Trajectory mining was done using the open source Post-
greSQL database management system, with the spatial extension PostGIS used
for storing and processing spatial data.

The aim is to generate speed signatures by modeling speed variations from
the start point to end point of route nationale N118 which stretches from Sèvres
to Les Ulis in France. Trajectories from vehicles which travelled this route were
considered. In order to ensure that all the vehicles were positioned on the correct
road segment, we performed map matching using PostGIS. We started by convert-
ing the latitude and longitude values for each message to a geometry data type
using Spatial Reference Systems SRID 4326 (WGS 84) which is the projection
for Europe. This allowed us to view the graphical output of our queries directly
in pgAdmin (PostgreSQL’s graphical user-interface) against an OpenStreetMap
background map using PostGIS geometry viewer. Route N118 has both an up-
stream and downstream section, therefore to identify the trajectories on each sec-
tion we performed map matching for a few points of each trajectory. Based on
the direction indications on OSM background map we were able to label each
trajectory as either upstream or downstream.

The entry point for the study area is the section connecting N118 from route
La Francillienne, while the exit point is the section connecting to Grande Rue as
shown in figure 5.1. All the trajectories entering N118 through La Francillienne
are considered to be moving in the upstream direction. The trajectories moving
along N118 in the opposite direction, exiting to La Francillienne are considered
downstream trajectories. A total of 32 trajectories were considered with 14 up-
stream and 18 downstream trajectories. Considering the fact that the messages
are highly sampled with frequency of up to 10 points per second, we opted to
follow an aggregated approach for speed signature generation.

The first step in the segmentation process was to group the messages based on
equal length segments from a specific reference point such that each message is in
a unique road segment. We chose the first reference point to be the geometry of
the first message at the entry point of route N118. Then using the ST_DWithin
function in PostGIS to create a bounding box, we extracted all messages within
a 1 kilometre radius of the reference message, this group forms the first segment
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Figure 5.1: Area of interest; (a) trajectories on the full stretch of route N118,
(b) Entry point, (c) Exit point

Figure 5.2: Sampled road section showing the extracted one kilometre length
segments

and is extracted and stored. The second segment is generate from the remaining
messages using the same process by moving the reference point to the first message
of the unprocessed points at the edge of the previous bounding box. This process
iterates until we have all the messages grouped in 1 kilometre length segments.
Figure 5.2 presents a sampled section of the road showing the one kilometre length
trajectory segments with each segment represented by a unique colour.

Generation and interpretation of speed signatures is achieved by evaluating
the data using descriptive statistical analysis techniques. The approaches of inter-
est are measures of relative standing, measures of central tendency and measures
of variability, which are techniques for transportation data analysis [154]. Mea-
sures of relative standing such as percentile rank and quartiles provide information
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about the relative placements of observations within a dataset. Percentile rank is
essential when measuring driving speeds on a road segment. The speed of a driver
is compared to the speeds of all other drivers that drove on the road segment
during the measuring period.

Speed percentiles are methods for determining effective and appropriate speed
restrictions. The 50th and 85th percentiles are the two most significant speed
percentiles to consider. The median speed of the observed dataset is represented
by the 50th percentile. This percentile shows the speed at which half of the
observed cars are below and half are above. The average speed of the traffic flow
is represented by the 50th percentile of speed.

Definition 5.1: 85th Percentile Speed (V85): The 85th percentile speed is the
speed at or below which 85 percent of the free-flowing vehicles travel. This implies
that if the 85th percentile speed is 90 km/h, then 85 percent of the observed drivers
were driving at speeds less than 90 km/h and 15 percent were driving at speeds
more than 90 km/h.

Quartiles are percentage values that divide data into quarters. One-quarter of
the data is filtered out at the first quartile (25th percentile). The cutoff for half of
the data is the second quartile (50th percentile), commonly known as the median.
The point above which one-quarter of the data is located is the third quartile (75th
percentile). Measures of central tendency, such as median and mean, represent
the "centrality" of an observation within a dataset [154].

Definition 5.2: Mean Speed : The mean speed is the most common measure
of central tendency which is calculated by summing all the measured speeds and
dividing by the sample size. When analyzing the collective mean speed for all
the instances in a dataset, the population mean (µ) is computed as defined in
(Equation 5.1).

µ =

∑N
i=1 xi
N

(5.1)

where N is the total number of instances in the dataset.
In the case where a sample of the data is used, for example when computing

the mean speed for data within a particular road segment, the arithmetic / sample
mean is computed as defined in (Equation 5.2).

x =

∑n
i=1 xi
n

(5.2)

where n is the total number of instances in the sample (road segment).
Definition 5.3: The Median (50th Percentile) Speed is an alternate statistic to
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the mean or average speed for describing the speed distribution’s central tendency.
It is the speed attained or surpassed by precisely half of the cars. It is resistant to
the influence of extreme observations or outliers and is independent of the shape
of the data. Despite the popularity of the mean, the median is a more trustworthy
metric in cases where the data contains a large number of outlying observations.

Definition 5.4: Speed Dispersion: The speed dispersion refers to the normal
spread in vehicle speeds observed in a study section/segment.

The measures of variability, interquartile range (IQR) and standard deviation
(SD), characterize the spread or distribution of data around the mean or any
other measure of central tendency. The IQR is a numerical ratio that represents
the difference between the first and third quartiles. It is also resistant to outliers
in the data. The standard deviation, calculated as the square root of the variance,
describes the data dispersion around the mean. When analyzing the collective
standard deviation of speed for all the instances in a dataset, the population
standard deviation is computed as defined in (Equation 5.3).

σ =

√∑N
i=1(xi − µ)2

N
(5.3)

where N is the total number of instances in the dataset.
To compute the standard deviation of speed for data within a particular road

segment, sample standard deviation is computed as defined in (Equation 5.4).

s =

√∑n
i=1(xi − x)2

n− 1
(5.4)

where n is the total number of instances in the sample (road segment).

