
A Study of Different Optimization Methods of Tool Path Machines
(Tool Path Optimization by Using Genetic Algorithm)

Seyyed Meisam Taheri1, a, Minoru Sasaki2, b, Kojiro Matsushita3, c, Harrison Ngetha4,

d, Satoshi Ito5, e
1,2,3,4,5 Department of Mechanical Engineering, Faculty of Engineering, Gifu University

a
 s3812005@edu.gifu-u.ac.jp (corresponding author), b sasaki@gifu-u.ac.jp, c kojirom@gifu-u.ac.jp,

d s3812007@edu.gifu-u.ac.jp, e satoshi@gifu-u.ac.jp

Keywords: Production Line, Optimization, Tool
Path Machine, Genetic Algorithm, CNC

Abstract. Operation optimization for the
computer numerical control (CNC) machines is
an important issue in the industry since it directly
influences the cost of production. So far, lots of
researchers have applied some optimization
techniques and made achievements in improving
the speeds of the CNC machines. The Tool Path
Machine (TPM) is a cutting machine which has
been used for cutting, drilling or some other
operations on a specific object. The current
TPMs are not that much flexible in handling
operations on different objects and on different
planes, as well as, cutting sequences are not
efficient enough for some tasks and situations for
the CNC machines. In this research study, we
also aim to optimize the Tool Path Machine
(TPM) with one of the optimization techniques -
Genetic Algorithm(GA) for enhancing the
manufacturing process time efficiency. By
changing the condition in system and the
coordinate of points, the machine will be able to
reconfigure the processes and find another way
to accomplish the task in the fastest possible
way. This makes the TPM more flexible to
accept new tasks just by giving the machine the
coordinates. To achieve this goal, a study of the
previous works which had been done in this area
of interest was undertaken and a comparison of
their techniques and methods was carried out to
better understand the optimization techniques
and the GA methods which have been used in
their study.

1. Introduction

In the manufacturing it is vital to reduce
processing time to achieve manufacturing
efficient leading time [1,2]. Some researchers
have dome some researches to reduce the cutting
time [3]. Moreover, Castelino et al. proposed a
heuristic algorithm to reduce the non-productive
time of a tool by connecting the tool paths
optimally [4]. Sequence selection of cutting tool
aimed to minimize the cost of the tool wear and
machining time.
In this paper, the combination of GA and the
modified Traveling Salesman Problem (TSP)
has been introduced. TPM is representing the
sales man, and the operations are representing
cities in TSP. In this paper, Genetic Algorithm
(GA) will be applied to find shortest and efficient
ways.

In the problem statement section, we briefly
explain what are the difficulties we are facing to
apply GA to TPM.

2. Genetic algorithm

In this study, genetic algorithm (GA)
employed to control and find the best possible
ways to minimize the total machining distance
and reduce processing time. Genetic algorithms
are random search methods that are a
representation of natural biological evolution [5].

Genetic algorithms operate based on initial
population which are potential solutions for a
problem, and by applying the principle of
survival of the produced fitness it goes to find a
better and better solution for the problem. In
each generation, individuals are created and
based their finesses and this process will be
continued until evolution of population of
individuals getting better to suited to their
environment, just as in natural adaptation the
individuals keep changing to become better.

By improving the population, GA searches better
solutions, and the search is based on the origin of
survival of the fittest individuals.

fitness function is measuring the possible
solution quality. After generating initial
population, GA calculates the fitness value for
each chromosome of the population based on the
fitness function. Then optimization condition is
considered. If the result is ideal, then the result
can be considered as the best solution. new
population will be regenerated by using GA
operators (selection, cross- over, and mutation)
if the solution is not optimal.

2.1. Chromosome definition

In GA, first step is to constructing chromosomes.
To do this, we should identify the variables of
given problem. In this research chromosomes are
random numbers generated with GA. the
numbers are coordinates of some points which
need to be drilled by CNC machine.

2.2. Fitness function

Fitness function is a measure of quality of an
individual. In this study, fitness function is
measuring the distance and time of drilling for a
node to another node.

2.3. Selection

In this section, individuals are chosen based on
the fitness. There are some selections methods
which can be used to select individuals, which
has been said that using an appropriate selection
technique is an important step in genetic

algorithm [6].

