DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY
University Examinations 2013/2014 Academic Year
FIRST YEAR SPECIAL/SUPPLEMENTARY EXAMINATIONS FOR THE DEGREE BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING/TELECOMMUNICATION \& INFORMATION ENGINEERING/MECHANICAL ENGINEERING/GEGIS/GEOSPATIAL INFORMATION SYSTEMS

SPH 2170 : PHYSICS/SPH 2173 : PHYSICS FOR ENGINEERS

DATE: $\quad 17^{\text {TH }}$ JULY 2014
TIME: 8.30 AM - 10.30 AM

Instructions

1. Answer QUESTION ONE and any other TWO questions
2. Use standard notation and SI units only

Some useful constants
(i) $\quad g=10 m \cdot s^{-2}$
(ii) Density of water $D=1.0 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$
(iii) Water specified heat capacity $c_{W}=4.2 \times 10^{3} \mathrm{~J} . \mathrm{kg}^{-1} \mathrm{~K}^{-1}$
(iv) Standard atmospheric pressure $p_{\text {atm }}=101.3 \mathrm{kPa}$
(v) Universal gas constant $R=8.314 \mathrm{~J} . \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
(vi) Specific heat capacity of ice $c_{I}=2.1 X 10^{3} \mathrm{~J} . \mathrm{kg}^{-1} \cdot \mathrm{~K}^{-1}$
(vii) Latent heat of fusion of ice $\lambda_{I}=3.6 \times 10^{5} \mathrm{~J} . \mathrm{kg}^{-1}$
(viii) Latent heat of vaporization of water $\lambda_{W}=2.2 \times 10^{6} \mathrm{~J} . \mathrm{kg}^{-1}$
(ix) Stefan -Boltzmann constant $\sigma=5.67 \times 10^{-8} W \cdot m^{-2} K^{-4}$

QUESTION ONE:

(a) Define these terms as they are used in mechanics and give the SI unit (name and symbol) of the quantity where appropriate
(i) Kinematics
(ii) Point particle
(iii) Position vector
(iv) Reference frame
(v) Trajectory
(vi) Displacement
(vii) Velocity
(viii) Tangential acceleration
(ix) Centre of curvature
(x) Centripetal force
(b) Define the following terms
(10 marks)
(i) Thermodynamics
(ii) Temperature
(iii) Specific heat capacity
(iv) Radiation of heat
(v) Specific heat of vapourisation

QUESTION TWO
OPTIONAL
20 MARKS
(a) Briefly with the aid of diagram(s), explain the procedure of graduating a mercury thermometer
(3 marks)
(b) Water ice is the only substance which decreases in volume as it melts! Could you explain this
(2 marks)
(c) A certain 6 g bullet melts at $300^{\circ} \mathrm{C}$ and has a specific capacity of $0.20 \frac{\mathrm{cal}}{\mathrm{g} \cdot{ }^{\circ} \mathrm{C}}$ and a heat of fusion of $15 \frac{\mathrm{cal}}{\mathrm{g} .}$. How much heat is needed to melt the bullet if it is originally at $0^{\circ} \mathrm{C}$
(4 marks)
(d) Write down the equation of state of an ideal gas. Give the name, the value and the SI unit of each symbol involved
(6 marks)
(e) The sun may be treated as a body at 5800 K . Given that its radius is $7 \times 10^{8} \mathrm{~m}$ and $\varepsilon=1$, what is the total power radiated?
(5 marks)

QUESTION THREE

OPTIONAL

20 MARKS
(a) Distinguish a scalar and a vector physical quantity. Give two examples for each. Explain the parallelogram rule
(b) Deduce the expressions for velocity and displacement for rectilinear uniformly accelerated motion
(6 marks)
(c) The position of a particle is by $x=4-5 t+3 t^{2}$ (i) What is its instantaneous velocity and (ii) acceleration at $t=3 s$ (iii) At what time the particle is at rest?
(6 marks)
(d) An arrow fired vertically up lands $8 s$ later! Find (a) Its maximum height (b) Its initial velocity
(a) A circular steel wire of length $1.8 m$ must not stretch more than 1.5 mm when a load of 400 N is applied. What is the minimum diameter required? The Young's modulus for steel is $200 \times 10^{9} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
(5 marks)
(b) The displacement of a block attached to a spring is given by $x(t)=0.2 \sin (12 t+0.2), m$. Find:
(i) The acceleration when $x=0.08 m$
(ii) The earliest time (>0) at which $x=+0.1 m$ with $(v<0)$
(c) A simple pendulum of length $\ell=0.4 m$ is released when it makes an angle of 20° with the vertical. Find:
(i) Its period
(ii) Its speed at the lowest point
(iii)If the mass of the bob is 50 g what is its total energy?
(d) The wave function of a wave is: $y(x, t)=0.02 \sin (0.4 x+50 t+0.8)$ where x and y are in cm .

Find:
(i) The wavelength
(ii) The phase constant
(iii)The period
(iv) The amplitude
(v) The wave velocity
(vi) The particle velocity at $x=1.0 \mathrm{~cm}$ and $t=0.5 \mathrm{~s}$
(6 marks)

QUESTION FIVE:

(a) State and write down the mathematical expression of each of the Newton's laws of motion
(6 marks)
(b) Define the following terms and give the mathematical expression and the SI unit for each: (i) Work (ii) Potential elastic energy(iii) kinetic energy (iv) power
(6 marks)
(c) A 90 g hockey puck with initial velocity of $10 \frac{\mathrm{~m}}{\mathrm{~s}}$ slows down to $8 \frac{\mathrm{~m}}{\mathrm{~s}}$ in 12 m . Find: (a) the frictional force, (b) the coefficient of friction
(d) A 500 g block is dropped from a height of 60 cm above the top of a vertical spring whose stiffness constant is $k=120 \frac{\mathrm{~N}}{\mathrm{~m}}$. Find the maximum compression