5.3 Experimental Evaluation and Results

Statistical data analysis was done using R software. Using the extracted segments
we generated aggregate statistics for speed where we computed the minimum, max-
imum, mean, median, standard deviation and 85th percentile for both upstream
and downstream sections of the road.
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Table 5.1: Summary of vehicle speed

Measure Upstream Downstream
Minimum 0.00 0.00
1st Quartile 16.60 20.92
Median 50.58 65.09
Mean 50.28 57.48
3rd Quartile 82.33 88.63
Maximum 123.59 131.00
Standard deviation 34.02 35.49
IQR 65.73 67.67
85th percentile 91.66 95.62
Speed limit 90.00 80.00

5.3.1 Evaluation of collective speed signatures

Table 5.1 presents a summary of vehicle speed aggregates in kilometers per hour
along route N118.

Based on these speed aggregates, we evaluated the variation in the aggregate
measures and compared against the speed limits on the road 1, 90km/h on the
upstream sections and 80km/h in the downstream section. Table 5.2 presents
the summary speed characteristics per road segment for the upstream segments
of route N118. Table 5.3 presents the summary speed characteristics per road
segment for the downstream segments of route N118. The results for upstream and
downstream speed signatures are shown in figure 5.3 and figure 5.4 respectively.
The variation on median speed per segment is shown in figure 5.5

Based on the analysis of the upstream section, the average speed varies slightly
above the 90km/h limit for segments 2 to 7 and segment 9. Then there is a
decline from segment 10 with the most notable change being at the 16th segment
where the average speed is 15.88 km/h. The median speed also varies above the
90km/h limit for segments 2 to 9, then it starts declining with the lowest value
of 7.85 km/h at segment 16. This behaviour is also confirmed by the trend of the
standard deviation which progressively increases from the 7th to the 8th segment,
followed by a decline on the 9th segments and a sharp increase to 45.14 on the
10th segment. This may be attributed to the curvature of the road (as shown
in figure 5.6), an incident or existence of traffic calming infrastructure. On the
downstream section, the average speed is more steady and under the speed limit.
The median speed is also below the speed limit except for segments 12, 16, 18 and

1https://truck-simulator.fandom.com/wiki/N118_(France)
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Table 5.2: Upstream summary speed characteristics per road segment

Segment Min Q1 Median Mean Q3 Max SD V85
1 62.46 79.22 87.32 86.08 94.43 102.82 10.22 96.19
2 75.71 89.35 95.11 94.78 101.56 107.06 7.49 103.10
3 76.28 90.30 92.83 92.98 97.02 105.19 5.32 98.02
4 83.74 89.51 93.74 95.35 100.41 113.33 7.21 102.03
5 76.90 86.18 90.29 90.69 93.85 110.16 6.90 96.01
6 85.75 93.82 98.21 100.53 109.76 111.60 7.82 109.84
7 57.10 94.99 102.06 98.30 105.73 114.01 12.8 109.73
8 6.88 43.34 90.65 74.71 95.58 104.76 29.70 97.88
9 46.12 78.21 98.75 92.46 106.15 112.82 16.16 107.10
10 0.00 15.30 47.12 58.67 106.40 123.59 45.14 109.67
11 0.00 26.75 60.12 59.91 97.60 113.26 36.68 101.60
12 0.00 12.98 36.18 46.41 83.45 110.70 35.68 87.59
13 0.00 28.48 40.64 49.37 83.20 102.49 29.04 89.97
14 0.00 16.77 69.37 56.60 86.16 109.01 32.50 88.95
15 6.12 22.43 68.47 59.52 96.91 112.18 38.70 102.71
16 0.00 4.36 7.85 15.88 14.76 110.05 23.61 23.42
17 0.00 6.55 13.46 22.14 32.47 97.70 23.83 40.03
18 0.00 25.51 50.90 47.49 65.47 95.83 26.66 75.76
19 6.98 37.59 63.83 58.18 78.36 96.95 23.50 82.48
20 13.50 36.29 55.06 54.77 74.62 98.32 21.85 80.46
21 14.94 50.89 60.70 58.03 69.05 90.29 16.93 74.24
22 9.83 45.60 51.53 50.21 57.74 73.55 11.45 60.70

19 which are slightly above the speed limit. Based on the analysis of the median
speed variation we can conclude that for most parts of the road in both upstream
and downstream, the speed limit policy is maintained.

5.3.2 Evaluation of speed dispersion and preferred speed

ranges

In addition to this evaluation, we compare individual vehicle speed signatures
by generating a box-and-whisker plot (boxplot), which depicts the drivers’ speed
range patterns. The boxplot depicts the central tendency of the driver speed sig-
nature, as well as the IQR and the number of drivers that violated the speed
limit. The median, first and third quartiles, as well as the maximum and mini-
mum of the speed signatures, were calculated prior to producing the plot. The
computed Upstream values are presented in the table 5.4 while table 5.5 presents
the downstream values.
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Figure 5.3: Upstream Speed signature variation.

Figure 5.4: Downstream speed signature variation.

The IQR, which represents the speed range each driver most frequently traveled
within, may be determined from the box plots as shown in figure 5.7 and figure 5.8.
The box part of the graph shows the speed range between the first Quartile (25th
percentile) and the third Quartile (75th percentile), while lines within each box
show the median value. The whiskers extend to the most extreme data points not
considered outliers, while the outliers are plotted individually using ’o’ symbol.
The boxes with their whiskers show the full spectrum of the drivers speed from
minimum to maximum and the dashed red line represents the speed limit (90
km/h on the upstream lanes and 80 km/h on the downstream lanes).

Based on the results depicted in figure 5.7 for the upstream section of the
road, six drivers (D01, D46, D53, D61, D80 and D96) exclusively operate within
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Table 5.3: Downstream summary speed characteristics per road segment