2.5. Crossover

Crossover is the way of moving through the
space of possible solutions based on the
information gathered from the existing solutions.

2.6. Mutation

Mutation is an innovation in GA. Mutation is
really important, some of the evolutionary
algorithms use this operator as the only form of
search [7]. Unlike Crossover, mutation
solves the local minimum problems. The
heuristic and meta heuristic algorithms may face
a problem in local minimum and can not find a
better solution, so with mutation there is a
chance to prevent to drop in a local minimum.

3. Problem statement

The problem statement in this research can be
summarized in the following points:

4.1 in TSP the salesman leaving point and
arriving point is the same point, where the
cutting tool have two different arrival and
departure points.

4.2 The salesman is not changing during his trip
in TSP, but in TPM tools maybe need to be
replaced many times during the trip

4.3 There are maybe different conditions,
obstacles need to be avoid, as well as, changing
one task which machine needs to be reconfigure
as fast as possible.

The distance between each node (operations
node) must be calculated. The distances between
operations end point and changing point must be
calculated as well.

1: If the current operation and the next operation
use the same cutting tools, then it can be
calculated using Eq. 1:

D= (𝐗𝟐 − 𝐗𝟏)𝟐 + (𝐘𝟐 − 𝐘𝟏)𝟐 + (𝐙𝟐 − 𝐙𝟏)𝟐 + 𝐙𝐒	 Eq.1

where (x2 , y2, z2) represents the coordinate of
the end-point and (x1,y1,z1) is the coordinate of
the start-point.

ZS in Eq. 1 shows a constant value, which equals
to the vertical distance from the surface to a safe
position which the tool can move horizontally
without touching obstacles or the work peace.

2: If the current operation and the next operation
use different cutting tools, then, the distance, DSi,
between the two nodes can be calculated using
Eq. 4. If cutting tool is different between two
points, machine tool should go back to Zero
point and change the cutting tool (0, 0, 2) in this
case Distance equal:

Eq. 4

D= 𝐗𝟏 − 𝟎 𝟐 + 𝐘𝟏 − 𝟎 𝟐 + 𝐙𝟏 − 𝟎 𝟐 +
(𝟎 − 𝐗𝟐)𝟐 + (𝟎 − 𝐘𝟐)𝟐 + (𝟎 − 𝐙𝟐)𝟐 + 𝐙𝐒

To find the edges we can find the biggest Z to
avoid any collusion by using following pseudo
code:

 if (x or y = (range of specific area))
or (x or y will pass the area) {
 check the z and (z1+new z)
}

TPM steps are as follow:

1. Start the machine

2. get the point (x,y,z)

3. check the highs level of points

4. check the start point of current and next
point position

5. check the end of each node

6. from the current node to the next node
check all Z axis

7. if there is a Z higher than current Z, then
current Z+ New Z

8. if the next point is in a Lower Z and there is
not any higher Z in the way to next node
then new Z-Current Z

Operation conditions:

To calculate Distance, D= From the current
point to the start point of moving points +
moving distance to pass the current height (or
any other heights on the way) + distance to the
next hole

Z=CurrentZ+NextZ
Moving Time=D/Fast speed
Slow speed= Z/slow speed
Drill time=drill speed /Z
Return time=time (Z+Depth Z+2)

If we are using Multi function machine
If changing time > traveling time
Total time = changing time
If we are using a hand robot
Total time = total time + time of changing the
tool

Time will be changed depends of which type of
machine we are using

If the type of drill should be changed
If changing time > traveling time
Total time = changing time + traveling time

Fig.1.

Fig.1. work piece model

Fig.2. Initial phase of TSP

Code 1:

For (i=0;i<cross2;i++){

 For (j=0;j<cross1;J++) {

if(cross1[i]==cross2[j])

{

Cross2[i]==null;

Null++;

}

}

Fig.3. find the similar nodes code

Fig.4. Searching missing nodes

Fig.5. Node searching code

!

!

!

!

!

!

!

!

!

!

!

Parent!1!or!all!nodes:!or!mother!

A! 1! E! B! C! 3! 4! 2! 5! D!
!

Parent!2!

!

A! 1! 5! B! E! 4! 3! C! 2! D!
!

!

A!

5!

B!

C!

D!

