COMPLEX ANALYSIS SMA 2480 TIE Y3S2
Instructions: Answer Question ONE and any other Two questions.

Question One

a) Solve for $z: 3 z \bar{z}-4 z=3-6 i$.
(5 marks)
b) Let $z_{1}=i$ and $z_{2}=1-i$. Find $\frac{z_{1}}{z_{2}}$ in polar form.
c) Show that $f(z)=\bar{z}$ is non analytic anywhere.
d) Evaluate : $\int_{(2,0)}^{(0,2)}\left(z^{2}+3 z\right) d z$.
(5 marks)
e) Let $f(z)=u+i v$ be analytic. Show that $u=x^{2}-y^{3}+3 x-2$ is a harmonic function and find its harmonic conjugate, v .
f) Find the complex potential due to a line of charge q per unit length perpendicular to the z plane at $z=0$
(6 marks)

Question Two

a) State and prove the cauchy's eimman equations.
(10 marks)
b) Let the function f be defined by $f(z)=(\bar{z})^{2}$. Is $f(z)$ analytic anywhere in the z plane. Give your reasons.
c) Find the potential due to line charge q per unit length at and a line charge $-q$ per unit length at $z=\bar{z}_{0}$.

Question Three

a) Define bilinear transformation
(2 marks)
b) Determine the region of the w-plane into which the region bounded by $x=1, y=1$ and $x+y=1$ is mapped by the transformation $w=z^{2}$. Show the region graphically.
c) Differentiate between conformal and isogonal mapping.

Question Four

a) State the residue theorem
b) Evaluate: $\frac{1}{2 \pi i} \int_{c} \frac{e^{z t}}{z^{2}\left(z^{2}+2 z+2\right)} d z$ around a circle: $|z|=3$.
c) Evaluate (i) $\lim _{z \rightarrow i} \frac{z^{10}+1}{z^{6}+1}$

$$
\begin{equation*}
\text { (ii) } \frac{d w}{d z} \text { if } w^{3}-3 z^{2} w+4 \ln z=0 \tag{8marks}
\end{equation*}
$$

Question Five

a) (i) State the Cauchy's integral formulae.
(ii) Evaluate $\int \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$ by Cauchy's integral formula (8 marks)
b) Evaluate $\int_{(0,3)}^{(2,4)}\left(2 y+x^{2}\right) d x+(3 x-y) d y$ along
(i) The parabola $x=2 t, y=t^{2}+3$
(ii) Straight lines from $(0,3)$ to $(2,30$ and then from $(2,3)$ to $(2,4)$ (3marks)
(iii) A straight line from $(0,3)$ to $(2,4)$ (3 marks)