Segment Min Q1 Median Mean Q3 Max SD V85
1 0.00 16.67 38.16 54.26 91.22 122.08 38.57 94.96
2 0.00 16.45 43.47 57.61 98.44 125.14 41.27 107.88
3 0.00 14.87 35.71 51.94 90.50 110.09 38.27 92.81
4 2.63 39.94 74.20 64.89 85.95 109.94 27.85 91.02
5 0.00 26.69 56.48 56.03 82.23 99.79 28.00 84.37
6 0.00 32.72 67.09 60.41 86.38 103.25 28.64 88.88
7 0.00 16.00 26.01 44.82 94.64 112.25 39.03 99.40
8 3.31 14.18 21.22 44.55 96.77 114.62 40.16 104.33
9 0.00 17.18 25.96 50.06 102.95 118.22 41.04 107.24
10 0.00 15.12 25.34 48.50 107.12 127.01 43.76 112.32
11 0.00 15.92 33.59 47.29 83.48 113.47 35.54 94.04
12 2.48 27.76 82.30 63.80 91.19 113.00 33.33 94.29
13 28.33 64.48 77.18 73.80 84.96 100.76 15.35 88.19
14 22.54 39.09 58.01 60.09 84.46 109.80 23.13 85.80
15 0.00 16.78 34.90 45.99 83.63 106.96 34.14 89.78
16 0.00 49.61 81.68 67.80 88.67 109.22 29.68 94.69
17 0.00 17.26 77.83 60.21 90.88 112.64 36.12 94.44
18 0.00 61.06 84.46 73.20 95.67 117.79 31.94 99.68
19 0.00 45.67 87.71 74.78 100.31 131.00 35.98 106.52
20 0.00 18.70 79.24 62.00 89.14 116.10 35.26 94.57
21 0.00 17.86 66.53 53.24 78.99 98.64 30.61 84.02
22 0.00 11.95 58.61 46.37 67.14 89.86 26.10 69.74

the speed limit set for the road. All the other drivers except D04 and D67, operate
within the speed limit at least 75% of the time. Drivers D04, D06 and D067 have
a substantial number of outliers. In terms of speed variability, D08 exhibits a
larger variability with 50% of the values between 9.94 km/h to 85.11 km/h. D27
and D60 also have a wide variable speed distribution. It is also evident that the
speed distribution of D27, D53 and D80 is skewed to the right with majority of
the speed values above the median speed value. On the other hand, D06 and D61
are skewed to the left with majority of the speed values below the median speed
value.

The results for the downstream section of the road depicted in figure 5.8 show
that only one driver D12 operated within the speed limit. Drivers D79 and D96
maintained the speed limit more than 75% of the time. Driver D10 was exclu-
sively above the speed limit. In terms of speed variability, D90 exhibits a larger
variability with 50% of the values between 19.66 km/h to 93.92 km/h. D35 also
show variability with the data skewed to the left with majority of the speed values
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Figure 5.5: Median speed signature variation for both upstream and down-
stream sections of the road.

(a) Road segment 8 (b) Road segment 16

Figure 5.6: Representation of road topology for segment 8 and 16 with up-
stream trajectory points in blue and downstream points in purple

below the median speed value. D09, D45, D37, D70 and D90 also have their speed
distribution skewed to the left. D28, D79, D81 and D98 have the speed distribu-
tion skewed to the right with majority of the speed values above the median speed
value.

The speed range most frequently maintained per road segment is shown in
figure 5.9 and figure 5.10. From figure 5.9, there are a number of road segments
with outliers, the most affected being segment 16 on the upstream section of
the road. This could be caused by the curvature of the road and the fact that
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Table 5.4: Upstream Drivers’ speed box plot parameter values

Driver Minimum 1st Quartile Median 3rd Quartile Maximum
D01 0.00 21.62 44.06 58.01 83.84
D04 23.69 87.81 92.30 98.23 111.60
D06 9.83 63.22 73.39 80.09 94.64
D08 0.00 9.94 49.91 85.11 115.24
D27 0.00 6.70 16.20 67.72 113.26
D46 6.98 32.11 40.25 50.22 64.40
D53 41.08 45.83 47.32 51.03 55.19
D60 0.00 15.16 35.62 65.84 114.01
D61 41.76 61.82 70.69 75.82 84.17
D67 37.84 83.57 90.50 97.95 123.59
D68 0.00 15.66 41.62 64.22 112.18
D78 0.00 24.18 39.01 55.20 97.70
D80 39.28 48.65 56.74 68.09 73.94
D96 0.00 13.00 37.12 55.01 75.64

Figure 5.7: Upstream Box-and-whisker plots of the drivers’ vehicle speed
ranges.

there are arterial roads joining and exiting which implies the presence of traffic
calming infrastructure. It is also evident that the data is skewed with a wide speed
dispersion on the downstream section of the road, particularly segments 1-3, 7-11
and 15 which are skewed to the right.

The third set of experiments were performed with the aim of comparing the
drivers’ vehicle speed based on the number of times they travelled within specific
speed ranges. We defined four bins for the speed in both the upstream and down
stream sections of the road. The following speed range bins were chosen for the
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Table 5.5: Downstream Drivers’ speed box plot parameter values

Driver Minimum 1st Quartile Median 3rd Quartile Maximum
D09 40.43 61.02 76.09 82.17 90.07
D10 108.90 111.00 113.90 115.60 121.50
D12 30.56 59.94 66.35 71.39 77.40
D20 48.28 69.41 79.13 88.70 106.02
D25 74.70 95.92 100.37 104.13 113.11
D28 70.81 86.76 91.85 100.49 115.96
D35 3.13 47.38 79.67 94.00 127.01
D37 66.71 91.26 100.94 107.21 116.96
D38 46.26 70.88 83.52 96.30 103.64
D42 73.55 84.28 86.06 89.32 107.68
D45 0.00 73.19 83.12 88.34 94.68
D55 50.26 78.68 85.43 91.84 111.10
D56 27.11 81.22 85.32 91.22 125.68
D70 53.06 73.40 87.98 93.61 99.07
D79 0.00 12.20 23.26 43.63 104.72
D81 57.67 67.12 79.52 97.89 131.00
D90 0.00 19.66 71.42 93.92 123.26
D98 0.00 13.28 20.21 34.44 108.79

Figure 5.8: Downstream Box-and-whisker plots of the drivers’ vehicle speed
ranges.

upstream section of the road:

• Between 0 to 10.9 km/h;

• Between 11 to 50.9 km/h;

• Between 51 to 90 km/h;
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Figure 5.9: Upstream Box-and-whisker plots of the vehicles’ speed ranges per
road segment.

Figure 5.10: Downstream Box-and-whisker plots of the vehicles’ speed ranges
per road segment.

• Over the speed limit.

The following speed range bins were chosen for the downstream section of the
road:

• Between 0 to 10.9 km/h;

• Between 11 to 50.9 km/h;

• Between 51 to 80 km/h;

• Over the speed limit.