E!

1!

2!

3!

4!

Mother'node'

A' 1' E' B' C' 3' 4' 2' 5' D'
'

'

Nodes'after'cross'over''

A' 1' E' B' C" 4' 3' C" 2' D'
'

Node'after'applying'the'code'1:'

Cross'1' Cross2'
'

A' 1' E' B' C" 4' 3' null" 2' D'
'

'

A' 1' E' B' C" 4' 3' 5" 2' D'
'

'

Search all nodes again: find nodes which are
not exist

N should be equal Null

Code 2:

For (m=0; m<n;m++){

 For (k=0;k<n;k++) {

 If (cross2[m]!=mother[k]){

 Nullnode[n]=mother[k]; ç 5

 n++;

 }

}

Indicating:

For (cross 2: i) {

If(cross2[i]=null){

Cross2[i]=Nullnode[n];

n++;

}

Fig.6. Applying to new child

Fig.7. Finding missing data and replace them

Sort the missed data

Two ways to sort the missing nodes:

1. Sort missing nodes randomly

In this case, the data will replace in the offspring
based on their sequence which saved randomly
in an array,

2. Sort them based on their distance to the next
node

In this case, nodes will be re-sort again based on
their distance in the array and then they will be
replaced in the offspring.

4. Conclusions and future works

In this research, we studied different genetic
algorithm methods and TSP to find a solution
for current problem in TPM. for the future
work we are going to apply this algorithm
and compare it with different AI
optimization methods.

5. Acknowledgment

We would like to express gratitude to Prof.
Sasaki for his kind support and
encouragement. Special thanks are also
extended to staff of Gifu University and
Sasaki ito Laboratory members.

6. References

[1] Dorigo, M., C. Blum, 2005. Ant colony
optimization theory: A survey. Theoretical
computer science, 344(2): 243-278.

[2] Ünal, M., A. Ak, V. Topuz, H. Erdal, 2013.
Ant Colony Optimization (ACO) Optimization
of PID Controllers Using Ant Colony and
Genetic Algorithms, pp: 31-35: Springer.

[3] Dsouza R, Wright P, Sequin C. Automated
microplanning for 2.5-D pocket machining.
Journal of Manufacturing Systems Journal of
Manufacturing Systems. 2001;20:288-96.  

[4] Castelino K. Toolpath optimization for
minimizing airtime during machining. Journal of
Manufacturing Systems Journal of
Manufacturing Systems. 2003;22:173-80.  	

[5] D.E. Goldberg, D.E. Goldberg, Genetic
Algorithms in Search, Optimization and Machine
Learning, Addison Wesly, Reading, MA, USA,
1989.

[6] Shukla, A.; Pandey, H.M.; Mehrotra, D.,
"Comparative review of selection techniques in
genetic algorithm," in Futuristic Trends on
Computational Analysis and Knowledge
Management (ABLAZE), 2015 International
Conference on, vol., no., pp.515-519, 25-27 Feb.
2015

[7] Rajneesh Kumar Agrawal, D.K. Pratihar, A.
Roy Choudhury, Optimization of CNC
isoscallop free form surface machining using a
genetic algorithm, International Journal of
Machine Tools and Manufacture, Volume 46,
Issues 7–8, June 2006, Pages 811-819, ISSN
0890-6955.

Applying(the(algorithm(to(new(Childs((

Mother(node(

A(1(E(B(C(3(4(2(5(D(
(

Child(node(

A(1(E(B(C" 4(3(5" 2(D(
(

Child(1(

A(1(E(B(C" 3(3(5" 2(D(
(

Child2(

A(1(E(B(C" 3(4(2" 5(D(
(

(

Errorinthis$child$$

Cross$1$$$cross2

A$ 1$ E$ B$ C" 3$ 3$ 5" 2$ D$
$

A$ 1$ E$ B$ C" 3$ null$ 5" 2$ D$
$

The$number$whichismissingis4$which$isnotin$cross$2inchild$1$$

Anditsinthecross2[1]isnullornullnodes[1]=4$

Ifthemissing$nodes$are$more$thanonethey$will$be$indicate$to$their$place$respectively$

A$ 1$ E$ B$ C" 3$ 4$ 5" 2$ D$
$

$

View publication statsView publication stats

