

DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY UNIVERSITY EXAMINATIONS 2014/2015

FOURTH YEAR SEMESTER I EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MECHATRONICS ENGINEERING, ELECTRICAL AND ELECTRONIC ENGINEERING & TELECOMUNICATION AND INFORMATION ENGINEERING

SMA 2480 COMPLEX ANALYSIS

DATE: 18TH AUGUST 2014 TIME: 8.30AM-10.30AM

QUESTION ONE (30MKS)

- a) Clearly distinguish between conformal and isogonal transformations (2mks)
- b) State the Schwarz-Christoffel transformation and hence prove that for a closed polygon the sum of its exponents is equal to -2 (4mks)
- c) Find the image of the circle |Z| = under the transformation w = 5z (4mks)
- d) Use Cauchy's integral formula to evaluate $\int_{c} \frac{z+4}{z^2+2z+5} dz$ where c is |z+1-i|=2

(5mks)

e) State the Cauchy's residue theorem and hence evaluate $\int_{c}^{c} \frac{e^{z}}{(z^{2} + f^{2})^{2}} dz$ where c is |z| = 4

(5mks)

- f) Use the method of residues to evaluate $L^{-1}\left\{\frac{1}{(s+1)(s-2)^2}\right\}$ (5mks)
- g) Show that u is harmonic in some domain and find a harmonic conjugate v when $u = y^3 3x^2y$ (5mks)

QUESTION TWO (20MKS)

a) Evaluate
$$L^{-1} \left\{ \frac{1}{\left(s^2 + 1\right)^2} \right\}$$
 using residues method (7mks)

b) Evaluate
$$\int_{1+i}^{2+4i} z^2 dz$$
 along straight lines $(1+i)$ to $(2+i)$ and then to $(2+4i)$ (6mks)

c) Evaluate
$$\int_0^{2f} \frac{\cos 3_n}{5 - 4\cos_n} d_n$$
 (7mks)

KIMATHI UNIVERSITY LIBRARY

QUESTION THREE (20MKS)

- a) Prove that a necessary condition for w = f(z) = u(x, y) + iv(x, y) to be analytic is that the Cauchy Riemann's equations be satisfied in the region (7mks)
- b) Given the transformation w = f(z) = u + iv where w is analytic in a region \Re then show

that
$$J\left(\frac{u,v}{x,y}\right) = \left|f'(z)^2\right|$$
 (6mks)

c) Determine the region of the w-plane into which the region of the z-plane bounded by the straight lines x = 1, y = 1 and x + y = 1 is mapped by the transformation $w = z^2$ (7mks)

QUESTION FOUR (20MKS)

- a) Prove that $\cos(x+iy) = \cos x \cosh y i \sin x \sinh y$ (4mks)
- b) Verify whether the function $u(x, y) = \log \sqrt{x^2 + y^2}$ satisfies the Laplace equation (i.e. harmonic)

c) Show that
$$\int_0^\infty \frac{\cos mx}{x^2 + 1} dx = \frac{f}{2} e^{-m}, m > 0$$
 (6mks)

d) Using contour integration evaluate $\int_0^{2f} \frac{d_n}{5 + 3\sin_n}$ (6mks)

QUESTION FIVE (20MKS)

- a) Find the bilinear transformation which the points z = 0, z = 1 and $z = \infty$ into the points w = i, w = 1 and w = -i (5mks)
- b) Find the image of the region bounded by the lines x = 0, y = 0 and x + y = 1 in the z 1 plane by the mapping $w = ze^{if/4}$ (7mks)

c) Evaluate
$$\int_0^\infty \frac{dx}{x^4 + 1}$$
 (8mks)