To provide an overall view of each driver’s tendency to drive in the four zones,
a percentage stacked bar chart format was generated. The data is visualized in
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Figure 5.11: Upstream Stacked bar chart of the drivers’ chosen range of vehicle
speeds.

this way to provide a quick perspective of each driver’s behaviour. Based on the
results for the upstream section (presented in figure 5.11), except for D04 and
D61, all the other drivers drive within the speed limit 80% of the time. Nine
drivers (63%) prefer driving below 51 km/h half the time. It is clear that the most
preferred speed range is 11-80 km/h.

Based on the results for the downstream section (presented in figure 5.12), it
is clear that except for driver D12, all the other drivers drove over the speed limit
at some point. Driver D10 was exclusively over the speed limit with D25, D28,
D37 and D42 driving over the speed limit more than 90% of the time. With the
majority of the drivers driving over the speed limit, it might be necessary to review
the speed limit or introduce variable speed limit so as to mitigate the displayed
behaviour.

5.4 Discussion

Most nations employ speed limits regulations to govern the speed of vehicles.
Many research studies have focused on the influence that speed restrictions have
on drivers’ choice of speed since it is one of the most important components in
understanding the link between speed and safety. Speed limits are significant
because they decrease the disparities in vehicle speeds between drivers on the
same route, which improves safety. Setting speed limits aims to strike a good
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Figure 5.12: Downstream Stacked bar chart of the drivers’ chosen range of
vehicle speeds.

balance between safety and mobility for a given road.
Individual drivers’ speed choices are the result of a complex interaction of

numerous factors, including the highway’s design speed, the danger of collecting
speeding fines (and the penalties thereof), the published speed limit, and the an-
ticipated likelihood of a crash [155]. If the geometric aspects of the road encourage
them to go faster, drivers fail to realise their travel speeds and drive faster than
the published speed limits. In real-world traffic, some drivers will opt to obey the
speed limit signs, while others may believe that the speed limit is too low and will
pick their own pace. Variable speed limits are thought to have a better effect on
speed compliance since they may be varied based on road conditions [150].

In this work we considered the analysis of speed signatures generated from C-
ITS messages with the aim of understanding driving behaviour evolution under a
naturalistic driving environment. C-ITS data is used to assess the appropriateness
of the listed speed limits on the route under consideration. We have shown that
with the application of segmentation and aggregate statistics, one is able to get
a better understanding of general driving behaviour and also infer information
that relates to the road condition and traffic situation. The findings of the studies
suggest that vehicle speed is important when evaluating driving performance and
identifying differences in driving behaviour.

A possible application area for the generated speed signatures is in Autonomous
vehicles where the signatures can be used as inputs in order to check if the driving
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is following normal speed/expected naturalistic speed behaviour. The signatures
can also be used by traffic engineers and transportation planners to evaluate the
effectiveness of the posted speed limits such that adjustments can be done based
on the observed behaviour of the drivers. This may necessitate a reduction or an
increase in the current speed limit by evaluating the 85th percentile speed of the
traffic data stream.

With the current uptake of C-ITS there remains a challenge of insufficient
amount of data for a more detailed analysis of driving profiles on a microscopic
level (route level). It will be of interest to do a more detailed analysis of the
data to identify factors causing or influencing the observed behaviour, especially
on the spike points. Further, useful knowledge can be gained by considering the
individual behaviour of the vehicles on these particular road segments. This can
be done through outlier detection in order to identify incident points or unique
behaviour among certain drivers.

The DENM messages can also be used to extract points where incidents were
reported and then use these locations as POIs for traffic incident detection. By
extracting the speed signatures of road segments, it could now be possible to
discover whether there is a change in driver behaviours over a road segment on a
time period (and therefore discover road incidents) by comparing them with the
road segment speed signature using anomaly detection method such as Isolation
Forest (IForest), Angle–Based Outlier Detector (ABOD), K-Nearest Neighbours
(KNN) etc.[146].

In the next chapter we present our contribution on trajectory linking where
the idea is to link identifiers to the vehicles which generated them. The real
dataset applied during signature generation and analysis in this chapter will also
be utilized for data linking in the next chapter.





Chapter 6

IoT data linking

6.1 Introduction

The development of wireless communication technology, geographical information
systems, embedded positioning devices and ubiquitous devices has facilitated col-
lection and storage of vast quantities of IoT mobility data. The collection of
mobility data is done by online or offline means through devices attached/carried
by the moving objects, road side units among other techniques. These data typ-
ically contains information describing the movement of people, goods, vehicles,
aircraft, animals, natural phenomena (hurricanes, tornadoes, and ocean currents),
etc. Each trace of a moving entity is a multi-attribute, time-ordered sequence of
locations.

When considering moving objects especially on road networks, the paths taken
are linked to the prevailing traffic environment and conditions. When analyzing
these trajectories it is important to incorporate the environmental information so
as to gain a better understanding on the movement patterns [156]. The behavioural
and lifestyle aspects of a moving object can be discovered from the examination
of its daily trajectories. Trajectory pattern analysis is invaluable in applications
such as: recommender systems, public security systems, and path planning in
emergency evacuations [90].

Moving objects may have different strategies when they need to report their lo-
cations to a central repository, such as time-based, distance-based, and prediction-
based strategies. They may also suspend the communication with a central server
for a while and resume later. The overall result is that the lengths and time
stamps of the trajectories will be different and the trajectories may also be seg-
mented with gaps (missing readings). Each trip in a trajectory dataset includes an
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identification (ID) of the device it was recorded from. Device IDs enables chaining
of consecutive trips of the same vehicle to rebuild movement over a longer period
of time, which provides a better insight into mobility patterns. However, device
IDs may periodically change for privacy or some other reasons, which clearly limits
the analysis. Thus, to be able to gain knowledge from trajectories a method for
chaining anonymous trajectories and filling missing gaps is required.

The trajectory linking problem, which tries to link trajectories to the user
who generates them, is crucial to research. We refer to a trajectory with an
unlinked owner as an unlinked trajectory, and a trajectory with a clear owner
as a linked trajectory. Assuming a set of unconnected trajectories and a set
of users, the goal of trajectory linking is to find a mapping that connects the
trajectories to their associated users. This problem is difficult because there is
need to simultaneously determine the commonality of a user’s trajectories while
distinguishing the trajectories of various users (i.e., the intra-class similarity and
inter-class difference).

