DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY UNIVERSITY EXAMINATION 2014/2015

SUPPLEMENTARY/SPECIAL EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC/MECHATRONIC/ TELECOMMUNICATION AND INFORMATION ENGINEERING

SMA 2480 COMPLEX ANALYSIS

QUESTION ONE (30MKS)

a) Prove that the function $u=x^{2}-y^{2}-2 x y-2 x+3 y$ is harmonic
b) Investigate the analyticity of the function $f(z)=\left|z^{2}\right|$ at any point z
c) Use the Cauchy residue to evaluate $\oint_{c} \frac{2 z^{2}+1}{(z-1)^{3}} d z$
d) If $f(z)=u+i v$ is analytic, find $f(z)$ if the real part is given by $u=\frac{\sin 2 x}{\cos 2 x+\cosh 2 y}$
e) Under the transformation $w=i z+i$ show that the half plane $x>0$ maps into the halfplane $v .>1$
f) Evaluate $L^{-1}\left\{\frac{s}{(s+1)^{3}(s-1)^{2}}\right\}$

QUESTION TWO (20MKS)

a) Show that the function $x^{2}-y^{2}+2 y$ is harmonic in the w-plane under the transformation $z=w^{2}$
b) Evaluate $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{5+4 \sin \vartheta}$ using contour integration
c) Find a bilinear transformation which maps the points $1+i,-i, 2-i$ at the z-plane into the points $0,1, i$ of the w-plane
(7mks)

QUESTION THREE (20MKS)

a) Verify whether the function $u=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$ is harmonic and hence find the conjugate v
b) Evaluate $L^{-1}\left(\frac{s^{2}}{\left(s^{2}+4\right)}\right)$ justifying all the steps
c) Find the transformation which will map the interior of the infinite strip bounded by the lines $v=0$ and $v=\pi$ of the w-plane on to the upper half of the z-plane

QUESTION FOUR (20MKS)

a) Use the Cauchy integral formula to evaluate $\int_{c} \frac{(1+z) e^{z}}{z^{2}(z+1)^{2}} d z$ where $c:(z+i)=\frac{1}{2} \quad$ (6mks)
b) In aerodynamics and fluid dynamics, the functions ϕ and φ in $f(z)=\phi+i \varphi$ where $f(z)$ is analytic, are called the velocity potential and stream function respectively. If $\phi=x^{2}+4 x-y^{2}+2 y$, find φ and $f(z)$
c) Using contour integration, evaluate $\int_{0}^{\alpha} \frac{x^{2} d x}{\left(x^{2}+9\right)\left(x^{2}+4\right)}$

QUESTION FIVE (20MKS)

a) Find the map of the circle $|z|=\lambda$ by the transformation $w=\sqrt{2}(1+i) z$
b) Show that an arc in the z-plane through the point z_{0} is magnified in the ratio $\left|f\left(z_{0}\right)\right|: 1$ in the w-plane under the transformation $w=f(z)$, where $f(z)$ is an analytic function and $f^{\prime}(z) \neq 0$
c) Evaluate $\int_{0}^{\alpha} \frac{d x}{x^{4}+1}$

