

DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY UNIVERSITY EXAMINATION 2021/2022 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER & FOUTH YEAR SECOND SEMESTER SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF TECHNOLOGY IN BUILDING & CONSTRUCTION

TBD 2303: ENGINEERING MATHEMATICS I

DATE: 19TH APRIL 2022 TIME: 2-4 P.M.

INSTRUCTIONS: Answer Question <u>ONE</u> and any other <u>TWO</u> Questions

QUESTION ONE (30 MARKS)

a) Evaluate

i) $\lim_{x \to \infty} \frac{\sqrt[3]{5+8x^6}}{7-5x^2}$ (5 marks)

ii)
$$\lim_{x \to 0} \frac{e^{2x} - e^{-2x}}{\sin x}$$
 (5 marks)

(4 Marks)

b) If the function $f(x) = \begin{cases} \frac{4-x^2}{x-2} & x \neq 2\\ P & x = 2 \end{cases}$

is continuous, find the value of P

c) Show that if
$$u = \ln \sqrt{x^2 + y^2}$$
 then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ (5 marks)

- d) Find the maclaulin series for the function $f(x) = e^{3x} \sin 2x$ (6 marks)
- e) Given the function $z = xy^2 8x$ and that x = 1, y = -3, $\Delta x = -0.01$ and $\Delta y = 0.02$ Determine value of Δz and dz (5 marks)

QUESTION TWO (20 MARKS)

a) i) State the mean value theorem of differential calculus.

ii) Find the mean value of the function $f(x) = 2x^2 - 7x + 10$ on the interval [2, 5]

(5 marks)

- b) Find the value of $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$ given $z = \frac{\sin x^3 y}{x^3}$ where z is a function defined by two variables x and y (5 marks) c) Find the extreme values of the function $f(x, y) = x^2 + 8xy + 7y^2 = 0$ (5 marks)
- d) Use Maclaurin's series approximation to express $\log_e(1+x)$ as a polynomial of the fourth degree. Use your result to evaluate $\log_e 1.2$ (5 marks)

QUESTION THREE (20 MARKS)

a) State Rolle's theorem

Hence justify Rolle's Theorem for the function $f(x) = x^3 - 3x^2 + x + 1$ on the interval $\begin{bmatrix} 1, 1 + \sqrt{2} \end{bmatrix}$ (5 marks)

b) Find the value of
$$\frac{\partial^2 f}{\partial x \partial y}$$
 for the function $f(x, y) = y + x^2 y^{-2} + 4y^3 e^{-4x} - \ln(y^2 + x)$
(4 Marks)

- c) A rectangular box, open at the top, is to have a volume of 32 cubic feet. What must be the dimensions so that the total surface is a minimum? (6 marks)
- d) By considering the paths along x = 0, y = 0 and $kx^2 = y$ show that the

function
$$f(x,y) = \frac{x^4 - y^2}{x^4 + y^2}$$
 has no limit as $(x, y) \rightarrow (0, 0)$ (5 marks)

QUESTION FOUR (20 MARKS)

- a) Find the extrema of the function f(x, y) = 4x 2y subject to constraint $x^2 + y^2 = 1$ using the Lagrange's multiplier. (4 marks)
- b) Find values of A and B for which the function is continuous for all values of x

$$f(x) = \begin{cases} Ax - B & x < -1 \\ 2x^2 + 3Ax + B & -1 \le x \le 1 \\ 4 & x > 1 \end{cases}$$
(5 marks)

c) Given that $f(x, y) = \sin xy + xe^{y}$ show that

$$\frac{\partial f}{\partial x}\Big|_{(0,3)} - \frac{\partial f}{\partial y}\Big|_{(2,0)} = e^3 - 1$$
 (4 marks)

d) Use Taylors approximation to express $\cos\left(\frac{f}{3}+h\right)$ in ascending powers of h up to h^4

Taking $\sqrt{3} = 1.7321$ and 5.5° as 0.09599 radians, find the value of sin 54.5 (7 marks)

QUESTION FIVE (20 MARKS)

- a) State Rolle's theorem, hence verify Rolle's theorem for $f(x) = 1 + \cos 2x$ in the interval [0, f] (4 marks)
- b) Find Taylor series expansion of the integral at $x_0 = 0$ $\int x^3 \ln 4x$ (5 marks)
- c) Determine the critical points of the function $f(x, y) = x^2 + 3xy + y^2$ (5 marks)
- d) Use limits to find all the asymptotes

$$f(x) = \frac{x^3 - x}{x^2 - 6x + 5}$$
 (6 marks)