Trajectory-User Linking (TUL) problem is currently an active research area in
location based social networks where the aim is to identify the users who generate
check-in trajectory data. In this study we look at this problem in relation to
trajectories generated by vehicles on a constraint road network.

We seek to investigate the following questions:

1. How can similarity in movement patterns and background information be
applied in trajectory linking?

2. Given multiple identifiers assigned to a vehicle are we able to group the
identifiers and detect those which belong to the same vehicle?

We make the following contributions:

1. We propose to solve the TUL problem by chaining anonymous trajectories
to potential vehicles by considering similarity in movement patterns.

2. A distance function is proposed to measure similarity between trajectories
with a combination of background knowledge in extraction of linked data.

3. A trajectory mining framework is proposed and evaluated on a real dataset
of CAMs generated in C-ITS naturalistic driving environment.

4. The results of data linking are validated using map matching technique.
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6.2 Problem Statement and Methodology

6.2.1 Problem Statement

The vehicles of an Intelligent Transport System (ITS) exchange a lot of messages.
Every message sent is generated with an identifier of the transmitting vehicle. To
respect the user privacy, the identifiers of each vehicle are changed regularly. An
identifier is kept only over a time interval. The issue we want to study is, given
several identifiers, are we able to detect those which belong to the same vehicle?
We adopt the definition of [37] for Trajectory User-Linkability problem:

Let Tvi = {mi1,mi2, . . . ,min} denote a trajectory generated by the vehicle vi
during a time interval, where mij(j ∈ [1, n]) is a message sent from a specific
location at time tj. Given that the identifier is changed after a time period,
trajectory Tx = {m1,m2, . . . ,my} generated by the same vehicle in the next time
interval with a different identifier is considered unlinked. TUL can thus be defined
as:

Suppose we have a number of unlinked trajectories T = {t1, . . . , tm} generated
by a set of vehicles V = v1, . . . , vn(m � n), TUL learns a function that links
unlinked trajectories to the vehicles: T → V

6.2.2 Methodology

In a C-ITS environment cooperative awareness is achieved through exchange of
CAMs which contain position information. This can act as a privacy threat to the
drivers since an eavesdropper can be able to create a detailed mobility pattern of
the driver. To mitigate this, Pseudonym schemes are used to provide anonymous
communication. A pseudonym generally provides authentication for vehicles which
can use multiple pseudonyms in order to guarantee unlinkability of actions [157].
This involves the change of pseudonyms after a preset time period so as to prevent
linkability of one pseudonym to another which can in turn result in the identity
of a vehicle and consequently that of the driver being revealed if one is able to
identify the home address.

Although pseudonyms protect identification, important information in beacon
communications compromises vehicle location privacy. Furthermore, because of
the constant broadcast of CAM signals and the necessity for exact measurements
in the messages for safety-related applications, vehicles are increasingly exposed
to tracking attacks [158]. Furthermore, the vehicles travel inside the confines
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of traffic laws and roadways, making it easier to estimate the target vehicle’s
movement characteristics.

The aim of this study is to generate continuous trajectories using anonymous
data while ensuring that privacy is preserved. Our mining framework starts with
Data pre-processing which transforms the raw trajectory data into a form that
can be correctly analyzed. It entails the identification and correction of errors
in the data. This is followed by feature selection where the most relevant input
variables to the task at hand are identified and selected. There is also a need to
do data transformation by changing the scales and/or variable distributions due
to the use of different scales during data capture.

Trajectory linking: In order to link the trajectories we consider the follow-
ing conditions for triggering CAM generation as specified in ETSI EN 302 637-2
standard [51] (detailed discussion in chapter 3 section 3.4):

• If the absolute difference between the current heading value of the vehicle
and the heading value included in the last transmitted CAM by the same
vehicle exceeds 4°;

• If the distance between the current position of the vehicle and the position
included in the last transmitted CAM by the same vehicle exceeds 4 meters;

• If the absolute difference between the current speed of the vehicle and the
speed included in the last transmitted CAM by the same vehicle exceeds 0.5
m/s.

A CAM is generated every 100 milliseconds at a CAM transmission rate of
10Hz. The generated CAMS contain static data variables such as vehicle length,
width, and the confidence level of heading, speed, acceleration, curvature, and yaw
rate, which may be used in data linking. Furthermore, during a time frame of 100
milliseconds, the speed and geographic position change very slightly. For example,
if a C-ITS vehicle with a length of 4.4 metres and a speed of 80 km/h (22.2 ms)
exists. Within 100 milliseconds, it will have travelled 2.2 metres (illustrated in
figure 6.1). This signifies that the geographic position of the vehicle’s length
overlaps by at least 50%. Therefore, no other vehicle can physically be located
at the same position within that time period. This shows that a vehicle’s CAMs
may be linked depending on their geographic location. The linkability of CAMs
may be used to map entire CAM traces of a given vehicle’s journeys [118].

A first work consists in grouping as much as possible the different identifiers
which represent sub-trajectories of one vehicle. A complete grouping with all the
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Figure 6.1: Representation of movement of a C-ITS vehicle within 100 mil-
liseconds based on a speed of 80 km/h

identifiers of each vehicle may be difficult to obtain but grouping some identifiers
can be obtained. For example, if the last message of an identifier is spatially
and temporally close to the first message obtained with another identifier and the
change in attributes like speed and heading angle is consistent, then the change of
identifier from the last message to the first one is obtained for the same vehicle.
Thus the two identifiers are linked and belong to the same vehicle. In this example,
the work consists in defining a reliable link between two messages with different
identifiers.

Then we detect the contradictions between messages. For instance, if two
messages give the same localization at the same time, then their identifiers cannot
belong to the same vehicle. These contradictions help to define the group of
identifiers for each vehicle by rejecting the identifiers leading to a contradiction.
To enhance the accuracy of trajectory linking, aspects of the vehicle’s mobility
need to be incorporated under Mobility pattern mining step. In addition to
the three constraints for CAM generation, the driving direction of a vehicle is
used as a parameter to filter matched identifiers where by a true match is one
where the direction of motion of the trajectories is the same. Nearest neighbour
(spatial) search is performed to extract the trajectory closest to the end point of
the current trajectory both in space and time. We also extract the first and the
last ten points per identifier for use in mobility similarity analysis.

Similarity calculation step extracts similar trajectories by computing how
close they are in space, time and the similarity in movement direction. Segments
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Figure 6.2: Trajectory mining framework.

are similar if they form a continuous sequence in space and time. The spherical
distance measure is used to compute the minimum distance between two longi-
tude/latitude geometries. Given point p1 and p2, with φ1, φ2 as the latitude of
the two points, λ1, λ2 as the longitude and ∆λ, ∆φ as their absolute differences.
The central angle between them is defined as:

∆σ = arccos
(

sinφ1 sinφ2 + cosφ1 cosφ2 cos(∆λ)
)

(6.1)

The spherical distance d between the two points is defined as 1:

d = r∆σ (6.2)

where r is the radius of the earth(6371 km), ∆σ is the central angle between
the two points.

The framework to be followed in the analysis is shown in figure 6.2.

6.2.3 Dataset Description

In our study we used a real dataset of Cooperative Awareness Messages (CAM) col-
lected in France between September 2018 and August 2019 under the SCOOP@F
project [153], [12]. The purpose of CAMs is to give dynamic information about
the vehicle (i.e. speed, position, heading (direction of motion with regard to true
north) etc.). A vehicle sends CAMs to its neighbourhood using Vehicle-to-Vehicle
(V2V) or Vehicle-to-Infrastructure (V2I) communications. The frequency of CAM
message generation varies from 10Hz to 1Hz (100 milliseconds to 1000 millisec-
onds). Each CAM is uniquely defined by a stationid (pseudonym) and timestamp.

During the SCOOP@F project, the issued pseudonyms were stored in form of
pools for a specific duration, with the lifespan for vehicles being one week. Each
vehicle had a maximum of ten parallel pseudonyms valid during the same time
span. Each vehicle picked a new pseudonym from its pool based on a Round-
Robin algorithm (as shown in figure 6.3). The Round-Robin technique ensures
that the re-use of a pseudonym is not performed in the same order to try and

1https://en.wikipedia.org/wiki/Great-circle_distance
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Figure 6.3: Illustration of the pseudonym change strategy in the SCOOP@F
project [53]

prevent any attempt of tracking. The Pseudonym Change (PC) occurred after
every 40 000 signatures or one hour depending on the condition attained first, and
at each ignition of the vehicle. In the dataset each of the 80 vehicles was assigned
unique stationids which were changed periodically resulting in a total number of
3866 unique IDs and a total number of 10,174,437 CAM messages sent.

In this study, each message has an identifier (id) associated with the trans-
mitting vehicle but this vehicle is unknown. The message also includes a time
stamp (time), the localization of the vehicle with latitude (lat), longitude (long)
and altitude (alt), the speed (speed), the heading angle (angle) of the vehicle and
the drive direction(direction). Thus the message is a data defined with 8 variables:
id, time, lat, long, alt, speed, angle, direction. The variables lat, long, alt are the
three position variables. Speed, angle and direction variables are used as variables
of the behaviour of the transmitting vehicle.

6.3 Experimental Evaluation and Results

We performed trajectory mining using PostgreSQL database with the spatial ex-
tension PostGIS used for storing and processing spatial data. We also used Quan-
tum GIS (QGIS) 2, an open-source cross-platform desktop geographic information
system application that supports viewing, editing, and analysis of geospatial data.
QGIS was majorly used for visualization and map-matching of the trajectories as
a validation step. Map-matching is the process of placing each location point on
a digital map, referencing it to the most relevant neighbouring road connection,
and reconstructing the path between each road link to fully recreate the vehicle’s
or car’s journey. Since our data is highly sampled with 10 points per second,

2https://qgis.org/
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Figure 6.4: Distribution of all trajectories.

the projection of the data points on the base map in QGIS yielded a precise full
path reconstruction of the vehicle trajectories on the roads. Data pre-processing
was done by removing noise from the data. The distribution of all trajectories is
shown in figure 6.4. We then extracted origin-destination pairs from the trajecto-
ries whereby an origin is the first message of each trajectory and a destination is
the last message of the trajectory. Figure 6.5 shows the distribution of the origin
(green colour)-destination (red colour) pairs.

Considering the fact that each vehicle was assigned multiple identifiers, we
sought to link identifiers which occurred on the same day. Taking the destination
points, we extracted the nearest origin point within 170 meters and also filtered out
the results by implementing the CAM generation trigger conditions as additional
constraints. The distance computation was done using the ST_DistanceSpheroid
function in PostgreSQL which gives the linear distance between two longitude/lat-
itude points. We also used the CAM generating frequency of 100 – 1000 millisec-
onds as a constraint in order to get exact matches in time and space.

During matching we were specifically targeting the matches which occurred
on the same date within a short period of time (in few seconds) so as to get
trajectories which are continuous in space and time. Also, as a test for continuity,
the matched trajectories had to be traveling in the same direction during the
change of identifiers. After processing all the trajectories we were able to get 867
matching/linked ID pairs with the month of April having the highest matches at
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Figure 6.5: Distribution of origin-destination pairs.

124 IDs. We selected 45 trajectories generated on the 5th and 6th April 2019
(as shown in figure 6.6) and after processing 10 trajectories linked with others to
generate a total of 35 trajectories. The highest number of linkages per trajectory
was four trajectories where ID 1 linked to 2 then 3 and finally 4 both in time and
space as shown in figure 6.7, thus generating one continuous trajectory as shown
in figure 6.8. To validate the linkage/matching of trajectories, we performed map-
matching to ensure that the trajectories are on the same road and moving in the
same direction.

The fact that the trajectories are constrained by a road network increases the
probability of linking trajectory segments to the generating user given background
knowledge and behavioural aspects of movement like speed, heading angle and
drive direction. However, complete linkage of all segments to the generating users
is a difficult task and might not be possible. This is proven by the fact that out
of 3866 trajectories, we were only able to link 867 pairs which is 22.43% of the
total number of trajectories. The monthly analysis of linked trajectories is shown
in figure 6.9 which indicates the total number of IDs per month, the total number
of IDs linked per month and the linkage percentage.
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Figure 6.6: Distribution of trajectories for the 5th and 6th of April 2019.

Figure 6.7: Continuity validation of linked trajectories.

6.4 Discussion

Trajectory data is ordinarily characterized by raw collection of time ordered spatio-
temporal points which capture the motion of an object in geographical space over
time. Depending on the capability of the device used, these movement track
data at every instant of time can include additional attributes like the speed,
acceleration, direction of motion etc. The trajectories of moving objects express a
concise overview of their behaviour. When analyzing the trajectory data, we do not
only consider the consolidation of the recorded point data but are more concerned
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Figure 6.8: Continuous trajectory after linking four trajectories.

Figure 6.9: Monthly analysis of linked trajectories.

with extracting and understanding the semantic meaning of the trajectory.
Vehicles in an Intelligent Transport Network exchange a lot of messages. Every

message sent is generated with an identifier of the transmitting vehicle. To respect
the user privacy, an identifier is kept only over a specified time interval. The need
that arises is, given that multiple identifiers are assigned to a vehicle, are we able
to group the identifiers and detect those which belong to the same vehicle? We
solved this Trajectory-User Linking problem by chaining anonymous trajectories
to potential vehicles by considering similarity in movement patterns.

Our objective was to link identifiers which occurred on the same date within a
short period of time (in few seconds) so as to get trajectories which are continuous
in space and time. Also, as a test for continuity, the matched trajectories had
to be traveling in the same direction during the change of identifiers. The fact
that the trajectories are constrained by a road network increases the probability
of linking trajectory segments to the generating user.

Based on our analysis, it is possible to link trajectories to the generating users
if other distinguishing attributes (like speed, heading angle, altitude and drive
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direction) and background knowledge on generation of the messages are consid-
ered when performing similarity analysis. It is also worth noting that the use of
pseudonyms as a privacy and security measure has been proven to be a viable
approach since we were not able to break the unlinkability requirement.



Chapter 7

Conclusion

In this thesis, we addressed the problem of analyzing IoT data with a focus on
anomaly detection in data streams and driver behaviour analysis. A review of the
state of the art was realized in chapter 2 where a detailed discussion on smart
agriculture, ITS, Anomaly detection, trajectory data mining, speed profile analy-
sis, and trajectory user linking approaches was presented. We made contributions
in the contexts of smart agriculture and C-ITS, with a focus on C-ITS.

A significant amount of development has been achieved in the area of anomaly
detection systems, with numerous techniques proposed to address the issue of
anomaly identification. Anomaly detection’s application areas are likewise highly
diverse, necessitating a dependable and accurate solution. Unsupervised learning
is highly preferred for real-life applications, especially in anomaly detection since
there is a lot of data without labels in this scenario. In chapter 4, we proposed a
new algorithm based on an ensemble anomaly detector called Enhanced Locally
Selective Combination in Parallel outlier ensembles (ELSCP) for stream anomaly
detection. On this basis, we defined an unsupervised data-driven methodology
that is applied in three case studies, with the objective of detecting anomalies on
the fly.

In the first case study, we performed unsupervised anomaly detection on crop
data where we studied the link between crop state (damaged or not) and detected
anomalies by analysing data for crop damage recorded by farmers over a period of
three harvest seasons. On the basis of our results, it was possible to link anomalies
extracted from multivariate analysis of various features to damaged crop state
at the end of harvest. The second study is dedicated to anomaly detection in
obtained data streams from GPS tracks of combine harvesters collected during
wheat harvest. On the basis of our results, deviant combine-harvester behaviour
could be effectively detected using our methodology. The performance obtained
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was evaluated against other approaches, and the results obtained are relevant
(based on known performance metrics) with the possibility of its implementation
in real time to detect anomalies and assist farmers during harvest. Therefore,
anomaly detection could be integrated in the decision process of farm operators
to improve harvesting efficiency and crop health.

In the third case study, C-ITS CAM messages collected from a collaborative
project between road operators, car manufacturers and academia were analysed
in order to detect anomalies on the road. We consider anomalies which could
have consequences such as an accident/incident or stalled vehicle on the road
which forces the vehicles on that particular section of the road to reduce their
speed substantially as they encounter the incident point. We have used streaming
approaches since in real life C-ITS environments the anomaly detection would
be implemented in the road side units which collect a lot of messages from the
vehicles within range. This means that it would have to process the messages on
the fly due to many reasons (memory limitation, response time, etc.). Based on
our results, ELSCP is able to detect anomalies from CAMs. This detection could
be integrated in the decision process of road operators in order to improve safety
and traffic flow. Timely detection of anomalies is critical especially for emergency
response teams resulting in improved efficiency in rescue operations.

In chapter 5, we considered the analysis of speed signatures generated from
C-ITS messages with the aim of understanding driving behaviour evolution under
a naturalistic driving environment. We have shown that with the application of
segmentation and aggregate statistics, one is able to get a better understanding
of general driving behaviour and also infer information that relates to the road
condition and traffic situation. With the current uptake of C-ITS there remains
a challenge of insufficient amount of data for a more detailed analysis of driving
profiles on a microscopic level (route level).

In chapter 6, we considered the trajectory-linking problem and applied it to
messages generated by vehicles in C-ITS. Based on our analysis, it is possible
to link trajectories to the generating users if other distinguishing attributes (like
speed, heading angle, altitude and drive direction) and background knowledge on
generation of the messages are considered when performing similarity analysis. It
is also worth noting that the use of pseudonyms as a privacy and security measure
has been proven to be a viable approach since we were not able to break the
unlinkability requirement.
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7.1 Limitations

The first limitation of ELSCP is on the extraction of neighbouring data points
that constitute the local region of a test instance using distance metrics applied
to KNN Ball Tree algorithm. This approach brings two challenges:

1. It takes much time to determine the nearest neighbours of the test instance;

2. The performance in a multidimensional space may be affected, especially
when many features or attributes are irrelevant.

To remedy this problem, local-region definition could be solved by the use
of fast approximate methods [41] or by prototyping [42], which can significantly
reduce the required time to set up the local domain because not all data points are
required by these techniques. The second limitation is on the generation of the
pseudo-ground truth, where we applied a simple maximisation technique. This
could be improved by considering exact strategies, for instance, with the active
pruning of base detectors [43].

The third limitation is on the availability of C-ITS data. With the current
uptake of C-ITS there remains a challenge of insufficient amount of data for a more
detailed analysis of driving profiles on a microscopic level (route level). With the
current data it is not possible to effectively analyse the data for hourly or weekly
analysis of driving behaviour on specific roads.

7.2 Perspectives

Our future work will focus on addressing the calibration of the outlier scores by
introducing dependent loss functions since a false negative in smart agriculture
and C-ITS scenarios can induce some uncomfortable issues especially on crop
production, farm efficiency and road safety.

We also propose to introduce automatic parameter calibration with the aim of
improving the algorithm’s chances of deployment for farm and road infrastructure
operators. Another critical part will be process optimization so as to gain in
complexity with some fine adjustments of the ensemble learning decision rules for
efficiency improvement.

The configuration of local subspaces can also be improved to decrease the
amount of time spent locating a test instance’s nearest neighbours by replacing
the kNN search strategy with a clustering technique. We also propose to develop
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the ELSCP methodology into a tool that can be used for real-time detection and
analysis of data streams.

In the analysis of speed signatures and driving profiles, it will be of interest to
do a more detailed analysis of the data to identify factors causing or influencing
the observed behaviour, especially on the spike points. The DENM messages can
also be used to extract points where incidents were reported and then use these
locations as POIs for traffic incident detection. By comparing the extracted speed
signatures of road segments against the known incident points from the DENMs,
it could now be possible to get a better understanding on the evolution of driving
behaviour.

To solve the data insufficiency problem in C-ITS, the speed signatures gener-
ated in real naturalistic driving environment in this study can be used to generate
synthetic data from the learned characteristics of movement patterns of the ve-
hicles. The signatures can also be applied in Autonomous vehicles where the
signatures can be used as inputs in order to check if the driving is following the
expected naturalistic speed behaviour.

There are a number of pseudonym change strategies in C-ITS which affect how
identifiers are changed. The data used in this study applied a round robin strategy.
It would be interesting to evaluate the data linking methodology developed in this
thesis on data from other change strategies as a way of validating its efficacy.
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Approches d'exploration des flux de données dans les systèmes de transport intelligents et l'agriculture de 
précision  

Dans cette thèse, nous abordons le problème de l'analyse des données IoT en nous concentrant sur la détection des anomalies dans les flux de 

données et l'analyse des comportements. L'apprentissage non supervisée est intéressant pour les applications de la vraie vie, en particulier pour 

la détection des anomalies, car il y a beaucoup de données sans étiquettes dans ce scénario. Nous proposons une technique ELSCP (Enhanced 

Locally Selective Combination in Parallel outlier ensembles). Nous définissons une méthodologie non supervisée axée sur les données et nous 

l'appliquons à trois études de cas: la détection des dommages causés aux cultures dans un ensemble de données d'agriculture, l'application aux 

traces GPS des moissonneuses-batteuses et l'application aux messages issus des systèmes de transport intelligent coopératif (C-ITS). L'accent 

est mis sur l'identification des anomalies qui peuvent être liées à l'état ou à la santé des cultures pendant la récolte, celles qui ont un impact sur 

l'efficacité de la récolte et celles qui ont un impact sur la sécurité et le traffic routier. D'après nos résultats, il est possible de relier les anomalies 

extraites à l'état des cultures endommagées à la fin de la récolte. De même, nous avons été en mesure de détecter le comportement déviant de 

la moissonneuse-batteuse et d'identifier les anomalies sur les routes. Par conséquent, la détection des anomalies pourrait être intégrée dans le 

processus de décision des exploitants agricoles et routiers afin d'améliorer l'efficacité de la récolte, la santé des cultures, la sécurité routière et 

la fluidité du trafic. 

Deuxièmement, nous avons considéré l'analyse des signatures de vitesse générées à partir des messages C-ITS dans le but de comprendre 

l'évolution du comportement de conduite dans un environnement de conduite naturalle. Nous avons montré qu'avec l'application de la 

segmentation et des statistiques agrégées, on est capable d'obtenir une meilleure compréhension du comportement général de conduite et de 

déduire des informations relatives à l'état de la route et à la situation du trafic routier. Enfin, nous avons examiné le problème de la liaison de 

trajectoires et l'avons appliqué aux messages C-ITS. Suite à notre analyse, il est possible de relier les trajectoires aux utilisateurs qui les ont 

générées si d'autres attributs discriminants et des connaissances de base sur la génération des messages sont pris en compte pendant l'analyse 

de similarité. 

Mots-clés en français: Détection d'anomalies, Flux de données, Systèmes de transport intelligents, Agriculture intelligente, Détection 

d'incidents de circulation, Apprentissage non supervisé 

Data Stream Mining Approaches in Intelligent Transportation Systems and Precision Agriculture  

In this thesis, we address the problem of analysing IoT data with a focus on anomaly detection in data streams and behaviour analysis. 

Unsupervised learning is highly preferred for real-life applications, especially in anomaly detection since there is a lot of data without labels in 

this scenario. We propose an Enhanced Locally Selective Combination in Parallel outlier ensembles (ELSCP) technique. We define an unsupervised 

data-driven methodology and apply it in three case studies; detection of crop damage in crop dataset, application to GPS logs of combine 

harvesters and application to Cooperative Intelligent Transport System (C-ITS) messages. The focus is the identification of anomalies that can be 

linked to crop state/health during harvest, those that have an impact on harvest efficiency and those impacting road safety and efficiency. Based 

on our results, it is possible to link anomalies extracted to damaged crop state at the end of harvest. Also, we were able to detect deviant 

behaviour of combine-harvester and to identify anomalies on the roads. Therefore, anomaly detection could be integrated in the decision 

process of farm and road operators to improve harvesting efficiency, crop health, road safety and traffic flow. 

Secondly,  we considered the analysis of speed signatures generated from C-ITS messages with the aim of understanding driving behaviour 

evolution under a naturalistic driving environment. We have shown that with the application of segmentation and aggregate statistics, one is 

able to get a better understanding of general driving behaviour and infer information that relates to the road condition and traffic situation. 

Finally, we considered the trajectory-linking problem and applied it to C-ITS messages. Based on our analysis, it is possible to link trajectories to 

the generating users if other distinguishing attributes  and background knowledge on generation of the messages are considered during similarity 

analysis. 

Mots-clés en anglais: Anomaly detection, Data streams, Intelligent Transportation Systems, Smart farming, Traffic incident detection, 

Unsupervised learning 
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